1
|
Wang Y, Ouyang Y, Cao X, Cai Q. Identifying hub genes for chemo-radiotherapy sensitivity in cervical cancer: a bi-dataset in silico analysis. Discov Oncol 2024; 15:434. [PMID: 39264467 PMCID: PMC11393377 DOI: 10.1007/s12672-024-01328-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 09/09/2024] [Indexed: 09/13/2024] Open
Abstract
PURPOSE To identify the hub genes that associated with chemo-radiotherapy sensitivity for cervical cancer and to explore the relationship between hub genes and various cellular processes and potential mechanism of cervical cancer. METHODS The gene expression data of 21 patients with CESC and the mRNA expression profiles of 296 patients with CESC were obtained from the Gene Expression Omnibus(GEO) and The Cancer Genome Atlas (TCGA) databases, respectively. The potential functions and regulatory mechanisms of differentially expressed genes (DEGs) were identified using GO and KEGG enrichment analyses. Hub genes were identified using random survival forest analysis. The relationship between hub genes and various cellular processes was comprehensively analyzed. The expression of hub genes was assessed using clinical data extracted from the Human Protein Atlas (HPA) database. RESULTS A total of 139 and 13 DEGs were found to be upregulated and downregulated, respectively, in CESC. The six hub genes, namely, SELP, PIM2, CCL19, SDS, NRP1, and SF3A2, were significantly correlated with immune cell infiltration, chemotherapy sensitivity, disease-related genes, and enriched signaling pathways (all p-value < 0.05). A nomogram and calibration curve were generated using the six hub genes to predict prognosis with high accuracy. A regulatory network comprising TFs (ZBTB3) and mRNAs (NRP1/PIM2/SELP) and several competitive endogenous RNA (ceRNA) networks comprising mRNAs, miRNAs, and lncRNAs were constructed. Data from HPA indicated that the protein expression of the six hub genes differed significantly between patients with CESC and healthy individuals. CONCLUSION Upregulation of SELP, PIM2, CCL19, SDS, NRP1, and SF3A2 is associated with radiotherapy sensitivity and is involved in various cellular processes in CESC. These six genes may serve as biomarkers for predicting the radiotherapy response and prognosis in patients with CESC.
Collapse
Affiliation(s)
- Yanhong Wang
- Department of Radiotherapy, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, Fujian, China
| | - Yi Ouyang
- State Key Laboratory of Oncology in South China, Department of Radiotherapy, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510600, Guangdong, China
| | - Xinping Cao
- State Key Laboratory of Oncology in South China, Department of Radiotherapy, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510600, Guangdong, China
| | - Qunrong Cai
- Department of Radiotherapy, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, Fujian, China.
| |
Collapse
|
2
|
Li S, Gao K, Yao D. Comprehensive Analysis of angiogenesis associated genes and tumor microenvironment infiltration characterization in cervical cancer. Heliyon 2024; 10:e33277. [PMID: 39021997 PMCID: PMC11252983 DOI: 10.1016/j.heliyon.2024.e33277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 06/15/2024] [Accepted: 06/18/2024] [Indexed: 07/20/2024] Open
Abstract
Background Cervical cancer is among the most prevalent malignancies worldwide. This study explores the relationships between angiogenesis-related genes (ARGs) and immune infiltration, and assesses their implications for the prognosis and treatment of cervical cancer. Additionally, it develops a diagnostic model based on angiogenesis-related differentially expressed genes (ARDEGs). Methods We systematically evaluated 15 ARDEGs using Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene Set Enrichment Analysis (GSEA), and Gene Set Variation Analysis (GSVA). Immune cell infiltration was assessed using a single-sample gene-set enrichment analysis (ssGSEA) algorithm. We then constructed a diagnostic model for ARDEGs using Least Absolute Shrinkage and Selection Operator (LASSO) regression analysis and evaluated the diagnostic value of this model and the hub genes in predicting clinical outcomes and immunotherapy responses in cervical cancer. Results A set of ARDEGs was identified from the Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO), and UCSC Xena database. We performed KEGG, GO, and GSEA analyses on these genes, revealing significant involvement in cell proliferation, differentiation, and apoptosis. The ARDEGs diagnostic model, constructed using LASSO regression analysis, showed high predictive accuracy in cervical cancer patients. We developed a reliable nomogram and decision curve analysis to evaluate the clinical utility of the ARDEG diagnostic model. The 15 ARDEGs in the model were associated with clinicopathological features, prognosis, and immune cell infiltration. Notably, ITGA5 expression and the abundance of immune cell infiltration (specifically mast cell activation) were highly correlated. Conclusion This study identifies the prognostic characteristics of ARGs in cervical cancer patients, elucidating aspects of the tumor microenvironment. It enhances the predictive accuracy of immunotherapy outcomes and establishes new strategies for immunotherapeutic interventions.
