1
|
Wan J, He Z, Peng R, Wu X, Zhu Z, Cui J, Hao X, Chen A, Zhang J, Cheng P. Injectable photocrosslinking spherical hydrogel-encapsulated targeting peptide-modified engineered exosomes for osteoarthritis therapy. J Nanobiotechnology 2023; 21:284. [PMID: 37605203 PMCID: PMC10440922 DOI: 10.1186/s12951-023-02050-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 08/04/2023] [Indexed: 08/23/2023] Open
Abstract
Osteoarthritis (OA) is a common degenerative joint disease urgently needing effective treatments. Bone marrow mesenchymal stromal cell-derived exosomes (Exo) are considered good drug carriers whereas they have limitations such as fast clearance and low retention. This study aimed to overcome the limitations of Exo in drug delivery using multiple strategies. Novel photocrosslinking spherical gelatin methacryloyl hydrogel (GelMA)-encapsulated cartilage affinity WYRGRL (W) peptide-modified engineered Exo were developed for OA treatment and the performance of the engineered Exo (W-Exo@GelMA) loaded with a small inhibitor LRRK2-IN-1 (W-Exo-L@GelMA) was investigated in vitro and in vivo. The W-Exo-L@GelMA showed an effective targeting effect on chondrocytes and a pronounced action on suppressing catabolism and promoting anabolism in vitro. Moreover, W-Exo-L@GelMA remarkably inhibited OA-related inflammation and immune gene expression, rescuing the IL-1β-induced transcriptomic responses. With enhanced retention in the joint, W-Exo-L@GelMA demonstrated superior anti-OA activity and cartilage repair ability in the OA murine model. The therapeutic effect was validated in the cultured human OA cartilage. In conclusion, photocrosslinking spherical hydrogel-encapsulated targeting peptide-modified engineered Exo exhibit notable potential in OA therapy. Engineering Exo by a series of strategies enhanced the targeting ability and retention and cartilage-targeting and Exo-mediated drug delivery may offer a novel strategy for OA treatment.Clinical trial registration: Not applciable.
Collapse
Affiliation(s)
- Junlai Wan
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095#, Jie-Fang Avenue, Qiaokou District, Wuhan, 430030, Hubei, China
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Zhiyi He
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095#, Jie-Fang Avenue, Qiaokou District, Wuhan, 430030, Hubei, China
| | - Renpeng Peng
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095#, Jie-Fang Avenue, Qiaokou District, Wuhan, 430030, Hubei, China
| | - Xiaopei Wu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Ziqing Zhu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095#, Jie-Fang Avenue, Qiaokou District, Wuhan, 430030, Hubei, China
| | - Jiarui Cui
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Xiaoxia Hao
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Anmin Chen
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095#, Jie-Fang Avenue, Qiaokou District, Wuhan, 430030, Hubei, China.
| | - Jiaming Zhang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095#, Jie-Fang Avenue, Qiaokou District, Wuhan, 430030, Hubei, China.
| | - Peng Cheng
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095#, Jie-Fang Avenue, Qiaokou District, Wuhan, 430030, Hubei, China.
| |
Collapse
|
2
|
Yang S, Zhou X, Jia Z, Zhang M, Yuan M, Zhou Y, Wang J, Xia D. Epigenetic regulatory mechanism of ADAMTS12 expression in osteoarthritis. Mol Med 2023; 29:86. [PMID: 37400752 DOI: 10.1186/s10020-023-00661-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 05/01/2023] [Indexed: 07/05/2023] Open
Abstract
BACKGROUND Osteoarthritis (OA) is a degenerative joint disease with lacking effective prevention targets. A disintegrin and metalloproteinase with thrombospondin motifs 12 (ADAMTS12) is a member of the ADAMTS family and is upregulated in OA pathologic tissues with no fully understood molecular mechanisms. METHODS The anterior cruciate ligament transection (ACL-T) method was used to establish rat OA models, and interleukin-1 beta (IL-1β) was administered to induce rat chondrocyte inflammation. Cartilage damage was analyzed via hematoxylin-eosin, Periodic Acid-Schiff, safranin O-fast green, Osteoarthritis Research Society International score, and micro-computed tomography assays. Chondrocyte apoptosis was detected by flow cytometry and TdT dUTP nick-end labeling. Signal transducer and activator of transcription 1 (STAT1), ADAMTS12, and methyltransferase-like 3 (METTL3) levels were detected by immunohistochemistry, quantitative polymerase chain reaction (qPCR), western blot, or immunofluorescence assay. The binding ability was confirmed by chromatin immunoprecipitation-qPCR, electromobility shift assay, dual-luciferase reporter, or RNA immunoprecipitation (RIP) assay. The methylation level of STAT1 was analyzed by MeRIP-qPCR assay. STAT1 stability was investigated by actinomycin D assay. RESULTS The STAT1 and ADAMTS12 expressions were significantly increased in the human and rat samples of cartilage injury, as well as in IL-1β-treated rat chondrocytes. STAT1 is bound to the promoter region of ADAMTS12 to activate its transcription. METTL3/ Insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2) mediated N6-methyladenosine modification of STAT1 promoted STAT1 mRNA stability, resulting in increased expression. ADAMTS12 expression was reduced and the IL-1β-induced inflammatory chondrocyte injury was attenuated by silencing METTL3. Additionally, knocking down METTL3 in ACL-T-produced OA rats reduced ADAMTS12 expression in their cartilage tissues, thereby alleviating cartilage damage. CONCLUSION METTL3/IGF2BP2 axis increases STAT1 stability and expression to promote OA progression by up-regulating ADAMTS12 expression.
