1
|
Liu T, Xu J, Zhang QX, Huang YJ, Wang W, Fu Z. Inhibiting the expression of spindle appendix cooled coil protein 1 can suppress tumor cell growth and metastasis and is associated with cancer immune cells in esophageal squamous cell carcinoma. PLoS One 2024; 19:e0302312. [PMID: 39196978 PMCID: PMC11356440 DOI: 10.1371/journal.pone.0302312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 04/01/2024] [Indexed: 08/30/2024] Open
Abstract
Inhibiting the expression of spindle appendix cooled coil protein 1 (SPDL1) can slow down disease progression and is related to poor prognosis in patients with esophageal cancer. However, the specific roles and molecular mechanisms of SPDL1 in esophageal squamous cell carcinoma (ESCC) have not been explored yet. The current study aimed to investigate the expression levels of SPDL1 in ESCC via transcriptome analysis using data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus databases. Moreover, the biological roles, molecular mechanisms, and protein networks involved in SPDL1 were identified using machine learning and bioinformatics. The cell counting kit-8 assay, EdU staining, and transwell assay were used to investigate the effects of inhibiting SPDL1 expression on ESCC cell proliferation, migration, and invasion. Finally, the correlation between the SPDL1 expression and cancer immune infiltrating cells was evaluated by analyzing data from the TCGA database. Results showed that SPDL1 was overexpressed in the ESCC tissues. The SPDL1 expression was related to age in patients with ESCC. The SPDL1 co-expressed genes included those involved in cell division, cell cycle, DNA repair and replication, cell aging, and other processes. The high-risk scores of SPDL1-related long non-coding RNAs were significantly correlated with overall survival and cancer progression in patients with ESCC (P < 0.05). Inhibiting the SPDL1 expression was effective in suppressing the proliferation, migration, and invasion of ESCC TE-1 cells (P < 0.05). The overexpression of SPDL1 was positively correlated with the levels of Th2 and T-helper cells, and was negatively correlated with the levels of plasmacytoid dendritic cells and mast cells. In conclusion, SPDL1 was overexpressed in ESCC and was associated with immune cells. Further, inhibiting the SPDL1 expression could effectively slow down cancer cell growth and migration. SPDL1 is a promising biomarker for treating patients with ESCC.
Collapse
Affiliation(s)
- Tao Liu
- Department of Cardiothoracic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan City, China
| | - Juan Xu
- Operating Room, Taihe Hospital, Hubei University of Medicine, Shiyan City, China
| | - Qun-Xian Zhang
- Department of Cardiothoracic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan City, China
| | - Yan-Jiao Huang
- Department of Cardiothoracic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan City, China
| | - Wei Wang
- Department of Cardiothoracic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan City, China
| | - Zhu Fu
- Department of Pediatrics, Taihe Hospital, Hubei University of Medicine, Shiyan City, China
| |
Collapse
|
2
|
Wu CY, Liu Z, Luo WM, Huang H, Jiang N, Du ZP, Wang FM, Han X, Ye GC, Guo Q, Chen JL. Downregulation of DIP2B as a prognostic marker inhibited cancer proliferation and migration and was associated with immune infiltration in lung adenocarcinoma via CCND1 and MMP2. Heliyon 2024; 10:e32025. [PMID: 38952374 PMCID: PMC11215276 DOI: 10.1016/j.heliyon.2024.e32025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/22/2024] [Accepted: 05/27/2024] [Indexed: 07/03/2024] Open
Abstract
Background DIP2B is related to cancer progression. This study investigated the roles and pathways of DIP2B in lung adenocarcinoma (LUAD). Methods DIP2B expression and the relationship between survival time of cancer patients and DIP2B expression were analyzed. The relationship between DIP2B expression and survival time in LUAD patients was evaluated by a meta-analysis. Cox and survival analyses were used to evaluate the prognostic factors and construct a prognostic nomogram. The mechanisms and effects of DIP2B and the relationship between DIP2B expression and the immune microenvironment were investigated using bioinformatics, CCK-8, western blotting, and transwell experiments. Results DIP2B was overexpressed in LUAD tissues. DIP2B overexpression was associated with shorter prognosis and was an unfavorable risk factor for prognosis in LUAD patients. DIP2B co-expressed genes were involved in cell division, DNA repair, cell cycle, and others. Inhibition of DIP2B expression could downregulate the proliferation, migration, and invasion of LUAD A549 and H1299 cells, which was related to the decrease in CCND1 and MMP2 protein expression. BRCA1 overexpression was associated with short prognosis, and the nomogram formed by DIP2B and BRCA1 was associated with a poor prognosis in LUAD patients. DIP2B expression correlated with immune cells (such as CD8 T cells, Tcm, and iDCs) and cell markers. Conclusion DIP2B is a potential biomarker of poor prognosis and the immune microenvironment in LUAD. Inhibition of DIP2B expression downregulated cancer cell proliferation, migration, and invasion, which might be related to the decrease in CCND1 and MMP2 protein expression. DIP2B-related nomograms might be useful tools for predicting the prognosis of LUAD patients.