Collapse
Affiliation(s)
- Shuzhen Li
- Department of Gynecologic Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi Zhuang Autonomous Region, 530021, PR China
| | - Kun Gao
- Department of Gynecologic Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi Zhuang Autonomous Region, 530021, PR China
| | - Desheng Yao
- Department of Gynecologic Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi Zhuang Autonomous Region, 530021, PR China
| |
Collapse
|
3
|
Yu Y, Yu J, Cui X, Sun X, Yu X. TNF-α-induced down-regulation of type I interferon receptor contributes to acquired resistance of cervical squamous cancer to Cisplatin. J Antibiot (Tokyo) 2024; 77:102-110. [PMID: 38102186 DOI: 10.1038/s41429-023-00686-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/30/2023] [Accepted: 11/03/2023] [Indexed: 12/17/2023]
Abstract
We aimed to investigate the effects of tumor necrosis factor (TNF)-α on the expression of interferon α/β receptor subunit 1 (IFNAR1) and cervical squamous cancer (CSCC) resistance to Cisplatin, as well as the underlying mechanisms. Kaplan-Meier analysis was used to plot the overall survival curves. SiHa cells were treated with 20 ng/ml TNF-α to determine cell proliferation in human CSCC cells and the expression of IFNAR1. The effects of TNF-α on the downstream signaling pathway, including casein kinase 1α (CK1α), were investigated using the caspase protease inhibitor FK009, the c-Jun kinase inhibitor SP600125, and the nuclear factor kappa-B inhibitor ammonium pyrrolidinedithiocarbamate (PDTC). TNF-α induced down-regulation of IFNAR1 in human CSCC cells and promoted proliferation of SiHa cells. SiHa cells were transfected with the catalytic inactive mutant CK1α K49A, and the ability of TNF-α to induce down-regulation of IFNAR1 expression was found to be significantly diminished in this context. FK009 and PDTC had no obvious effect on the expression of CK1α, however, SP600125 significantly reduced the expression of CK1α in the presence of TNF-α. SiHa cells treated with TNF-α showed reduced sensitivity to Cisplatin and exhibited higher cell viability, while the sensitivity of SiHa cells to Cisplatin was restored after treatment with CK1α inhibitor D4476. Additionally, we constructed a TNF-α overexpressing SiHa cell line and a transplanted tumor model. The results were similar to those of in vitro efficacy. We demonstrate that TNF-α-induced down-regulation of type I interferon receptor contributes to acquired resistance of cervical squamous cancer to Cisplatin.
Collapse
Affiliation(s)
- Yani Yu
- Department of Gynecology, Zibo Central Hospital, No. 54 Gongqingtuan West Road, Zibo, 255036, Shandong, China
| | - Jia Yu
- Department of Gynecology, Zibo Central Hospital, No. 54 Gongqingtuan West Road, Zibo, 255036, Shandong, China.
| | - Xiaorong Cui
- Department of Gynecology, Zibo Central Hospital, No. 54 Gongqingtuan West Road, Zibo, 255036, Shandong, China
| | - Xin Sun
- Department of Gynecology, Zibo Central Hospital, No. 54 Gongqingtuan West Road, Zibo, 255036, Shandong, China
| | - Xiaohui Yu
- Department of Gynecology, Zibo Central Hospital, No. 54 Gongqingtuan West Road, Zibo, 255036, Shandong, China
| |
Collapse
|
4
|
Li J, Xi J. Exploring Immune-Related Gene Profiling and Infiltration of Immune Cells in Cervical Squamous Cell Carcinoma and Endocervical Adenocarcinoma. Genes (Basel) 2024; 15:121. [PMID: 38275602 PMCID: PMC10815177 DOI: 10.3390/genes15010121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/08/2024] [Accepted: 01/12/2024] [Indexed: 01/27/2024] Open
Abstract
Cervical cancer is a widespread malignancy among women, leading to a substantial global health impact. Despite extensive research, our understanding of the basic molecules and pathogenic processes of cervical squamous cell carcinoma is still insufficient. This investigation aims to uncover immune-related genes linked to CESC and delineate their functions. Leveraging data from the GEO and ImmPort databases, a total of 22 immune-related genes were identified. Multiple tools, including DAVID, the human protein atlas, STRING, GeneMANIA, and TCGA, were employed to delve into the expression and roles of these immune genes in CESC, alongside their connections to the disease's pathological features. Through RT-PCR, the study confirmed notable disparities in CXCL8 and CXCL10 mRNA expression between CESC and normal cervical tissue. The TCGA dataset's immune-related information reinforced the association of CXCL8 and CXCL10 with immune infiltration in CESC. This research sheds light on the potential of CXCL8 and CXCL10 as promising therapeutic targets and essential prognostic factors for individuals diagnosed with CESC.
