1
|
Birnboim-Perach R, Benhar I. Using Combination therapy to overcome diverse challenges of Immune Checkpoint Inhibitors treatment. Int J Biol Sci 2024; 20:3911-3922. [PMID: 39113705 PMCID: PMC11302893 DOI: 10.7150/ijbs.93697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 06/29/2024] [Indexed: 08/10/2024] Open
Abstract
Immune checkpoint inhibitors (ICIs) have heralded a new era in immunotherapy, representing a pivotal breakthrough in cancer treatment. Their impact is profound, with ICIs standing as some of the most prescribed anticancer therapies today. Notably, their ability to induce long-term remission even after treatment cessation provides genuine hope for achieving durable cures. However, despite these strides, challenges persist in the landscape of oncology, including resistance phenomena, immune-related adverse events, and suboptimal response rates. In response to these challenges, combination therapy emerges as a promising approach, poised to enhance treatment outcomes and address limitations inherent to single-agent ICI therapy. By synergistically targeting multiple pathways, combination therapy holds the potential to augment therapeutic efficacy while mitigating toxicity and impeding the emergence of resistance mechanisms. Understanding the intricacies underlying resistance development and adverse events is paramount in devising novel and refined combination strategies. A timeline showing FDA approvals of ICIs combination is shown in Figure 1. This review aims to provide a comprehensive and up-to-date examples of different combined therapy strategies that can be used to overcome various challenges regarding ICI treatment. Through the exploration of innovative therapeutic combinations, we aim to provide clinicians and researchers with actionable knowledge to optimize patient outcomes and propel the field of immuno-oncology forward.
Collapse
Affiliation(s)
- Racheli Birnboim-Perach
- Department of Molecular Microbiology and Biotechnology, The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Itai Benhar
- Department of Molecular Microbiology and Biotechnology, The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel
- Cancer Biology Research Center, Tel Aviv University, Tel-Aviv 69978, Israel
- The Tel Aviv University Center for Combatting Pandemics, Tel-Aviv University, Tel-Aviv 69978, Israel
| |
Collapse
|
2
|
YADOLLAHVANDMIANDOAB REZA, JALALIZADEH MEHRSA, DIONATO FRANCIELEAPARECIDAVECHIA, BUOSI KEINI, LEME PATRÍCIAAF, COL LUCIANASBDAL, GIACOMELLI CRISTIANEF, ASSIS ALEXDIAS, BASHIRICHELKASARI NASIM, REIS LEONARDOOLIVEIRA. Clinical implications of single cell sequencing for bladder cancer. Oncol Res 2024; 32:597-605. [PMID: 38560564 PMCID: PMC10972735 DOI: 10.32604/or.2024.045442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 01/08/2024] [Indexed: 04/04/2024] Open
Abstract
Bladder cancer (BC) is the 10th most common cancer worldwide, with about 0.5 million reported new cases and about 0.2 million deaths per year. In this scoping review, we summarize the current evidence regarding the clinical implications of single-cell sequencing for bladder cancer based on PRISMA guidelines. We searched PubMed, CENTRAL, Embase, and supplemented with manual searches through the Scopus, and Web of Science for published studies until February 2023. We included original studies that used at least one single-cell technology to study bladder cancer. Forty-one publications were included in the review. Twenty-nine studies showed that this technology can identify cell subtypes in the tumor microenvironment that may predict prognosis or response to immune checkpoint inhibition therapy. Two studies were able to diagnose BC by identifying neoplastic cells through single-cell sequencing urine samples. The remaining studies were mainly a preclinical exploration of tumor microenvironment at single cell level. Single-cell sequencing technology can discriminate heterogeneity in bladder tumor cells and determine the key molecular properties that can lead to the discovery of novel perspectives on cancer management. This nascent tool can advance the early diagnosis, prognosis judgment, and targeted therapy of bladder cancer.