Collapse
Affiliation(s)
- Chuang-Yan Wu
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhao Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei-Min Luo
- Department of Cardiothoracic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Huan Huang
- Department of Thoracic Surgery, People's Hospital of Dongxihu, Wuhan, China
| | - Ni Jiang
- Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Zhi-Peng Du
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fang-Ming Wang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xu Han
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guan-Chao Ye
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiang Guo
- Department of Cardiothoracic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Jiu-Ling Chen
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
3
|
Feng Y, Tang D, Wang J. Emerging role and function of SPDL1 in human health and diseases. Open Med (Wars) 2024; 19:20240922. [PMID: 38623460 PMCID: PMC11017184 DOI: 10.1515/med-2024-0922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/17/2024] [Accepted: 01/25/2024] [Indexed: 04/17/2024] Open
Abstract
SPDL1 (spindle apparatus coiled-coil protein 1), also referred to as CCDC99, is a recently identified gene involved in cell cycle regulation. SPDL1 encodes a protein, hSpindly, which plays a critical role in the maintenance of spindle checkpoint silencing during mitosis. hSpindly coordinates microtubule attachment by promoting kinesin recruitment and mitotic checkpoint signaling. Moreover, the protein performs numerous biological functions in vivo and its aberrant expression is closely associated with abnormal neuronal development, pulmonary interstitial fibrosis, and malignant tumor development. In this review, we provide an overview of studies that reveal the characteristics of SPDL1 and of the protein encoded by it, as well as its biological and tumor-promoting functions.
Collapse
Affiliation(s)
- Yuejiao Feng
- Shanghai Putuo Central School of Clinical Medicine, Anhui Medical University, Shanghai, 200062, China
- The Fifth School of Clinical Medicine, Anhui Medical University, Anhui, 230022, China
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Donghao Tang
- Shanghai Putuo Central School of Clinical Medicine, Anhui Medical University, Shanghai, 200062, China
- The Fifth School of Clinical Medicine, Anhui Medical University, Anhui, 230022, China
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Jie Wang
- Shanghai Putuo Central School of Clinical Medicine, Anhui Medical University, Shanghai, 200062, China
- The Fifth School of Clinical Medicine, Anhui Medical University, Anhui, 230022, China
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| |
Collapse
|
4
|
Li QY, Guo Q, Luo WM, Luo XY, Ji YM, Xu LQ, Guo JL, Shi RS, Li F, Lin CY, Zhang J, Ke D. Overexpression of MTFR1 promotes cancer progression and drug-resistance on cisplatin and is related to the immune microenvironment in lung adenocarcinoma. Aging (Albany NY) 2024; 16:66-88. [PMID: 38170222 PMCID: PMC10817379 DOI: 10.18632/aging.205338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 11/10/2023] [Indexed: 01/05/2024]
Abstract
OBJECTIVE The roles of MTFR1 in the drug resistance of lung adenocarcinoma (LAC) to cisplatin remain unexplored. In this study, the expression, clinical values and mechanisms of MTFR1 were explored, and the relationship between MTFR1 expression and immune microenvironment was investigated in LAC using bioinformatics analysis, cell experiments, and meta-analysis. METHODS MTFR1 expression and clinical values, and the relationship between MTFR1 expression and immunity were explored, through bioinformatics analysis. The effects of MTFR1 on the growth, migration and cisplatin sensitivity of LAC cells were identified using cell counting kit-8, wound healing and Transwell experiments. Additionally, the mechanisms of drug resistance of LAC cells involving MTFR1 were investigated using western blotting. RESULTS MTFR1 was elevated in LAC tissues. MTFR1 overexpression was associated with sex, age, primary therapy outcome, smoking, T stage, unfavourable prognosis and diagnostic value and considered an independent risk factor for an unfavourable prognosis in patients with LAC. MTFR1 co-expressed genes involved in the cell cycle, oocyte meiosis, DNA replication and others. Moreover, interfering with MTFR1 expression inhibited the proliferation, migration and invasion of A549 and A549/DDP cells and promoted cell sensitivity to cisplatin, which was related to the inhibition of p-AKT, p-P38 and p-ERK protein expression. MTFR1 overexpression was associated with stromal, immune and estimate scores along with natural killer cells, pDC, iDC and others in LAC. CONCLUSIONS MTFR1 overexpression was related to the unfavourable prognosis, diagnostic value and immunity in LAC. MTFR1 also participated in cell growth and migration and promoted the drug resistance of LAC cells to cisplatin via the p-AKT and p-ERK/P38 signalling pathways.
