1
|
Gkantaras A, Kotzamanidis C, Kyriakidis K, Farmaki E, Makedou K, Tzimagiorgis G, Bekeschus S, Malousi A. Multi-Cohort Transcriptomic Profiling of Medical Gas Plasma-Treated Cancers Reveals the Role of Immunogenic Cell Death. Cancers (Basel) 2024; 16:2186. [PMID: 38927892 PMCID: PMC11201794 DOI: 10.3390/cancers16122186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
The therapeutic potential of cold physical gas plasma operated at atmospheric pressure in oncology has been thoroughly demonstrated in numerous preclinical studies. The cytotoxic effect on malignant cells has been attributed mainly to biologically active plasma-generated compounds, namely, reactive oxygen and nitrogen species. The intracellular accumulation of reactive oxygen and nitrogen species interferes strongly with the antioxidant defense system of malignant cells, activating multiple signaling cascades and inevitably leading to oxidative stress-induced cell death. This study aims to determine whether plasma-induced cancer cell death operates through a universal molecular mechanism that is independent of the cancer cell type. Using whole transcriptome data, we sought to investigate the activation mechanism of plasma-treated samples in patient-derived prostate cell cultures, melanoma, breast, lymphoma, and lung cancer cells. The results from the standardized single-cohort gene expression analysis and parallel multi-cohort meta-analysis strongly indicate that plasma treatment globally induces cancer cell death through immune-mediated mechanisms, such as interleukin signaling, Toll-like receptor cascades, and MyD88 activation leading to pro-inflammatory cytokine release and tumor antigen presentation.
Collapse
Affiliation(s)
- Antonios Gkantaras
- Laboratory of Biological Chemistry, Medical School, Aristotle University, 54124 Thessaloniki, Greece; (A.G.); (K.M.); (G.T.)
- Pediatric Immunology and Rheumatology Referral Center, 1st Department of Pediatrics, Aristotle University, 54124 Thessaloniki, Greece;
| | | | | | - Evangelia Farmaki
- Pediatric Immunology and Rheumatology Referral Center, 1st Department of Pediatrics, Aristotle University, 54124 Thessaloniki, Greece;
| | - Kali Makedou
- Laboratory of Biological Chemistry, Medical School, Aristotle University, 54124 Thessaloniki, Greece; (A.G.); (K.M.); (G.T.)
| | - Georgios Tzimagiorgis
- Laboratory of Biological Chemistry, Medical School, Aristotle University, 54124 Thessaloniki, Greece; (A.G.); (K.M.); (G.T.)
| | - Sander Bekeschus
- ZIK Plasmatis, Leibniz Institute for Plasma Science and Technology (INP), 17489 Greifswald, Germany;
- Clinic and Policlinic for Dermatology and Venerology, Rostock University Medical Center, 18057 Rostock, Germany
| | - Andigoni Malousi
- Laboratory of Biological Chemistry, Medical School, Aristotle University, 54124 Thessaloniki, Greece; (A.G.); (K.M.); (G.T.)
| |
Collapse
|
2
|
Cheng YC, Chang KW, Pan JH, Chen CY, Chou CH, Tu HF, Li WC, Lin SC. Cold Atmospheric Plasma Jet Irradiation Decreases the Survival and the Expression of Oncogenic miRNAs of Oral Carcinoma Cells. Int J Mol Sci 2023; 24:16662. [PMID: 38068984 PMCID: PMC10705903 DOI: 10.3390/ijms242316662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Despite recent advancements, therapies against advanced oral squamous cell carcinoma (OSCC) remain ineffective, resulting in unsatisfactory therapeutic outcomes. Cold atmospheric plasma (CAP) offers a promising approach in the treatment of malignant neoplasms. Although the effects of CAP in abrogating OSCC have been explored, the exact mechanisms driving CAP-induced cancer cell death and the changes in microRNA (miRNA) expression are not fully understood. We fabricated and calibrated an argon-CAP device to explore the effects of CAP irradiation on the growth and expression of oncogenic miRNAs in OSCC. The analysis revealed that, in OSCC cell lines following CAP irradiation, there was a significant reduction in viability; a downregulation of miR-21, miR-31, miR-134, miR-146a, and miR-211 expression; and an inactivation of the v-akt murine thymoma viral oncogene homolog (AKT) and extracellular signal-regulated kinase (ERK) signals. Pretreatment with blockers of apoptosis, autophagy, and ferroptosis synergistically reduced CAP-induced cell death, indicating a combined induction of variable death pathways via CAP. Combined treatments using death inhibitors and miRNA mimics, alongside the activation of AKT and ERK following the exogenous expression, counteracted the cell mortality associated with CAP. The CAP-induced downregulation of miR-21, miR-31, miR-187, and miR-211 expression was rescued through survival signaling. Additionally, CAP irradiation notably inhibited the growth of SAS OSCC cell xenografts on nude mice. The reduced expression of oncogenic miRNAs in vivo aligned with in vitro findings. In conclusion, our study provides new lines of evidence demonstrating that CAP irradiation diminishes OSCC cell viability by abrogating survival signals and oncogenic miRNA expression.
