1
|
Therrell BL, Padilla CD, Borrajo GJC, Khneisser I, Schielen PCJI, Knight-Madden J, Malherbe HL, Kase M. Current Status of Newborn Bloodspot Screening Worldwide 2024: A Comprehensive Review of Recent Activities (2020-2023). Int J Neonatal Screen 2024; 10:38. [PMID: 38920845 PMCID: PMC11203842 DOI: 10.3390/ijns10020038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/28/2024] [Accepted: 03/28/2024] [Indexed: 06/27/2024] Open
Abstract
Newborn bloodspot screening (NBS) began in the early 1960s based on the work of Dr. Robert "Bob" Guthrie in Buffalo, NY, USA. His development of a screening test for phenylketonuria on blood absorbed onto a special filter paper and transported to a remote testing laboratory began it all. Expansion of NBS to large numbers of asymptomatic congenital conditions flourishes in many settings while it has not yet been realized in others. The need for NBS as an efficient and effective public health prevention strategy that contributes to lowered morbidity and mortality wherever it is sustained is well known in the medical field but not necessarily by political policy makers. Acknowledging the value of national NBS reports published in 2007, the authors collaborated to create a worldwide NBS update in 2015. In a continuing attempt to review the progress of NBS globally, and to move towards a more harmonized and equitable screening system, we have updated our 2015 report with information available at the beginning of 2024. Reports on sub-Saharan Africa and the Caribbean, missing in 2015, have been included. Tables popular in the previous report have been updated with an eye towards harmonized comparisons. To emphasize areas needing attention globally, we have used regional tables containing similar listings of conditions screened, numbers of screening laboratories, and time at which specimen collection is recommended. Discussions are limited to bloodspot screening.
Collapse
Affiliation(s)
- Bradford L. Therrell
- Department of Pediatrics, University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA
- National Newborn Screening and Global Resource Center, Austin, TX 78759, USA
| | - Carmencita D. Padilla
- Department of Pediatrics, College of Medicine, University of the Philippines Manila, Manila 1000, Philippines;
| | - Gustavo J. C. Borrajo
- Detección de Errores Congénitos—Fundación Bioquímica Argentina, La Plata 1908, Argentina;
| | - Issam Khneisser
- Jacques LOISELET Genetic and Genomic Medical Center, Faculty of Medicine, Saint Joseph University, Beirut 1104 2020, Lebanon;
| | - Peter C. J. I. Schielen
- Office of the International Society for Neonatal Screening, Reigerskamp 273, 3607 HP Maarssen, The Netherlands;
| | - Jennifer Knight-Madden
- Caribbean Institute for Health Research—Sickle Cell Unit, The University of the West Indies, Mona, Kingston 7, Jamaica;
| | - Helen L. Malherbe
- Centre for Human Metabolomics, North-West University, Potchefstroom 2531, South Africa;
- Rare Diseases South Africa NPC, The Station Office, Bryanston, Sandton 2021, South Africa
| | - Marika Kase
- Strategic Initiatives Reproductive Health, Revvity, PL10, 10101 Turku, Finland;
| |
Collapse
|
2
|
Zhang Y, Qiu W, Zhang H, Chen T, Xu F, Gu X, Han L. Clinical characteristics and genetic analysis of six children with carnitine palmitoyltransferase 2 deficiency. Zhejiang Da Xue Xue Bao Yi Xue Ban 2024; 53:207-212. [PMID: 38650450 PMCID: PMC11057986 DOI: 10.3724/zdxbyxb-2023-0611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 03/11/2024] [Indexed: 04/25/2024]
Abstract
OBJECTIVES To investigate the clinical characteristic and genetic variants of children with carnitine palmitoyltransferase 2 (CPT2) deficiency. METHODS The clinical and genetic data of 6 children with CPT2 deficiency were retrospectively analyzed. The blood acylcarnitines and genetic variants were detected with tandem mass spectrometry and whole-exon gene sequencing, respectively. RESULTS There were 4 males and 2 females with a mean age of 32 months (15 d-9 years) at diagnosis. One case was asymptomatic and with normal laboratory test results, 2 had delayed onset, and 3 were of infantile type. Three cases were diagnosed at neonatal screening, and 3 cases presented with clinical manifestations of fever, muscle weakness, and increased muscle enzymes. Five children presented with decreased free carnitine and elevated levels of palmitoyl and octadecenoyl carnitines. CPT2 gene variants were detected at 8 loci in 6 children (4 harboring biallelic mutations and 2 harboring single locus mutations), including 3 known variants (p.R631C, p.T589M, and p.D255G) and 5 newly reported variants (p.F352L, p.R498L, p.F434S, p.A515P, and c.153-2A>G). It was predicted by PolyPhen2 and SIFT software that c.153-2A>G and p.F352L were suspected pathogenic variants, while p.R498L, p.F434S and p.A515P were variants of unknown clinical significance. CONCLUSIONS The clinical phenotypes of CPT2 deficiency are diverse. An early diagnosis can be facilitated by neonatal blood tandem mass spectrometry screening and genetic testing, and most patients have good prognosis after a timely diagnosis and treatment.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Endocrinology, Hangzhou Children's Hospital, Hangzhou 310005, China.
