1
|
Ponce-Revello C, Quiroga N, San Juan E, Correa JP, Botto-Mahan C. Detection of Trypanosoma cruzi DNA in lizards: Using non-lethal sampling techniques in a sylvatic species with zoonotic reservoir potential in Chile. Vet Parasitol Reg Stud Reports 2024; 55:101113. [PMID: 39326965 DOI: 10.1016/j.vprsr.2024.101113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/29/2024] [Accepted: 09/09/2024] [Indexed: 09/28/2024]
Abstract
Several reptile species have been described as hosts of Trypanosoma cruzi, the causative agent of Chagas disease, and therefore, they have become vertebrates of epidemiological interest. In recent decades, there has been a growing interest in animal welfare, especially in populations with small numbers where lethal sampling could have catastrophic consequences, and non-lethal methodologies have been developed for detecting zoonotic parasites. In this study, we compared three non-lethal sampling methodologies for detecting T. cruzi DNA in 21 captured specimens of the native lizard Liolaemus monticola, collected from the semiarid Mediterranean ecosystem of Chile. Specimens were subjected to xenodiagnosis (XD), tail clipping, and living syringe sampling procedures to evaluate whether lizards could serve as sentinel species for T. cruzi in endemic regions. To detect the protozoan, real-time PCR (qPCR) was performed on the DNA extracted from the samples (intestinal contents, tail tissues, and blood from living syringes). Trypanosoma cruzi DNA was detected in 12 of 21 lizards, considering all three methodologies. By XD, 12 specimens showed infection (57.1 %), and both living syringe and tail sampling methodologies detected only one infected lizard (4.8 %). Therefore, T. cruzi can be detected in lizards by qPCR using the three methodologies but XD is by far the most effective non-lethal detection methodology. The use of tail and living syringe methodologies showed a large underestimation; however, they might be options for monitoring the presence of T. cruzi in lizard populations when large sample sizes are available.
Collapse
Affiliation(s)
- Carla Ponce-Revello
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile; Research Ring in Pest Insects and Climatic Change (PIC(2)), Universidad de Chile, Santiago, Chile.
| | - Nicol Quiroga
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile; Research Ring in Pest Insects and Climatic Change (PIC(2)), Universidad de Chile, Santiago, Chile
| | - Esteban San Juan
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile; Research Ring in Pest Insects and Climatic Change (PIC(2)), Universidad de Chile, Santiago, Chile
| | - Juana P Correa
- Facultad de Ciencias de la Naturaleza, Escuela de Medicina Veterinaria, Universidad San Sebastián, Concepción, Chile.
| | - Carezza Botto-Mahan
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile; Research Ring in Pest Insects and Climatic Change (PIC(2)), Universidad de Chile, Santiago, Chile.
| |
Collapse
|
2
|
Kelly LA, Yost CK, Cooke SJ. Opportunities and challenges with transitioning to non-lethal sampling of wild fish for microbiome research. JOURNAL OF FISH BIOLOGY 2024; 104:912-919. [PMID: 38226503 DOI: 10.1111/jfb.15650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 12/19/2023] [Indexed: 01/17/2024]
Abstract
The microbial communities of fish are considered an integral part of maintaining the overall health and fitness of their host. Research has shown that resident microbes reside on various mucosal surfaces, such as the gills, skin, and gastrointestinal tract, and play a key role in various host functions, including digestion, immunity, and disease resistance. A second, more transient group of microbes reside in the digesta, or feces, and are primarily influenced by environmental factors such as the host diet. The vast majority of fish microbiome research currently uses lethal sampling to analyse any one of these mucosal and/or digesta microbial communities. The present paper discusses the various opportunities that non-lethal microbiome sampling offers, as well as some inherent challenges, with the ultimate goal of creating a sound argument for future researchers to transition to non-lethal sampling of wild fish in microbiome research. Doing so will reduce animal welfare and population impacts on fish while creating novel opportunities to link host microbial communities to an individual's behavior and survival across space and time (e.g., life-stages, seasons). Current lethal sampling efforts constrain our ability to understand the mechanistic ecological consequences of variation in microbiome communities in the wild. Transitioning to non-lethal sampling will open new frontiers in ecological and microbial research.