Collapse
Affiliation(s)
- Yun-Chien Cheng
- Department of Mechanical Engineering, College of Engineering, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan; (Y.-C.C.); (C.-Y.C.)
- Institute of Oral Biology, College of Dentistry, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan; (K.-W.C.); (J.-H.P.); (C.-H.C.); (H.-F.T.); (W.-C.L.)
| | - Kuo-Wei Chang
- Institute of Oral Biology, College of Dentistry, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan; (K.-W.C.); (J.-H.P.); (C.-H.C.); (H.-F.T.); (W.-C.L.)
- Department of Dentistry, College of Dentistry, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Stomatology, Taipei Veterans General Hospital, Taipei 112304, Taiwan
| | - Jian-Hua Pan
- Institute of Oral Biology, College of Dentistry, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan; (K.-W.C.); (J.-H.P.); (C.-H.C.); (H.-F.T.); (W.-C.L.)
| | - Chao-Yu Chen
- Department of Mechanical Engineering, College of Engineering, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan; (Y.-C.C.); (C.-Y.C.)
| | - Chung-Hsien Chou
- Institute of Oral Biology, College of Dentistry, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan; (K.-W.C.); (J.-H.P.); (C.-H.C.); (H.-F.T.); (W.-C.L.)
| | - Hsi-Feng Tu
- Institute of Oral Biology, College of Dentistry, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan; (K.-W.C.); (J.-H.P.); (C.-H.C.); (H.-F.T.); (W.-C.L.)
- Department of Dentistry, College of Dentistry, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Wan-Chun Li
- Institute of Oral Biology, College of Dentistry, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan; (K.-W.C.); (J.-H.P.); (C.-H.C.); (H.-F.T.); (W.-C.L.)
- Department of Dentistry, College of Dentistry, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Shu-Chun Lin
- Institute of Oral Biology, College of Dentistry, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan; (K.-W.C.); (J.-H.P.); (C.-H.C.); (H.-F.T.); (W.-C.L.)
- Department of Dentistry, College of Dentistry, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Stomatology, Taipei Veterans General Hospital, Taipei 112304, Taiwan
| |
Collapse
|
3
|
Dai X, Wu J, Lu L, Chen Y. Current Status and Future Trends of Cold Atmospheric Plasma as an Oncotherapy. Biomol Ther (Seoul) 2023; 31:496-514. [PMID: 37641880 PMCID: PMC10468422 DOI: 10.4062/biomolther.2023.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/12/2023] [Accepted: 04/25/2023] [Indexed: 08/31/2023] Open
Abstract
Cold atmospheric plasma (CAP), a redox modulation tool, is capable of inhibiting a wide spectrum of cancers and has thus been proposed as an emerging onco-therapy. However, with incremental successes consecutively reported on the anticancer efficacy of CAP, no consensus has been made on the types of tumours sensitive to CAP due to the different intrinsic characteristics of the cells and the heterogeneous design of CAP devices and their parameter configurations. These factors have substantially hindered the clinical use of CAP as an oncotherapy. It is thus imperative to clarify the tumour types responsive to CAP, the experimental models available for CAP-associated investigations, CAP administration strategies and the mechanisms by which CAP exerts its anticancer effects with the aim of identifying important yet less studied areas to accelerate the process of translating CAP into clinical use and fostering the field of plasma oncology.
Collapse
Affiliation(s)
- Xiaofeng Dai
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Jiale Wu
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Lianghui Lu
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Yuyu Chen
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| |
Collapse
|
4
|
Gangemi S, Petrarca C, Tonacci A, Di Gioacchino M, Musolino C, Allegra A. Cold Atmospheric Plasma Targeting Hematological Malignancies: Potentials and Problems of Clinical Translation. Antioxidants (Basel) 2022; 11:antiox11081592. [PMID: 36009311 PMCID: PMC9405440 DOI: 10.3390/antiox11081592] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/10/2022] [Accepted: 08/14/2022] [Indexed: 11/16/2022] Open
Abstract
Cold atmospheric plasma is an ionized gas produced near room temperature; it generates reactive oxygen species and nitrogen species and induces physical changes, including ultraviolet, radiation, thermal, and electromagnetic effects. Several studies showed that cold atmospheric plasma could effectively provoke death in a huge amount of cell types, including neoplastic cells, via the induction of apoptosis, necrosis, and autophagy. This technique seems able to destroy tumor cells by disturbing their more susceptible redox equilibrium with respect to normal cells, but it is also able to cause immunogenic cell death by enhancing the immune response, to decrease angiogenesis, and to provoke genetic and epigenetics mutations. Solutions activated by cold gas plasma represent a new modality for treatment of less easily reached tumors, or hematological malignancies. Our review reports on accepted knowledge of cold atmospheric plasma’s effect on hematological malignancies, such as acute and chronic myeloid leukemia and multiple myeloma. Although relevant progress was made toward understanding the underlying mechanisms concerning the efficacy of cold atmospheric plasma in hematological tumors, there is a need to determine both guidelines and safety limits that guarantee an absence of long-term side effects.