| | - Wenjuan Qiu
- Department of Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Institute for Pediatric Research, Shanghai 200092, China
| | - Huiwen Zhang
- Department of Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Institute for Pediatric Research, Shanghai 200092, China
| | - Ting Chen
- Department of Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Institute for Pediatric Research, Shanghai 200092, China
| | - Feng Xu
- Department of Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Institute for Pediatric Research, Shanghai 200092, China
| | - Xuefan Gu
- Department of Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Institute for Pediatric Research, Shanghai 200092, China
| | - Lianshu Han
- Department of Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Institute for Pediatric Research, Shanghai 200092, China.
| |
Collapse
|
3
|
Tajima G, Hara K, Tsumura M, Kagawa R, Sakura F, Sasai H, Yuasa M, Shigematsu Y, Okada S. Newborn Screening with (C16 + C18:1)/C2 and C14/C3 for Carnitine Palmitoyltransferase II Deficiency throughout Japan Has Revealed C12/C0 as an Index of Higher Sensitivity and Specificity. Int J Neonatal Screen 2023; 9:62. [PMID: 37987475 PMCID: PMC10660675 DOI: 10.3390/ijns9040062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/19/2023] [Accepted: 10/25/2023] [Indexed: 11/22/2023] Open
Abstract
Carnitine palmitoyltransferase (CPT) II deficiency is a long-chain fatty acid oxidation disorder. It manifests as (1) a lethal neonatal form, (2) a hypoglycemic form, or (3) a myopathic form. The second form can cause sudden infant death and is more common among Japanese people than in other ethnic groups. Our study group had earlier used (C16 + C18:1)/C2 to conduct a pilot newborn screening (NBS) study, and found that the use of C14/C3 for screening yielded lower rates of false positivity; in 2018, as a result, nationwide NBS for CPT II deficiency started. In this study, we evaluated the utility of these ratios in 71 NBS-positive infants and found that the levels of both C14/C3 and (C16 + C18:1)/C2 in patients overlapped greatly with those of infants without the disease. Among the levels of acylcarnitines with various chain lengths (C18 to C2) and levels of free carnitine (C0) as well as their ratios of various patterns, C12/C0 appeared to be a promising index that could reduce false-positive results without missing true-positive cases detected by current indices. Although some cases of the myopathic form may go undetected even with C12/C0, its use will help prevent life-threatening onset of the hypoglycemic form of CPT II deficiency.
Collapse
Affiliation(s)
- Go Tajima
- Division of Neonatal Screening, Research Institute, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan; (K.H.); (M.T.); (R.K.); (F.S.); (S.O.)
| | - Keiichi Hara
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan; (K.H.); (M.T.); (R.K.); (F.S.); (S.O.)
- Department of Pediatrics, National Hospital Organization Kure Medical Center and Chugoku Cancer Center, 3-1 Aoyama-cho, Kure 737-0023, Japan
| | - Miyuki Tsumura
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan; (K.H.); (M.T.); (R.K.); (F.S.); (S.O.)
| | - Reiko Kagawa
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan; (K.H.); (M.T.); (R.K.); (F.S.); (S.O.)
| | - Fumiaki Sakura
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan; (K.H.); (M.T.); (R.K.); (F.S.); (S.O.)
- Department of Technology Development, Kazusa DNA Research Institute, Kisarazu 292-0818, Japan
| | - Hideo Sasai
- Department of Early Diagnosis and Preventive Medicine for Rare Intractable Pediatric Diseases, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan;
| | - Miori Yuasa
- Department of Pediatrics, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka-Shimoaizuki, Eiheiji-cho, Fukui 910-1193, Japan; (M.Y.); (Y.S.)
| | - Yosuke Shigematsu
- Department of Pediatrics, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka-Shimoaizuki, Eiheiji-cho, Fukui 910-1193, Japan; (M.Y.); (Y.S.)
| | - Satoshi Okada
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan; (K.H.); (M.T.); (R.K.); (F.S.); (S.O.)
