1
|
Zhang H, Ikram M, Li R, Xia Y, Zhao W, Yuan Q, Siddique KHM, Guo P. Uncovering the transcriptional responses of tobacco (Nicotiana tabacum L.) roots to Ralstonia solanacearum infection: a comparative study of resistant and susceptible cultivars. BMC PLANT BIOLOGY 2023; 23:620. [PMID: 38057713 DOI: 10.1186/s12870-023-04633-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 11/26/2023] [Indexed: 12/08/2023]
Abstract
BACKGROUND Tobacco bacterial wilt (TBW) caused by Ralstonia solanacearum is the most serious soil-borne disease of tobacco that significantly reduces crop yield. However, the limited availability of resistance in tobacco hinders breeding efforts for this disease. RESULTS In this study, we conducted hydroponic experiments for the root expression profiles of D101 (resistant) and Honghuadajinyuan (susceptible) cultivars in response to BW infection at 0 h, 6 h, 1 d, 3 d, and 7d to explore the defense mechanisms of BW resistance in tobacco. As a result, 20,711 and 16,663 (total: 23,568) differentially expressed genes (DEGs) were identified in the resistant and susceptible cultivars, respectively. In brief, at 6 h, 1 d, 3 d, and 7 d, the resistant cultivar showed upregulation of 1553, 1124, 2583, and 7512 genes, while the susceptible cultivar showed downregulation of 1213, 1295, 813, and 7735 genes. Similarly, across these time points, the resistant cultivar had downregulation of 1034, 749, 1686, and 11,086 genes, whereas the susceptible cultivar had upregulation of 1953, 1790, 2334, and 6380 genes. The resistant cultivar had more up-regulated genes at 3 d and 7 d than the susceptible cultivar, indicating that the resistant cultivar has a more robust defense response against the pathogen. The GO and KEGG enrichment analysis showed that these genes are involved in responses to oxidative stress, plant-pathogen interactions, cell walls, glutathione and phenylalanine metabolism, and plant hormone signal transduction. Among the DEGs, 239 potential candidate genes were detected, including 49 phenylpropane/flavonoids pathway-associated, 45 glutathione metabolic pathway-associated, 47 WRKY, 48 ERFs, eight ARFs, 26 pathogenesis-related genes (PRs), and 14 short-chain dehydrogenase/reductase genes. In addition, two highly expressed novel genes (MSTRG.61386-R1B-17 and MSTRG.61568) encoding nucleotide-binding site leucine-rich repeat (NBS-LRR) proteins were identified in both cultivars at 7 d. CONCLUSIONS This study revealed significant enrichment of DEGs in GO and KEGG terms linked to glutathione, flavonoids, and phenylpropane pathways, indicating the potential role of glutathione and flavonoids in early BW resistance in tobacco roots. These findings offer fundamental insight for further exploration of the genetic architecture and molecular mechanisms of BW resistance in tobacco and solanaceous plants at the molecular level.
Collapse
Affiliation(s)
- Hailing Zhang
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Muhammad Ikram
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Ronghua Li
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Yanshi Xia
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Weicai Zhao
- Guangdong Research Institute of Tobacco Science, Shaoguan, 512029, China
| | - Qinghua Yuan
- Guangdong Provincial Engineering & Technology Research Center for Tobacco Breeding and Comprehensive Utilization, Guangdong Key Laboratory for Crops Genetic Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences (GAAS), Guangzhou, 510640, China.
