1
|
Chen H, Zhang X, Cheng Q, Shen X, Zeng L, Wang Y, Fan L, Jiang W. snRNA-seq of long-preserved FFPE samples from colorectal liver metastasis lesions with diverse prognoses. Sci Data 2024; 11:1434. [PMID: 39725704 DOI: 10.1038/s41597-024-04323-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 12/18/2024] [Indexed: 12/28/2024] Open
Abstract
Differences in prognostic outcomes are prevalent in patients with colorectal cancer liver metastases. Comparative analysis of tissue samples, particularly applying single-cell transcriptome sequencing technology, can provide a deeper understanding of potential impacting factors. However, long-term monitoring for prognosis determination necessitates extended preservation of tissue samples using formalin-fixed and paraffin-embedded (FFPE) treatments, which can cause substantial RNA degradation, presenting challenges to single-cell or single-nucleus sequencing. In this study, employing snRandom-seq, a single-nucleus RNA sequencing (snRNA-seq) technology specifically for FFPE samples, we tested multiple lesion samples from 18 distinctive colorectal cancer liver metastasis cases with diverse prognostic outcomes that have been preserved for at least three years (mostly over five years). The process yielded expression data from 82,285 cells. The high-quality snRNA-seq data demonstrate the feasibility of single-nucleus sequencing in long-term preserved FFPE samples, offering potential insights into the heterogeneity between different prognoses of colorectal cancer liver metastases, and the relationship between the heterogeneity within different lesions of the same patient and prognosis.
Collapse
Affiliation(s)
- Hongyu Chen
- School of Medicine, Hangzhou City University, Hangzhou, China
- Institute of Bioinformatics and James D. Watson Institute of Genome Sciences, Zhejiang University, Hangzhou, China
| | - Xiang Zhang
- Department of Colorectal Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Qing Cheng
- Institute of Bioinformatics and James D. Watson Institute of Genome Sciences, Zhejiang University, Hangzhou, China
| | - Xiner Shen
- Institute of Bioinformatics and James D. Watson Institute of Genome Sciences, Zhejiang University, Hangzhou, China
| | - Linghui Zeng
- School of Medicine, Hangzhou City University, Hangzhou, China
| | - Yongcheng Wang
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Department of Laboratory Medicine, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Longjiang Fan
- Institute of Bioinformatics and James D. Watson Institute of Genome Sciences, Zhejiang University, Hangzhou, China
| | - Weiqin Jiang
- Department of Colorectal Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
2
|
Wang K, Yu J, Xu Q, Peng Y, Li H, Lu Y, Ouyang M. Disulfidptosis-related long non-coding RNA signature predicts the prognosis, tumor microenvironment, immunotherapy, and antitumor drug options in colon adenocarcinoma. Apoptosis 2024; 29:2074-2090. [PMID: 39115621 PMCID: PMC11550253 DOI: 10.1007/s10495-024-02011-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2024] [Indexed: 11/10/2024]
Abstract
This study aims to investigate the role and prognostic significance of long non-coding RNAs (lncRNAs) associated with disulfidptosis in colon adenocarcinoma (COAD). The TCGA database's clinical data and transcriptome profiles were employed. Analysis of previous studies identified 10 disulfidptosis-related genes (DRGs). We used these genes to construct a signature that could independently and accurately predict the prognosis of patients with COAD. The Kaplan-Meier (K-M) curve analysis showed that the lower-risk group had a better prognosis. With the help of multivariate Cox regression analysis, the risk score produced from the patient's signature might independently predict the outcomes. Utilizing a nomogram, the receiver operating characteristic (ROC) curve, and principal component analysis (PCA), the signature's predictive ability was also confirmed. It's interesting to note that immunotherapy, especially PD-1 immune checkpoint suppression, was more likely to benefit low-risk patients. The IC50 levels for certain anticancer agents were lower in the high-risk group. Finally, qRT-PCR analyses in colon cancer cell lines revealed elevated levels of lncRNAs CASC9, ZEB1-AS1, ATP2A1-AS1, SNHG7, AL683813.1, and AP003555.1, and reduced levels of FAM160A1-DT and AC112220.2, compared to normal cell lines. This signature offers insights into prognosis, tumor microenvironment, and options for immunotherapy and antitumor drugs in patients with COAD.