Collapse
Affiliation(s)
- Qian-Yun Li
- Department of Radiology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Qiang Guo
- Department of Cardiothoracic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Wei-Min Luo
- Department of Cardiothoracic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Xiang-Yu Luo
- Department of Cardiothoracic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Yan-Mei Ji
- Department of Critical Care Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Li-Qiang Xu
- Department of Cardiothoracic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Jia-Long Guo
- Department of Cardiothoracic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Rong-Shu Shi
- Department of Radiology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Feng Li
- Department of Radiology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Cheng-Yi Lin
- Department of Cardiothoracic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Jun Zhang
- Department of Cardiothoracic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Di Ke
- Department of Radiology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
5
|
Tong S, Jiang N, Wan JH, Chen CR, Wang SH, Wu CY, Guo Q, Xiao XY, Huang H, Zhou T. The effects of the prognostic biomarker SAAL1 on cancer growth and its association with the immune microenvironment in lung adenocarcinoma. BMC Cancer 2023; 23:275. [PMID: 36973678 PMCID: PMC10041717 DOI: 10.1186/s12885-023-10741-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/15/2023] [Indexed: 03/29/2023] Open
Abstract
BACKGROUND Inhibition of Serum Amyloid A-like 1 (SAAL1) expression could inhibit cancer progression and improve the prognosis of cancer patients. At present, the correlation between SAAL1 and lung adenocarcinoma (LAC) remains unclear. Therefore, this study surveyed the worth and pathway of SAAL1 in LAC progression and immunity. METHODS Bioinformatics and immunohistochemistry were used to identify the SAAL1 expression in LAC. The roles of SAAL1 expression in the existence values of LAC patients were explored, and the nomograms were constructed. Clinical values of SAAL1 co-expressed genes were evaluated by COX regression, survival, and Receiver operating characteristic (ROC) analysis. EDU and western blotting methods were used to inquiry the functions and pathways of the SAAL1 in cell growths. The correlation between the SAAL1 level and immune microenvironment was visualized using correlation research. RESULTS SAAL1 level was elevated in LAC tissues, and was observed in cancer tissues of dead patients. SAAL1 overexpression had something to do with shorter overall survival, progression-free interval, and disease-specific survival in LAC. The area under the curve of SAAL1 was 0.902 in normal tissues and cancer tissues. Inhibition of SAAL1 expression could inhibit cancer cell proliferation, which may be related to the decreased expression of cyclin D1 and Bcl-2 proteins. In LAC, SAAL1 level had something to do with stromal, immune, and estimate scores, and correlated with macrophages, T cells, Th2 cells, CD8 T cells, NK CD56dim cells, DC, eosinophils, NK CD56bright cells, pDC, iDC, cytotoxic cells, Tgd, aDC cells, B cells, Tcm, and TFH levels. SAAL1 overexpression had something to do with existence values and the immunity in LAC. CONCLUSIONS Inhibition of SAAL1 expression could regulate cancer growth via cyclin D1 and Bcl-2. SAAL1 is a promising prognostic biomarker in LAC patients.
Collapse
Affiliation(s)
- Song Tong
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ni Jiang
- Department of Obstetrics and Gynecology, Women and Children's Hospitalof, Chongqing Medical University, Chongqing 401147, China
| | - Jun-Hao Wan
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chong-Rui Chen
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Si-Hua Wang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chuang-Yan Wu
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qiang Guo
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiao-Yue Xiao
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Huan Huang
- Department of Thoracic Surgery, People's Hospital of Dongxihu District, Wuhan 430040, China.