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6001, Australia
| | - Peiguo Guo
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China.
| |
Collapse
|
2
|
Chiwina K, Xiong H, Bhattarai G, Dickson RW, Phiri TM, Chen Y, Alatawi I, Dean D, Joshi NK, Chen Y, Riaz A, Gepts P, Brick M, Byrne PF, Schwartz H, Ogg JB, Otto K, Fall A, Gilbert J, Shi A. Genome-Wide Association Study and Genomic Prediction of Fusarium Wilt Resistance in Common Bean Core Collection. Int J Mol Sci 2023; 24:15300. [PMID: 37894980 PMCID: PMC10607830 DOI: 10.3390/ijms242015300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/29/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
The common bean (Phaseolus vulgaris L.) is a globally cultivated leguminous crop. Fusarium wilt (FW), caused by Fusarium oxysporum f. sp. phaseoli (Fop), is a significant disease leading to substantial yield loss in common beans. Disease-resistant cultivars are recommended to counteract this. The objective of this investigation was to identify single nucleotide polymorphism (SNP) markers associated with FW resistance and to pinpoint potential resistant common bean accessions within a core collection, utilizing a panel of 157 accessions through the Genome-wide association study (GWAS) approach with TASSEL 5 and GAPIT 3. Phenotypes for Fop race 1 and race 4 were matched with genotypic data from 4740 SNPs of BARCBean6K_3 Infinium Bea Chips. After ranking the 157-accession panel and revealing 21 Fusarium wilt-resistant accessions, the GWAS pinpointed 16 SNPs on chromosomes Pv04, Pv05, Pv07, Pv8, and Pv09 linked to Fop race 1 resistance, 23 SNPs on chromosomes Pv03, Pv04, Pv05, Pv07, Pv09, Pv10, and Pv11 associated with Fop race 4 resistance, and 7 SNPs on chromosomes Pv04 and Pv09 correlated with both Fop race 1 and race 4 resistances. Furthermore, within a 30 kb flanking region of these associated SNPs, a total of 17 candidate genes were identified. Some of these genes were annotated as classical disease resistance protein/enzymes, including NB-ARC domain proteins, Leucine-rich repeat protein kinase family proteins, zinc finger family proteins, P-loopcontaining nucleoside triphosphate hydrolase superfamily, etc. Genomic prediction (GP) accuracy for Fop race resistances ranged from 0.26 to 0.55. This study advanced common bean genetic enhancement through marker-assisted selection (MAS) and genomic selection (GS) strategies, paving the way for improved Fop resistance.
Collapse
Affiliation(s)
- Kenani Chiwina
- Department of Horticulture, University of Arkansas, Fayetteville, AR 72701, USA; (K.C.); (G.B.); (R.W.D.); (T.M.P.); (Y.C.); (I.A.); (D.D.)
| | - Haizheng Xiong
- Department of Horticulture, University of Arkansas, Fayetteville, AR 72701, USA; (K.C.); (G.B.); (R.W.D.); (T.M.P.); (Y.C.); (I.A.); (D.D.)
| | - Gehendra Bhattarai
- Department of Horticulture, University of Arkansas, Fayetteville, AR 72701, USA; (K.C.); (G.B.); (R.W.D.); (T.M.P.); (Y.C.); (I.A.); (D.D.)
| | - Ryan William Dickson
- Department of Horticulture, University of Arkansas, Fayetteville, AR 72701, USA; (K.C.); (G.B.); (R.W.D.); (T.M.P.); (Y.C.); (I.A.); (D.D.)
| | - Theresa Makawa Phiri
- Department of Horticulture, University of Arkansas, Fayetteville, AR 72701, USA; (K.C.); (G.B.); (R.W.D.); (T.M.P.); (Y.C.); (I.A.); (D.D.)
| | - Yilin Chen
- Department of Horticulture, University of Arkansas, Fayetteville, AR 72701, USA; (K.C.); (G.B.); (R.W.D.); (T.M.P.); (Y.C.); (I.A.); (D.D.)
| | - Ibtisam Alatawi
- Department of Horticulture, University of Arkansas, Fayetteville, AR 72701, USA; (K.C.); (G.B.); (R.W.D.); (T.M.P.); (Y.C.); (I.A.); (D.D.)
| | - Derek Dean
- Department of Horticulture, University of Arkansas, Fayetteville, AR 72701, USA; (K.C.); (G.B.); (R.W.D.); (T.M.P.); (Y.C.); (I.A.); (D.D.)