Collapse
Affiliation(s)
- Kang Wang
- Department of Gastrointestinal Surgery, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Shunde, Foshan, Guangdong Province, 528300, China
| | - Jing Yu
- Department of Gastrointestinal Surgery, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Shunde, Foshan, Guangdong Province, 528300, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, 510080, China
| | - Qihuan Xu
- Department of Gastrointestinal Surgery, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Shunde, Foshan, Guangdong Province, 528300, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, 510080, China
| | - Yuanhong Peng
- Department of Gastrointestinal Surgery, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Shunde, Foshan, Guangdong Province, 528300, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, 510080, China
| | - Haibin Li
- Department of Gastrointestinal Surgery, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Shunde, Foshan, Guangdong Province, 528300, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, 510080, China
| | - Yan Lu
- Guangdong Medical University, Zhanjiang, Dongguan, 523808, China.
- GCP Center, Shunde Hospital, Southern Medical University, The First People's Hospital of Shunde Foshan), Foshan, Guangdong, 528300, China.
| | - Manzhao Ouyang
- Department of Gastrointestinal Surgery, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Shunde, Foshan, Guangdong Province, 528300, China.
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, 510080, China.
| |
Collapse
|
3
|
Zhu Y, Huang C, Zhang C, Zhou Y, Zhao E, Zhang Y, Pan X, Huang H, Liao W, Wang X. LncRNA MIR200CHG inhibits EMT in gastric cancer by stabilizing miR-200c from target-directed miRNA degradation. Nat Commun 2023; 14:8141. [PMID: 38065939 PMCID: PMC10709323 DOI: 10.1038/s41467-023-43974-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 11/26/2023] [Indexed: 12/18/2023] Open
Abstract
Gastric cancer (GC) is a heterogeneous disease, threatening millions of lives worldwide, yet the functional roles of long non-coding RNAs (lncRNAs) in different GC subtypes remain poorly characterized. Microsatellite stable (MSS)/epithelial-mesenchymal transition (EMT) GC is the most aggressive subtype associated with a poor prognosis. Here, we apply integrated network analysis to uncover lncRNA heterogeneity between GC subtypes, and identify MIR200CHG as a master regulator mediating EMT specifically in MSS/EMT GC. The expression of MIR200CHG is silenced in MSS/EMT GC by promoter hypermethylation, associated with poor prognosis. MIR200CHG reverses the mesenchymal identity of GC cells in vitro and inhibits metastasis in vivo. Mechanistically, MIR200CHG not only facilitates the biogenesis of its intronic miRNAs miR-200c and miR-141, but also protects miR-200c from target-directed miRNA degradation (TDMD) through direct binding to miR-200c. Our studies reveal a landscape of a subtype-specific lncRNA regulatory network, providing clinically relevant biological insights towards MSS/EMT GC.
Collapse
Grants
- 2020N368 Shenzhen Science and Technology Innovation Commission
- C4024-22GF Research Grants Council, University Grants Committee (RGC, UGC)
- 14104223 Research Grants Council, University Grants Committee (RGC, UGC)
- 11103619 Research Grants Council, University Grants Committee (RGC, UGC)
- 14111522 Research Grants Council, University Grants Committee (RGC, UGC)
- R4017-18 Research Grants Council, University Grants Committee (RGC, UGC)
- 82173289 National Natural Science Foundation of China (National Science Foundation of China)
- 81872401 National Natural Science Foundation of China (National Science Foundation of China)
- Guangdong Basic and Applied Basic Research Foundation (Project No.2019B030302012), a startup grant (Project No. 4937084), direct grant (2021.077), Faculty Postdoctoral Fellowship Scheme 2021/22 (Project No. FPFS/2122/32), Shenzhen Bay Scholars Program.