| | - Ting Zhou
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
6
|
Guo Q, Wu CY, Jiang N, Tong S, Wan JH, Xiao XY, Mei PY, Liu HS, Wang SH. Downregulation of T-cell cytotoxic marker IL18R1 promotes cancer proliferation and migration and is associated with dismal prognosis and immunity in lung squamous cell carcinoma. Front Immunol 2022; 13:986447. [PMID: 36544782 PMCID: PMC9760870 DOI: 10.3389/fimmu.2022.986447] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022] Open
Abstract
Immunotherapy can improve the survival of patients with advanced lung squamous cell carcinoma (LUSC). T cytotoxic cells are one of the main members of the immune microenvironment. Herein, we aimed to identify the roles of T-cell cytotoxic markers interleukin 18 (IL18) receptor 1 (IL18R1) in the LUSC progression using bioinformatics, clinical tissue specimen, and cell experiment. We assessed the association between the IL18R1 expression and immune infiltration and IL18R1-related competing RNA network. The IL18R1 expression was downregulated in the LUSC tissues. The IL18R1 expression downregulation was associated with diagnosis and short overall survival and disease-specific survival, and it was also an independent risk factor for dismal survival time in LUSC. IL18R1-related nomograms predicted the survival time of patients with LUSC. IL18R1 overexpression inhibited the proliferation, migration, and invasion of LUSC cells. The IL18R1 expression was significantly associated with the microenvironment (stromal, immune, and estimate scores), immune cells (such as the T cells, cytotoxic cells, CD8 T cells), and immune cell markers (such as the CD8A, PD-1, and CTLA4) in LUSC. AC091563.1 and RBPMS-AS1 downregulation was positively associated with the IL18R1 expression, negatively associated with the miR-128-3p expression, and associated with short disease-specific survival and progression in LUSC. In conclusion, IL18R1 was significantly downregulated and associated with the prognosis and immune microenvironment. IL18R1 overexpression inhibits the growth and migration of cancer cells in LUSC. Furthermore, AC091563.1 and RBPMS-AS1 might compete with IL18R1 to bind miR-128-3p for participating in LUSC progression. These results showed that IL18R1 is a biomarker for evaluating the prognosis of patients with LUSC.
Collapse
Affiliation(s)
- Qiang Guo
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chuang-Yan Wu
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ni Jiang
- Department of Obstetrics and Gynecology, Women and Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Song Tong
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun-Hao Wan
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao-Yue Xiao
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pei-Yuan Mei
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hua-Song Liu
- Department of Cardiothoracic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China,*Correspondence: Si-Hua Wang, ; Hua-Song Liu,
| | - Si-Hua Wang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,*Correspondence: Si-Hua Wang, ; Hua-Song Liu,
| |
Collapse
|
7
|
Ding Y, Bian TT, Li QY, He JR, Guo Q, Wu CY, Chen SS. A new risk model for CSTA, FAM83A, and MYCT1 predicts poor prognosis and is related to immune infiltration in lung squamous cell carcinoma. Am J Transl Res 2022; 14:7705-7725. [PMID: 36505278 PMCID: PMC9730102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 10/27/2022] [Indexed: 12/15/2022]
Abstract
OBJECTIVES To create a prognostic model based on differentially expressed genes (DEGs) in early lung squamous cell carcinoma (LUSC) and characterize the relationship between risk scores and tumor immune infiltration. METHODS We identified DEGs in normal and tumor tissues that overlapped between LUSC-related data sets from the Gene Expression Omnibus and the Cancer Genome Atlas and evaluated their roles in the diagnosis and prognosis of LUSC by Kaplan-Meier survival analysis, receiver operating characteristic (ROC) analysis, meta-analysis and nomogram analysis. We then constructed a risk model based on Cox regression analysis and the Akaike information criterion and identified the relationship between LUSC risk scores and immune infiltration. RESULTS Sixty-two overlapping DEGs were involved with keratinocyte differentiation, epidermal cell differentiation, neutrophil migration, granulocyte chemotaxis, granulocyte migration, leukocyte aggregation, and positive regulation of nuclear factor-κB (NF-κB) activity. Overexpression of family with sequence similarity 83 member A (FAM83A) and MYC target 1 (MYCT1), kallikrein related peptidase 8 (KLK8), and downregulation of ADP ribosylation factor like GTPase 14 (ARL14), caspase recruitment domain family member 14 (CARD14), cystatin A (CSTA), dickkopf WNT signaling pathway inhibitor 4 (DKK4), desmoglein 3 (DSG3), and keratin 6B (KRT6B) were associated with a poor prognosis in LUSC and had significant value for LUSC diagnosis. The expression of CSTA, FAM83A, and MYCT1 and high-risk scores were independent risk factors for a poor prognosis in LUSC. A risk nomogram revealed that risk scores could predict the prognosis of LUSC. The risk score was associated with neutrophils, naive B cells, helper follicular T cells, and activated dendritic cells. CONCLUSIONS The expression levels of CSTA, FAM83A, and MYCT1 are related to the diagnosis and prognosis of LUSC and may have potential as therapeutic targets in LUSC. A risk model and nomogram based on CSTA, FAM83A, and MYCT1 can predict the prognosis of LUSC.
Collapse
Affiliation(s)
- Yu Ding
- Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430014, Hubei, China
| | - Ting-Ting Bian
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022, Hubei, China
| | - Qian-Yun Li
- The Fourth Affiliated Hospital, Zhejiang University School of MedicineYiwu 310030, Zhejiang, China
| | - Jin-Rong He
- Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430014, Hubei, China
| | - Qiang Guo
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022, Hubei, China
| | - Chuang-Yan Wu
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022, Hubei, China
| | - Shan-Shan Chen
- Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430014, Hubei, China
| |
Collapse
|