| | - Neelendra K. Joshi
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR 72701, USA;
| | - Yuyan Chen
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701, USA;
| | - Awais Riaz
- Department of Crop, Soil and Environmental Sciences, University of Arkansas, Fayetteville, AR 72701, USA;
| | - Paul Gepts
- Department of Plant Sciences, University of California, 1 Shields Avenue, Davis, CA 95616, USA;
| | - Mark Brick
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO 80523, USA; (M.B.); (P.F.B.); (J.B.O.); (A.F.); (J.G.)
| | - Patrick F. Byrne
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO 80523, USA; (M.B.); (P.F.B.); (J.B.O.); (A.F.); (J.G.)
| | - Howard Schwartz
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO 80523, USA; (H.S.); (K.O.)
| | - James B. Ogg
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO 80523, USA; (M.B.); (P.F.B.); (J.B.O.); (A.F.); (J.G.)
| | - Kristin Otto
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO 80523, USA; (H.S.); (K.O.)
| | - Amy Fall
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO 80523, USA; (M.B.); (P.F.B.); (J.B.O.); (A.F.); (J.G.)
| | - Jeremy Gilbert
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO 80523, USA; (M.B.); (P.F.B.); (J.B.O.); (A.F.); (J.G.)
| | - Ainong Shi
- Department of Horticulture, University of Arkansas, Fayetteville, AR 72701, USA; (K.C.); (G.B.); (R.W.D.); (T.M.P.); (Y.C.); (I.A.); (D.D.)
| |
Collapse
|
3
|
Li X, Wang J, Su M, Zhang M, Hu Y, Du J, Zhou H, Yang X, Zhang X, Jia H, Gao Z, Ye Z. Multiple-statistical genome-wide association analysis and genomic prediction of fruit aroma and agronomic traits in peaches. HORTICULTURE RESEARCH 2023; 10:uhad117. [PMID: 37577398 PMCID: PMC10419450 DOI: 10.1093/hr/uhad117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 05/21/2023] [Indexed: 08/15/2023]
Abstract
'Chinese Cling' is an important founder in peach breeding history due to the pleasant flavor. Genome-wide association studies (GWAS) combined with genomic selection are promising tools in fruit tree breeding, as there is a considerable time lapse between crossing and release of a cultivar. In this study, 242 peaches from Shanghai germplasm were genotyped with 145 456 single-nucleotide polymorphisms (SNPs). The six agronomic traits of fruit flesh color, fruit shape, fruit hairiness, flower type, pollen sterility, and soluble solids content, along with 14 key volatile odor compounds (VOCs), were recorded for multiple-statistical GWAS. Except the reported candidate genes, six novel genes were identified as associated with these traits. Thirty-nine significant SNPs were associated with eight VOCs. The putative candidate genes were confirmed for VOCs by RNA-seq, including three genes in the biosynthesis pathway found to be associated with linalool, soluble solids content, and cis-3-hexenyl acetate. Multiple-trait genomic prediction enhanced the predictive ability for γ-decalactone to 0.7415 compared with the single-trait model value of 0.1017. One PTS1-SSR marker was designed to predict the linalool content, and the favorable genotype 187/187 was confirmed, mainly existing in the 'Shanghai Shuimi' landrace. Overall, our findings will be helpful in determining peach accessions with the ideal phenotype and show the potential of multiple-trait genomic prediction to improve accuracy for highly correlated genetic traits. The diagnostic marker will be valuable for the breeder to bridge the gap between quantitative trait loci and marker-assisted selection for developing strong-aroma cultivars.