Collapse
Affiliation(s)
- Lisa A Kelly
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Institute of Environmental and Interdisciplinary Science, Carleton University, Ottawa, Ontario, Canada
| | - Christopher K Yost
- Department of Biology, University of Regina, Regina, Saskatchewan, Canada
- Institute for Microbial Systems and Society, University of Regina, Regina, Saskatchewan, Canada
| | - Steven J Cooke
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Institute of Environmental and Interdisciplinary Science, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
3
|
Brönmark C, Hellström G, Baktoft H, Hansson LA, McCallum ES, Nilsson PA, Skov C, Brodin T, Hulthén K. Ponds as experimental arenas for studying animal movement: current research and future prospects. MOVEMENT ECOLOGY 2023; 11:68. [PMID: 37880741 PMCID: PMC10601242 DOI: 10.1186/s40462-023-00419-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 09/02/2023] [Indexed: 10/27/2023]
Abstract
Animal movement is a multifaceted process that occurs for multiple reasons with powerful consequences for food web and ecosystem dynamics. New paradigms and technical innovations have recently pervaded the field, providing increasingly powerful means to deliver fine-scale movement data, attracting renewed interest. Specifically in the aquatic environment, tracking with acoustic telemetry now provides integral spatiotemporal information to follow individual movements in the wild. Yet, this technology also holds great promise for experimental studies, enhancing our ability to truly establish cause-and-effect relationships. Here, we argue that ponds with well-defined borders (i.e. "islands in a sea of land") are particularly well suited for this purpose. To support our argument, we also discuss recent experiences from studies conducted in an innovative experimental infrastructure, composed of replicated ponds equipped with modern aquatic telemetry systems that allow for unparalleled insights into the movement patterns of individual animals.
Collapse
Affiliation(s)
- Christer Brönmark
- Department of Biology-Aquatic Ecology, Lund University, Ecology building, Sölvegatan 37 223 62, Lund, Sweden.
| | - Gustav Hellström
- Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences (SLU), Umeå, 90183, Sweden
| | - Henrik Baktoft
- National Institute of Aquatic Resources, Technical University of Denmark (DTU), Silkeborg, Denmark
| | - Lars-Anders Hansson
- Department of Biology-Aquatic Ecology, Lund University, Ecology building, Sölvegatan 37 223 62, Lund, Sweden
| | - Erin S McCallum
- Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences (SLU), Umeå, 90183, Sweden
| | - P Anders Nilsson
- Department of Biology-Aquatic Ecology, Lund University, Ecology building, Sölvegatan 37 223 62, Lund, Sweden
| | - Christian Skov
- National Institute of Aquatic Resources, Technical University of Denmark (DTU), Silkeborg, Denmark
| | - Tomas Brodin
- Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences (SLU), Umeå, 90183, Sweden
| | - Kaj Hulthén
- Department of Biology-Aquatic Ecology, Lund University, Ecology building, Sölvegatan 37 223 62, Lund, Sweden.
| |
Collapse
|
4
|
Volpe E, Errani F, Mandrioli L, Ciulli S. Advances in Viral Aquatic Animal Disease Knowledge: The Molecular Methods' Contribution. BIOLOGY 2023; 12:biology12030466. [PMID: 36979158 PMCID: PMC10045235 DOI: 10.3390/biology12030466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023]
Abstract
Aquaculture is the fastest-growing food-producing sector, with a global production of 122.6 million tonnes in 2020. Nonetheless, aquatic animal production can be hampered by the occurrence of viral diseases. Furthermore, intensive farming conditions and an increasing number of reared fish species have boosted the number of aquatic animals' pathogens that researchers have to deal with, requiring the quick development of new detection and study methods for novel unknown pathogens. In this respect, the molecular tools have significantly contributed to investigating thoroughly the structural constituents of fish viruses and providing efficient detection methods. For instance, next-generation sequencing has been crucial in reassignment to the correct taxonomic family, the sturgeon nucleo-cytoplasmic large DNA viruses, a group of viruses historically known, but mistakenly considered as iridoviruses. Further methods such as in situ hybridisation allowed objectifying the role played by the pathogen in the determinism of disease, as the cyprinid herpesvirus 2, ostreid herpesvirus 1 and betanodaviruses. Often, a combination of molecular techniques is crucial to understanding the viral role, especially when the virus is detected in a new aquatic animal species. With this paper, the authors would critically revise the scientific literature, dealing with the molecular techniques employed hitherto to study the most relevant finfish and shellfish viral pathogens.