Collapse
Affiliation(s)
- Shu Yang
- Department of Orthopedics, Hunan Provincial People's Hospital (The First-affiliated Hospital of Hunan Normal University), No. 61, Jiefang West Road, Furong District, Changsha, Hunan, 410005, People's Republic of China
| | - Xuanping Zhou
- Department of Orthopedics, The First-affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha, Hunan, 410005, People's Republic of China
| | - Zhen Jia
- Department of Orthopedics, Hunan Provincial People's Hospital (The First-affiliated Hospital of Hunan Normal University), No. 61, Jiefang West Road, Furong District, Changsha, Hunan, 410005, People's Republic of China
| | - Mali Zhang
- Department of Orthopedics, Hunan Provincial People's Hospital (The First-affiliated Hospital of Hunan Normal University), No. 61, Jiefang West Road, Furong District, Changsha, Hunan, 410005, People's Republic of China
| | - Minghao Yuan
- Department of Orthopedics, Hunan Provincial People's Hospital (The First-affiliated Hospital of Hunan Normal University), No. 61, Jiefang West Road, Furong District, Changsha, Hunan, 410005, People's Republic of China
| | - Yizhao Zhou
- Department of Orthopedics, Hunan Provincial People's Hospital (The First-affiliated Hospital of Hunan Normal University), No. 61, Jiefang West Road, Furong District, Changsha, Hunan, 410005, People's Republic of China
| | - Jing Wang
- Department of Orthopedics, Hunan Provincial People's Hospital (The First-affiliated Hospital of Hunan Normal University), No. 61, Jiefang West Road, Furong District, Changsha, Hunan, 410005, People's Republic of China.
| | - Duo Xia
- Department of Orthopedics, Hunan Provincial People's Hospital (The First-affiliated Hospital of Hunan Normal University), No. 61, Jiefang West Road, Furong District, Changsha, Hunan, 410005, People's Republic of China.
| |
Collapse
|
3
|
LncRNA RMRP Contributes to the Development and Progression of Spinal Cord Injury by Regulating miR-766-5p/FAM83A Axis. Mol Neurobiol 2022; 59:6200-6210. [PMID: 35902548 DOI: 10.1007/s12035-022-02968-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/19/2022] [Indexed: 10/16/2022]
Abstract
Spinal cord injury (SCI) is known as a central nervous system disorder. Previous studies suggested that long-non-coding RNA RMRP (LncRNA RMRP) was abnormally expressed in SCI, but the potential underlying mechanism remains to be further explored. To explore the regulatory roles of LncRNA RMRP/miR-766-5p/FAM83A axis in SCI. Spinal T9 hemisection was performed on healthy adult male Sprague Dawley (SD) rats to establish the SCI rat models. The expressions of LncRNA RMRP in spinal cord of rats in different groups were examined by RT-qPCR. Moreover, AGE1.HN and PC12 cells were treated with hypoxic condition, and expression of LncRNA RMRP was examined by RT-qPCR methods. Furthermore, hypoxic PC12 cells were transfected with LncRNA RMRP OE, and the cell viability, proliferation, and apoptosis were examined. Next, the direct targeting relationship between LncRNA RMRP and miR-766-5p, as well as miR-766-5p and FAM83A, was confirmed by dual-luciferase reporter and RNA pull-down assays. Finally, the effects of LncRNA RMRP/miR-766-5p/FAM83A axis on cell viability, proliferation, and apoptosis were examined. LncRNA RMRP was downregulated in SCI rats and over-expression of LncRNA RMRP alleviated the SCI condition. LncRNA RMRP over-expression increased the viability and proliferation, and inhibited the apoptosis of hypoxic PC12 cells in vitro. miR-766-5p was confirmed as a target of LncRNA RMRP, and FAM83A was confirmed as a target of miR-766-5p. LncRNA RMRP could regulate the proliferation and apoptosis of hypoxic PC12 cells via regulating miR-766-5p/FAM83A axis in vitro. LncRNA RMRP may contribute to the pathogenesis of SCI via regulating miR-766-5p/FAM83A axis.
Collapse
|