Collapse
Affiliation(s)
- Xiongwei Li
- Peach Research Department of Forest & Fruit Tree Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Jiabo Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization (Southwest Minzu University, Ministry of Education), Chengdu, Sichuan 610041, China
| | - Mingshen Su
- Peach Research Department of Forest & Fruit Tree Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Minghao Zhang
- Peach Research Department of Forest & Fruit Tree Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Yang Hu
- Peach Research Department of Forest & Fruit Tree Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Jihong Du
- Peach Research Department of Forest & Fruit Tree Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Huijuan Zhou
- Peach Research Department of Forest & Fruit Tree Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Xiaofeng Yang
- Peach Group of Shanghai Runzhuang Agricultural Science and Technology Institute, Shanghai 201415, China
| | - Xianan Zhang
- Peach Research Department of Forest & Fruit Tree Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Huijuan Jia
- Department of Horticulture, Key Laboratory for Horticultural Plant Growth, Development and Quality Improvement of State Agriculture Ministry, Zhejiang Unihversity, Hangzhou 310058, China
| | - Zhongshan Gao
- Department of Horticulture, Key Laboratory for Horticultural Plant Growth, Development and Quality Improvement of State Agriculture Ministry, Zhejiang Unihversity, Hangzhou 310058, China
| | - Zhengwen Ye
- Peach Research Department of Forest & Fruit Tree Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| |
Collapse
|
4
|
Mutari B, Sibiya J, Shayanowako A, Chidzanga C, Matova PM, Gasura E. Genome-wide association mapping for component traits of drought tolerance in dry beans (Phaseolus vulgaris L.). PLoS One 2023; 18:e0278500. [PMID: 37200295 DOI: 10.1371/journal.pone.0278500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 04/30/2023] [Indexed: 05/20/2023] Open
Abstract
Understanding the genetic basis of traits of economic importance under drought stressed and well-watered conditions is important in enhancing genetic gains in dry beans (Phaseolus vulgaris L.). This research aims to: (i) identify markers associated with agronomic and physiological traits for drought tolerance and (ii) identify drought-related putative candidate genes within the mapped genomic regions. An andean and middle-american diversity panel (AMDP) comprising of 185 genotypes was screened in the field under drought stressed and well-watered conditions for two successive seasons. Agronomic and physiological traits, viz., days to 50% flowering (DFW), plant height (PH), days to physiological maturity (DPM), grain yield (GYD), 100-seed weight (SW), leaf temperature (LT), leaf chlorophyll content (LCC) and stomatal conductance (SC) were phenotyped. Principal component and association analysis were conducted using the filtered 9370 Diversity Arrays Technology sequencing (DArTseq) markers. The mean PH, GYD, SW, DPM, LCC and SC of the panel was reduced by 12.1, 29.6, 10.3, 12.6, 28.5 and 62.0%, respectively under drought stressed conditions. Population structure analysis revealed two sub-populations, which corresponded to the andean and middle-american gene pools. Markers explained 0.08-0.10, 0.22-0.23, 0.29-0.32, 0.43-0.44, 0.65-0.66 and 0.69-0.70 of the total phenotypic variability (R2) for SC, LT, PH, GYD, SW and DFW, respectively under drought stressed conditions. For well-watered conditions, R2 varied from 0.08 (LT) to 0.70 (DPM). Overall, 68 significant (p < 10-03) marker-trait associations (MTAs) and 22 putative candidate genes were identified across drought stressed and well-watered conditions. Most of the identified genes had known biological functions related to regulating the response to drought stress. The findings provide new insights into the genetic architecture of drought stress tolerance in common bean. The findings also provide potential candidate SNPs and putative genes that can be utilized in gene discovery and marker-assisted breeding for drought tolerance after validation.
Collapse
Affiliation(s)
- Bruce Mutari
- School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Scottsville, Pietermaritzburg, South Africa
- Department of Research and Specialist Services, Crop Breeding Institute, Harare, Zimbabwe
| | - Julia Sibiya
- School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Scottsville, Pietermaritzburg, South Africa
| | - Admire Shayanowako
- School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Scottsville, Pietermaritzburg, South Africa
| | - Charity Chidzanga
- School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, Australia
| | | | - Edmore Gasura
- University of Zimbabwe, Mt Pleasant, Harare, Zimbabwe
| |
Collapse
|