- Guangdong Basic and Applied Basic Research Foundation (2021A1515010425)
Collapse
Affiliation(s)
- Yixiao Zhu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong SAR, China
- National Clinical Research Centre for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chengmei Huang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Chao Zhang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Yi Zhou
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Enen Zhao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Yaxin Zhang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Xingyan Pan
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Huilin Huang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China.
| | - Wenting Liao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China.
| | - Xin Wang
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong SAR, China.
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, Guangdong, China.
| |
Collapse
|
4
|
Yalimaimaiti S, Liang X, Zhao H, Dou H, Liu W, Yang Y, Ning L. Establishment of a prognostic signature for lung adenocarcinoma using cuproptosis-related lncRNAs. BMC Bioinformatics 2023; 24:81. [PMID: 36879187 PMCID: PMC9990240 DOI: 10.1186/s12859-023-05192-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 02/20/2023] [Indexed: 03/08/2023] Open
Abstract
OBJECTIVE To establish a prognostic signature for lung adenocarcinoma (LUAD) based on cuproptosis-related long non-coding RNAs (lncRNAs), and to study the immune-related functions of LUAD. METHODS First, transcriptome data and clinical data related to LUAD were downloaded from the Cancer Genome Atlas (TCGA), and cuproptosis-related genes were analyzed to identify cuproptosis-related lncRNAs. Univariate COX analysis, least absolute shrinkage and selection operator (LASSO) analysis, and multivariate COX analysis were performed to analyze the cuproptosis-related lncRNAs, and a prognostic signature was established. Second, univariate COX analysis and multivariate COX analysis were performed for independent prognostic analyses. Receiver operating characteristic (ROC) curves, C index, survival curve, nomogram, and principal component analysis (PCA) were performed to evaluate the results of the independent prognostic analyses. Finally, gene enrichment analyses and immune-related function analyses were also carried out. RESULTS (1) A total of 1,297 cuproptosis-related lncRNAs were screened. (2) A LUAD prognostic signature containing 13 cuproptosis-related lncRNAs was constructed (NIFK-AS1, AC026355.2, SEPSECS-AS1, AL360270.1, AC010999.2, ABCA9-AS1, AC032011.1, AL162632.3, LINC02518, LINC0059, AL031600.2, AP000346.1, AC012409.4). (3) The area under the multi-indicator ROC curves at 1, 3, and 5 years were AUC1 = 0.742, AUC2 = 0.708, and AUC3 = 0.762, respectively. The risk score of the prognostic signature could be used as an independent prognostic factor that was independent of other clinical indicators. (4) The results of gene enrichment analyses showed that 13 biomarkers were primarily related to amoebiasis, the wnt signaling pathway, hematopoietic cell lineage. The ssGSEA volcano map showed significant differences between high- and low-risk groups in immune-related functions, such as human leukocyte antigen (HLA), Type_II_IFN_Reponse, MHC_class_I, and Parainflammation (P < 0.001). CONCLUSIONS Thirteen cuproptosis-related lncRNAs may be clinical molecular biomarkers for the prognosis of LUAD.
Collapse
Affiliation(s)
- Saiyidan Yalimaimaiti
- School of Public Health, Xinjiang Medical University, Urumqi, 830011, Xinjiang, China
| | - Xiaoqiao Liang
- School of Public Health, Xinjiang Medical University, Urumqi, 830011, Xinjiang, China
| | - Haili Zhao
- School of Public Health, Xinjiang Medical University, Urumqi, 830011, Xinjiang, China
| | - Hong Dou
- Xinjiang Uygur Autonomous Region Occupational Disease Hospital, Urumqi, 830011, Xinjiang, China
| | - Wei Liu
- Xinjiang Uygur Autonomous Region Occupational Disease Hospital, Urumqi, 830011, Xinjiang, China
| | - Ying Yang
- School of Public Health, Xinjiang Medical University, Urumqi, 830011, Xinjiang, China
| | - Li Ning
- School of Public Health, Xinjiang Medical University, Urumqi, 830011, Xinjiang, China.