Collapse
Affiliation(s)
- Jialu Li
- School of Medicine, Institute of Translational Medicine, Yangzhou University, Yangzhou 225012, China;
| | - Juqun Xi
- School of Medicine, Institute of Translational Medicine, Yangzhou University, Yangzhou 225012, China;
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou 225009, China
| |
Collapse
|
5
|
Chu M, Ji H, Li K, Liu H, Peng M, Wang Z, Zhu X. Investigating the potential mechanism of quercetin against cervical cancer. Discov Oncol 2023; 14:170. [PMID: 37704909 PMCID: PMC10499770 DOI: 10.1007/s12672-023-00788-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/06/2023] [Indexed: 09/15/2023] Open
Abstract
BACKGROUND Cervical cancer is emerging as a potential target of increased susceptibility to coronavirus disease-2019 (COVID-19), leading to compromised survival rates. Despite this critical link, efficacious anti-cervical cancer/COVID-19 interventions remain limited. Quercetin, known for its efficacy against both cancer and viral infections, holds promise as a therapeutic agent. This study aims to elucidate quercetin's anti-cervical cancer/COVID-19 mechanisms and potential targets. METHODS We initiated our investigation with differential gene expression analysis using cervical cancer transcriptome data from The Cancer Genome Atlas (TCGA) and The Genotype-Tissue Expression (GTEx), focusing on intersections with COVID-19-related genes. Network pharmacology was employed to identify the shared targets between cervical cancer/COVID-19 DEGs and quercetin's targets. Subsequently, Cox proportional hazards analyses were employed to establish a risk score based on these genes. Molecular docking techniques were applied to predict quercetin's therapeutic targets and mechanisms for mitigating cervical cancer and COVID-19. RESULTS Our findings unveiled 45 potential quercetin targets with anti-cervical cancer/COVID-19 actions. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses highlighted significant enrichment in immune pathways and COVID-19-related pathways. A refined risk score model, comprising PLA2G7, TNF, TYK2, F2, and NRP1, effectively stratified cervical cancer patients into distinct risk groups. Importantly, molecular docking analyses illuminated quercetin's remarkable binding affinity to the primary protease of the coronavirus. CONCLUSIONS In summation, our study suggests that quercetin holds promise as a potential therapeutic agent for mitigating coronavirus function, specifically through its interaction with the primary protease. This research offers novel insights into exploring COVID-19 susceptibility and enhancing survival in cervical cancer patients.
Collapse
Affiliation(s)
- Man Chu
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, 325027, China
| | - Huihui Ji
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, 325027, China
| | - Kehan Li
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, 325027, China
| | - Hejing Liu
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, 325027, China
| | - Mengjia Peng
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, 325027, China
| | - Zhiwei Wang
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, 325027, China.
| | - Xueqiong Zhu
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, 325027, China.
| |
Collapse
|
6
|
Korikani M, Fathima N, Nadiminti G, Akula S, Kancha RK. Applications of promiscuity of FDA-approved kinase inhibitors in drug repositioning and toxicity. Toxicol Appl Pharmacol 2023; 465:116469. [PMID: 36918129 DOI: 10.1016/j.taap.2023.116469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/05/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023]
Abstract
Promiscuity of therapeutics has important implications in treatment and toxicity. So far, a comprehensive understanding of promiscuity related to kinase inhibitors is lacking and such an analysis may offer potential opportunities for drug repurposing. In the present study, profiling of inhibitor-specific kinases based on the available biochemical IC50s was performed, fold-change of IC50 values for additional targets were calculated by taking the primary target as the reference kinase, and finally the promiscuity degree (PD) for FDA-approved kinase inhibitors was calculated. Surprisingly, class II inhibitors showed more PD than that of the class I inhibitors. We further identified cancer types and sub-types in which additional kinase targets or off-targets of inhibitors were overexpressed for potential drug repurposing. In addition, the expression of these kinases in normal human tissues were also profiled to predict toxicity following drug repositioning. Taken together, the study offers opportunities for cancer treatment in a kinase-specific manner.
Collapse
Affiliation(s)
- Meghana Korikani
- Molecular Medicine and Therapeutics Laboratory, CPMB, Osmania University, Hyderabad 500007, India
| | - Neeshat Fathima
- Molecular Medicine and Therapeutics Laboratory, CPMB, Osmania University, Hyderabad 500007, India
| | - Gouthami Nadiminti
- Molecular Medicine and Therapeutics Laboratory, CPMB, Osmania University, Hyderabad 500007, India
| | - Sravani Akula
- Molecular Medicine and Therapeutics Laboratory, CPMB, Osmania University, Hyderabad 500007, India
| | - Rama Krishna Kancha
- Molecular Medicine and Therapeutics Laboratory, CPMB, Osmania University, Hyderabad 500007, India.
| |
Collapse
|