Collapse
Affiliation(s)
- Sebastiano Gangemi
- Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, School of Allergy and Clinical Immunology, University of Messina, 98125 Messina, Italy
| | - Claudia Petrarca
- Department of Medicine and Aging Sciences, G. D’Annunzio University, 66100 Chieti, Italy
- Center for Advanced Studies and Technology, G. D’Annunzio University, 66100 Chieti, Italy
- Correspondence:
| | - Alessandro Tonacci
- Clinical Physiology Institute, National Research Council of Italy (IFC-CNR), 56124 Pisa, Italy
| | - Mario Di Gioacchino
- Department of Medicine and Aging Sciences, G. D’Annunzio University, 66100 Chieti, Italy
- Institute for Clinical Immunotherapy and Advanced Biological Treatments, 65100 Pescara, Italy
| | - Caterina Musolino
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98125 Messina, Italy
| | - Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98125 Messina, Italy
| |
Collapse
|
5
|
Hu Y, Liu J, Yu J, Yang F, Zhang M, Liu Y, Ma S, Zhou X, Wang J, Han Y. Identification and validation a costimulatory molecule gene signature to predict the prognosis and immunotherapy response for hepatocellular carcinoma. Cancer Cell Int 2022; 22:97. [PMID: 35193632 PMCID: PMC8864933 DOI: 10.1186/s12935-022-02514-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 02/05/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is one of the most common malignancies worldwide. Costimulatory molecules have been proven to be the foundation of immunotherapy. However, the potential roles of costimulatory molecule genes (CMGs) in HCC remain unclear. Our study is aimed to develop a costimulatory molecule-related gene signature that could evaluate the prognosis of HCC patients. METHODS Based on The Cancer Gene Atlas (TCGA) database, univariate Cox regression analysis was applied in CMGs to identify prognosis-related CMGs. Consensus clustering analysis was performed to stratify HCC patients into different subtypes and compared them in OS. Subsequently, the LASSO Cox regression analysis was performed to construct the CMGs-related prognostic signature and Kaplan-Meier survival curves as well as ROC curve were used to validate the predictive capability. Then we explored the correlations of the risk signature with tumor-infiltrating immune cells, tumor mutation burden (TMB) and response to immunotherapy. The expression levels of prognosis-related CMGs were validated based on qRT-PCR and Human Protein Atlas (HPA) databases. RESULTS All HCC patients were classified into two clusters based on 11 CMGs with prognosis values and cluster 2 correlated with a poorer prognosis. Next, a prognostic signature of six CMGs was constructed, which was an independent risk factor for HCC patients. Patients with low-risk score were associated with better prognosis. The correlation analysis showed that the risk signature could predict the infiltration of immune cells and immune status of the immune microenvironment in HCC. The qRT-PCR and immunohistochemical results indicated six CMGs with differential expression in HCC tissues and normal tissues. CONCLUSION In conclusion, our CMGs-related risk signature could be used as a prediction tool in survival assessment and immunotherapy for HCC patients.
Collapse
Affiliation(s)
- Yinan Hu
- Institute of Digestive Diseases, Xijing Hospital, Air Force Medical University, Xi'an, 710032, Shaanxi, China
| | - Jingyi Liu
- Department of Radiation Oncology, Xijing Hospital, Air Force Medical University, Xi'an, 710032, Shaanxi, China
| | - Jiahao Yu
- Institute of Digestive Diseases, Xijing Hospital, Air Force Medical University, Xi'an, 710032, Shaanxi, China
| | - Fangfang Yang
- Institute of Digestive Diseases, Xijing Hospital, Air Force Medical University, Xi'an, 710032, Shaanxi, China
| | - Miao Zhang
- Institute of Digestive Diseases, Xijing Hospital, Air Force Medical University, Xi'an, 710032, Shaanxi, China
| | - Yansheng Liu
- Institute of Digestive Diseases, Xijing Hospital, Air Force Medical University, Xi'an, 710032, Shaanxi, China
| | - Shuoyi Ma
- Institute of Digestive Diseases, Xijing Hospital, Air Force Medical University, Xi'an, 710032, Shaanxi, China
| | - Xia Zhou
- Institute of Digestive Diseases, Xijing Hospital, Air Force Medical University, Xi'an, 710032, Shaanxi, China
| | - Jingbo Wang
- Institute of Digestive Diseases, Xijing Hospital, Air Force Medical University, Xi'an, 710032, Shaanxi, China
| | - Ying Han
- Institute of Digestive Diseases, Xijing Hospital, Air Force Medical University, Xi'an, 710032, Shaanxi, China.
| |
Collapse
|