| |
Collapse
|
5
|
Chi XJ, Song YB, Liu DH, Wei LQ, An X, Feng ZZ, Lan XH, Lan D, Huang C. Significance of platelet adhesion-related genes in colon cancer based on non-negative matrix factorization-based clustering algorithm. Digit Health 2023; 9:20552076231203902. [PMID: 37766908 PMCID: PMC10521306 DOI: 10.1177/20552076231203902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Background Although surgical methods are the most effective treatments for colon adenocarcinoma (COAD), the cure rates remain low, and recurrence rates remain high. Furthermore, platelet adhesion-related genes are gaining attention as potential regulators of tumorigenesis. Therefore, identifying the mechanisms responsible for the regulation of these genes in patients with COAD has become important. The present study aims to investigate the underlying mechanisms of platelet adhesion-related genes in COAD patients. Methods The present study was an experimental study. Initially, the effects of platelet number and related genomic alteration on survival were explored using real-world data and the cBioPortal database, respectively. Then, the differentially expressed platelet adhesion-related genes of COAD were analyzed using the TCGA database, and patients were further classified by employing the non-negative matrix factorization (NMF) analysis method. Afterward, some of the clinical and expression characteristics were analyzed between clusters. Finally, least absolute shrinkage and selection operator regression analysis was used to establish the prognostic nomogram. All data analyses were performed using the R package. Results High platelet counts are associated with worse survival in real-world patients, and alternations to platelet adhesion-related genes have resulted in poorer prognoses, based on online data. Based on platelet adhesion-related genes, patients with COAD were classified into two clusters by NMF-based clustering analysis. Cluster2 had a better overall survival, when compared to Cluster1. The gene copy number and enrichment analysis results revealed that two pathways were differentially enriched. In addition, the differentially expressed genes between these two clusters were enriched for POU6F1 in the transcription factor signaling pathway, and for MATN3 in the ceRNA network. Finally, a prognostic nomogram, which included the ALOX12 and ACTG1 genes, was established based on the platelet adhesion-related genes, with a concordance (C) index of 0.879 (0.848-0.910). Conclusion The mRNA expression-based NMF was used to reveal the potential role of platelet adhesion-related genes in COAD. The series of experiments revealed the feasibility of targeting platelet adhesion-associated gene therapy.
Collapse
Affiliation(s)
- Xiao-jv Chi
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, Nanning, China
| | - Yi-bei Song
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, Nanning, China
| | - Deng-he Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, Nanning, China
| | - Li-qiang Wei
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, Nanning, China
| | - Xin An
- The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zi-zhen Feng
- The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiao-hua Lan
- The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Dong Lan
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Chao Huang
- School of Information and Management, Guangxi Medical University, Nanning, China
| |
Collapse
|
6
|
Li T, Yu Q, Liu T, Yang W, Chen W, Jin A, Wang H, Ding L, Zhang C, Pan B, Wang B, Guo W. Development of 14-gene signature prognostic model based on metastasis for colorectal cancer. J Clin Lab Anal 2022; 37:e24800. [PMID: 36524971 PMCID: PMC9833974 DOI: 10.1002/jcla.24800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 01/27/2022] [Accepted: 10/31/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Metastasis is the main cause of death of colorectal tumors, in our study a prognosis model was built by analyzing the differentially expressed genes between metastatic and non-metastatic colorectal cancer (CRC). We used this feature to predict CRC patient prognosis and explore the causes of colorectal tumor metastasis by characterizing the immune status alteration. METHODS CRC patient data were obtained from TCGA and GEO databases. We constructed a risk prognostic model by using Cox regression and the least absolute shrinkage and selection operator (LASSO) based on CRC metastasis-related genes. We also obtained a nomogram to predict the prognosis of CRC patients. Finally, we explored the underlying mechanism of these metastasis-related genes and CRC prognosis using immune infiltration analysis and experimental verification. RESULTS According to our prognostic model, in TCGA, the area under the curve (AUC) values of the training and test sets were 0.72 and 0.76, respectively, and 0.68 for the GEO external data set. This suggested that the treatment and prognosis of patients could be effectively determined. At the same time, we found that the B and T cells in both tissues and peripheral blood of high MR-risk score patients were mostly in immune static or inactivated states compared with those of low MR-risk score patients. CONCLUSIONS MR-risk score has a direct correlation with CRC patient prognosis. It is useful for predicting the prognosis and patient immune status for these patients.