| |
Collapse
|
4
|
Zhang L, Hu Y, Xie M, Zhang Y, Cen K, Chen L, Cui Y, Li H, Wang D. Carnitine-acylcarnitine translocase deficiency caused by SLC25A20 gene heterozygous variants in twins: a case report. J Int Med Res 2023; 51:3000605231163811. [PMID: 37115522 PMCID: PMC10155003 DOI: 10.1177/03000605231163811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023] Open
Abstract
The current case report describes the clinical, biochemical and genetic characteristics of carnitine-acylcarnitine translocase deficiency (CACTD) in infant male and female twins that presented with symptoms shortly after elective caesarean delivery. The clinical manifestations were neonatal hypoglycaemia, arrhythmia and sudden death. The age of onset was 1.5 days and the age of the death was 1.5-3.5 days. Dried blood filter paper analysis was used for the detection of acylcarnitine. Peripheral venous blood and skin samples were used for next-generation sequencing. The twins and their parents underwent gene analysis and whole exome sequencing analyses of the solute carrier family 25 member 20 (SLC25A20; also known as carnitine-acylcarnitine translocase) gene. Both infants carried compound heterozygous variants of the SLC25A20 gene: variant M1:c.706_707insT:p.R236L fs*12 and variant M2:c.689C>G:p.P230R. The M1 variant was paternal and had not been previously reported regarding CACTD. The M2 variant was maternal. CACTD has severe clinical manifestations and a poor prognosis, which is manifested as hypoketotic hypoglycaemia, hyperammonaemia, liver function damage and elevated creatine kinase.
Collapse
Affiliation(s)
- Liya Zhang
- Newborn Centre, Ningbo Women and Children's Hospital, Ningbo, Zhejiang Province, China
| | - Ying Hu
- Central Laboratory of Birth Defects, Prevention and Control, Ningbo Women and Children's Hospital, Ningbo, Zhejiang Province, China
| | - Min Xie
- Central Laboratory of Birth Defects, Prevention and Control, Ningbo Women and Children's Hospital, Ningbo, Zhejiang Province, China
| | - Yuxin Zhang
- Central Laboratory of Birth Defects, Prevention and Control, Ningbo Women and Children's Hospital, Ningbo, Zhejiang Province, China
| | - Kuankuan Cen
- Newborn Centre, Ningbo Women and Children's Hospital, Ningbo, Zhejiang Province, China
| | - Lili Chen
- Newborn Centre, Ningbo Women and Children's Hospital, Ningbo, Zhejiang Province, China
| | - Yingbo Cui
- Newborn Centre, Ningbo Women and Children's Hospital, Ningbo, Zhejiang Province, China
| | - Haibo Li
- Central Laboratory of Birth Defects, Prevention and Control, Ningbo Women and Children's Hospital, Ningbo, Zhejiang Province, China
| | - Donge Wang
- Newborn Centre, Ningbo Women and Children's Hospital, Ningbo, Zhejiang Province, China
| |
Collapse
|
5
|
Li X, Shen J. One potential hotspot SLC25A20 gene variants in Chinese patients with carnitine-acylcarnitine translocase deficiency. Front Pediatr 2022; 10:1029004. [PMID: 36419912 PMCID: PMC9676358 DOI: 10.3389/fped.2022.1029004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/17/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Carnitine-acylcarnitine translocase deficiency (CACT deficiency) is a rare and life-threatening autosomal recessive disorder of mitochondrial fatty acid oxidation caused by variant of SLC25A20 gene. The most prevalent missense variant in the SLC25A20 gene in Asia was c.199-10T > G. Due to the c.199-10T > G variant, CACT deficiency is a severe phenotype. MATERIALS AND METHODS Herein, we present a neonatal case with c.199-10T > G variant in China and analyze the clinical, biochemical, and genetic aspects of 78 patients previously identified with CACT deficiency. RESULTS The patient presented with a series of severe metabolic crises that rapidly deteriorated and eventually died 3 days after delivery. The sequencing of the patient's genome indicated that he was homozygous for the c.199-10T > G variant. 30 patients were found to have the c.199-10T > G mutation, of which 23 were Chinese and 22 were afflicted by the c.199-10T > G splicing variation. In China, c.199-10T > G allele frequency was 82.6%. CONCLUSION In CACT deficiency, prompt recognition and treatment are critical. Our data suggested that c.199-10T > G may be a potential hotspot SLC25A20 gene mutation in the Chinese population. Detection of single nucleotide polymorphism is possible for high-risk patients and parents in China.
Collapse
Affiliation(s)
- Xiaoli Li
- Department of Pediatrics, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jian Shen
- Department of Pediatrics, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|