Collapse
Affiliation(s)
- Enrico Volpe
- Department of Veterinary Medical Sciences, Alma Mater Studiorum, University of Bologna, 47042 Cesenatico, FC, Italy
| | - Francesca Errani
- Department of Veterinary Medical Sciences, Alma Mater Studiorum, University of Bologna, 47042 Cesenatico, FC, Italy
| | - Luciana Mandrioli
- Department of Veterinary Medical Sciences, Alma Mater Studiorum, University of Bologna, 47042 Cesenatico, FC, Italy
| | - Sara Ciulli
- Department of Veterinary Medical Sciences, Alma Mater Studiorum, University of Bologna, 47042 Cesenatico, FC, Italy
| |
Collapse
|
5
|
Cooke SJ, Bergman JN, Twardek WM, Piczak ML, Casselberry GA, Lutek K, Dahlmo LS, Birnie-Gauvin K, Griffin LP, Brownscombe JW, Raby GD, Standen EM, Horodysky AZ, Johnsen S, Danylchuk AJ, Furey NB, Gallagher AJ, Lédée EJI, Midwood JD, Gutowsky LFG, Jacoby DMP, Matley JK, Lennox RJ. The movement ecology of fishes. JOURNAL OF FISH BIOLOGY 2022; 101:756-779. [PMID: 35788929 DOI: 10.1111/jfb.15153] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
Movement of fishes in the aquatic realm is fundamental to their ecology and survival. Movement can be driven by a variety of biological, physiological and environmental factors occurring across all spatial and temporal scales. The intrinsic capacity of movement to impact fish individually (e.g., foraging) with potential knock-on effects throughout the ecosystem (e.g., food web dynamics) has garnered considerable interest in the field of movement ecology. The advancement of technology in recent decades, in combination with ever-growing threats to freshwater and marine systems, has further spurred empirical research and theoretical considerations. Given the rapid expansion within the field of movement ecology and its significant role in informing management and conservation efforts, a contemporary and multidisciplinary review about the various components influencing movement is outstanding. Using an established conceptual framework for movement ecology as a guide (i.e., Nathan et al., 2008: 19052), we synthesized the environmental and individual factors that affect the movement of fishes. Specifically, internal (e.g., energy acquisition, endocrinology, and homeostasis) and external (biotic and abiotic) environmental elements are discussed, as well as the different processes that influence individual-level (or population) decisions, such as navigation cues, motion capacity, propagation characteristics and group behaviours. In addition to environmental drivers and individual movement factors, we also explored how associated strategies help survival by optimizing physiological and other biological states. Next, we identified how movement ecology is increasingly being incorporated into management and conservation by highlighting the inherent benefits that spatio-temporal fish behaviour imbues into policy, regulatory, and remediation planning. Finally, we considered the future of movement ecology by evaluating ongoing technological innovations and both the challenges and opportunities that these advancements create for scientists and managers. As aquatic ecosystems continue to face alarming climate (and other human-driven) issues that impact animal movements, the comprehensive and multidisciplinary assessment of movement ecology will be instrumental in developing plans to guide research and promote sustainability measures for aquatic resources.
Collapse
Affiliation(s)
- Steven J Cooke
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and the Institute of Environmental and Interdisciplinary Science, Carleton University, Ottawa, Ontario, Canada
| | - Jordanna N Bergman
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and the Institute of Environmental and Interdisciplinary Science, Carleton University, Ottawa, Ontario, Canada
| | - William M Twardek
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and the Institute of Environmental and Interdisciplinary Science, Carleton University, Ottawa, Ontario, Canada
| | - Morgan L Piczak
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and the Institute of Environmental and Interdisciplinary Science, Carleton University, Ottawa, Ontario, Canada
| | - Grace A Casselberry
- Department of Environmental Conservation, University of Massachusetts, Amherst, Massachusetts, USA
| | - Keegan Lutek
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Lotte S Dahlmo
- Department of Biological Sciences, University of Bergen, Bergen, Norway
- Laboratory for Freshwater Ecology and Inland Fisheries, NORCE Norwegian Research Centre, Bergen, Norway
| | - Kim Birnie-Gauvin
- Section for Freshwater Fisheries and Ecology, National Institute of Aquatic Resources, Technical University of Denmark, Silkeborg, Denmark
| | - Lucas P Griffin
- Department of Environmental Conservation, University of Massachusetts, Amherst, Massachusetts, USA
| | - Jacob W Brownscombe
- Great Lakes Laboratory for Fisheries and Aquatic Sciences, Fisheries and Oceans Canada, Burlington, Ontario, Canada
| | - Graham D Raby
- Biology Department, Trent University, Peterborough, Ontario, Canada
| | - Emily M Standen
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Andrij Z Horodysky
- Department of Marine and Environmental Science, Hampton University, Hampton, Virginia, USA
| | - Sönke Johnsen
- Biology Department, Duke University, Durham, North Caroline, USA
| | - Andy J Danylchuk
- Department of Environmental Conservation, University of Massachusetts, Amherst, Massachusetts, USA
| | - Nathan B Furey
- Department of Biological Sciences, University of New Hampshire, Durham, New Hampshire, USA
| | | | - Elodie J I Lédée
- College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
| | - Jon D Midwood
- Great Lakes Laboratory for Fisheries and Aquatic Sciences, Fisheries and Oceans Canada, Burlington, Ontario, Canada
| | - Lee F G Gutowsky
- Environmental & Life Sciences Program, Trent University, Peterborough, Ontario, Canada
| | - David M P Jacoby
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - Jordan K Matley
- Program in Aquatic Resources, St Francis Xavier University, Antigonish, Nova Scotia, Canada
| | - Robert J Lennox
- Laboratory for Freshwater Ecology and Inland Fisheries, NORCE Norwegian Research Centre, Bergen, Norway
- Norwegian Institute for Nature Research, Trondheim, Norway
| |
Collapse
|