Collapse
Affiliation(s)
- Tong Li
- Department of Laboratory MedicineZhongshan Hospital, Fudan UniversityShanghaiChina
| | - Qian Yu
- Department of Laboratory MedicineZhongshan Hospital, Fudan UniversityShanghaiChina
- Department of Laboratory Medicine, Wusong Branch, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Te Liu
- Department of Laboratory MedicineZhongshan Hospital, Fudan UniversityShanghaiChina
- Shanghai Geriatric Institute of Chinese MedicineShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Wenjing Yang
- Department of Laboratory MedicineZhongshan Hospital, Fudan UniversityShanghaiChina
| | - Wei Chen
- Department of Laboratory MedicineZhongshan Hospital, Fudan UniversityShanghaiChina
| | - Anli Jin
- Department of Laboratory MedicineZhongshan Hospital, Fudan UniversityShanghaiChina
| | - Hao Wang
- Department of Laboratory MedicineZhongshan Hospital, Fudan UniversityShanghaiChina
| | - Lin Ding
- Department of Laboratory MedicineZhongshan Hospital, Fudan UniversityShanghaiChina
| | - Chunyan Zhang
- Department of Laboratory MedicineZhongshan Hospital, Fudan UniversityShanghaiChina
- Department of Laboratory Medicine, Xiamen BranchZhongshan Hospital, Fudan UniversityXiamenChina
| | - Baishen Pan
- Department of Laboratory MedicineZhongshan Hospital, Fudan UniversityShanghaiChina
| | - Beili Wang
- Department of Laboratory MedicineZhongshan Hospital, Fudan UniversityShanghaiChina
- Department of Laboratory Medicine, Xiamen BranchZhongshan Hospital, Fudan UniversityXiamenChina
| | - Wei Guo
- Department of Laboratory MedicineZhongshan Hospital, Fudan UniversityShanghaiChina
- Department of Laboratory Medicine, Wusong Branch, Zhongshan HospitalFudan UniversityShanghaiChina
- Department of Laboratory Medicine, Xiamen BranchZhongshan Hospital, Fudan UniversityXiamenChina
- Cancer Center, Shanghai Zhongshan HospitalFudan UniversityShanghaiChina
| |
Collapse
|
7
|
Short Linear Motifs in Colorectal Cancer Interactome and Tumorigenesis. Cells 2022; 11:cells11233739. [PMID: 36496998 PMCID: PMC9737320 DOI: 10.3390/cells11233739] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/16/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
Colorectal tumorigenesis is driven by alterations in genes and proteins responsible for cancer initiation, progression, and invasion. This multistage process is based on a dense network of protein-protein interactions (PPIs) that become dysregulated as a result of changes in various cell signaling effectors. PPIs in signaling and regulatory networks are known to be mediated by short linear motifs (SLiMs), which are conserved contiguous regions of 3-10 amino acids within interacting protein domains. SLiMs are the minimum sequences required for modulating cellular PPI networks. Thus, several in silico approaches have been developed to predict and analyze SLiM-mediated PPIs. In this review, we focus on emerging evidence supporting a crucial role for SLiMs in driver pathways that are disrupted in colorectal cancer (CRC) tumorigenesis and related PPI network alterations. As a result, SLiMs, along with short peptides, are attracting the interest of researchers to devise small molecules amenable to be used as novel anti-CRC targeted therapies. Overall, the characterization of SLiMs mediating crucial PPIs in CRC may foster the development of more specific combined pharmacological approaches.
Collapse
|