Collapse
Affiliation(s)
- REZA YADOLLAHVANDMIANDOAB
- UroScience, School of Medical Sciences, University of Campinas, UNICAMP, Campinas, Sao Paulo, 13083-872, Brazil
| | - MEHRSA JALALIZADEH
- UroScience, School of Medical Sciences, University of Campinas, UNICAMP, Campinas, Sao Paulo, 13083-872, Brazil
| | | | - KEINI BUOSI
- UroScience, School of Medical Sciences, University of Campinas, UNICAMP, Campinas, Sao Paulo, 13083-872, Brazil
| | - PATRÍCIA A. F. LEME
- UroScience, School of Medical Sciences, University of Campinas, UNICAMP, Campinas, Sao Paulo, 13083-872, Brazil
| | - LUCIANA S. B. DAL COL
- UroScience, School of Medical Sciences, University of Campinas, UNICAMP, Campinas, Sao Paulo, 13083-872, Brazil
| | - CRISTIANE F. GIACOMELLI
- UroScience, School of Medical Sciences, University of Campinas, UNICAMP, Campinas, Sao Paulo, 13083-872, Brazil
| | - ALEX DIAS ASSIS
- UroScience, School of Medical Sciences, University of Campinas, UNICAMP, Campinas, Sao Paulo, 13083-872, Brazil
| | - NASIM BASHIRICHELKASARI
- UroScience, School of Medical Sciences, University of Campinas, UNICAMP, Campinas, Sao Paulo, 13083-872, Brazil
| | - LEONARDO OLIVEIRA REIS
- UroScience, School of Medical Sciences, University of Campinas, UNICAMP, Campinas, Sao Paulo, 13083-872, Brazil
- ImmunOncology, Pontifical Catholic University of Campinas, PUC-Campinas, Campinas, Sao Paulo, 13087-571, Brazil
| |
Collapse
|
3
|
Zhang F, Huang B, Utturkar SM, Luo W, Cresswell G, Herr SA, Zheng S, Napoleon JV, Jiang R, Zhang B, Liu M, Lanman N, Srinivasarao M, Ratliff TL, Low PS. Tumor-specific activation of folate receptor beta enables reprogramming of immune cells in the tumor microenvironment. Front Immunol 2024; 15:1354735. [PMID: 38384467 PMCID: PMC10879311 DOI: 10.3389/fimmu.2024.1354735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/22/2024] [Indexed: 02/23/2024] Open
Abstract
Folate receptors can perform folate transport, cell adhesion, and/or transcription factor functions. The beta isoform of the folate receptor (FRβ) has attracted considerable attention as a biomarker for immunosuppressive macrophages and myeloid-derived suppressor cells, however, its role in immunosuppression remains uncharacterized. We demonstrate here that FRβ cannot bind folate on healthy tissue macrophages, but does bind folate after macrophage incubation in anti-inflammatory cytokines or cancer cell-conditioned media. We further show that FRβ becomes functionally active following macrophage infiltration into solid tumors, and we exploit this tumor-induced activation to target a toll-like receptor 7 agonist specifically to immunosuppressive myeloid cells in solid tumors without altering myeloid cells in healthy tissues. We then use single-cell RNA-seq to characterize the changes in gene expression induced by the targeted repolarization of tumor-associated macrophages and finally show that their repolarization not only changes their own phenotype, but also induces a proinflammatory shift in all other immune cells of the same tumor mass, leading to potent suppression of tumor growth. Because this selective reprogramming of tumor myeloid cells is accompanied by no systemic toxicity, we propose that it should constitute a safe method to reprogram the tumor microenvironment.
Collapse
Affiliation(s)
- Fenghua Zhang
- Department of Chemistry and Institute for Drug Discovery, Purdue University, West Lafayette, IN, United States
| | - Bo Huang
- Department of Chemistry and Institute for Drug Discovery, Purdue University, West Lafayette, IN, United States
| | - Sagar M. Utturkar
- Purdue University Institute for Cancer Research, Purdue University, West Lafayette, IN, United States
| | - Weichuan Luo
- Department of Chemistry and Institute for Drug Discovery, Purdue University, West Lafayette, IN, United States
| | - Gregory Cresswell
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, United States
| | - Seth A. Herr
- Department of Chemistry and Institute for Drug Discovery, Purdue University, West Lafayette, IN, United States
| | - Suilan Zheng
- Department of Chemistry and Institute for Drug Discovery, Purdue University, West Lafayette, IN, United States
| | - John V. Napoleon
- Department of Chemistry and Institute for Drug Discovery, Purdue University, West Lafayette, IN, United States
| | - Rina Jiang
- Department of Chemistry and Institute for Drug Discovery, Purdue University, West Lafayette, IN, United States
| | - Boning Zhang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Muyi Liu
- University of North Texas Health Science Center at Fort Worth, Fort Worth, TX, United States
- Department of Computer Sciences, Purdue University, West Lafayette, IN, United States
| | - Nadia Lanman
- Purdue University Institute for Cancer Research, Purdue University, West Lafayette, IN, United States
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, United States
| | - Madduri Srinivasarao
- Department of Chemistry and Institute for Drug Discovery, Purdue University, West Lafayette, IN, United States
| | - Timothy L. Ratliff
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, United States
| | - Philip S. Low
- Department of Chemistry and Institute for Drug Discovery, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
4
|
Chen H, Ma L, Yang W, Li Y, Ji Z. POLR3G promotes EMT via PI3K/AKT signaling pathway in bladder cancer. FASEB J 2023; 37:e23260. [PMID: 37933949 DOI: 10.1096/fj.202301095r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/07/2023] [Accepted: 09/28/2023] [Indexed: 11/08/2023]
Abstract
RNA Polymerase III Subunit G (POLR3G) promotes tumorigenesis, metastasis, cancer stemness, and chemoresistance of breast cancer and lung cancer; however, its biological function in bladder cancer (BLCA) remains unclear. Through bioinformatic analyses, we found that POLR3G expression was significantly elevated in BLCA tumor tissues and was associated with decreased survival. Multivariate Cox analysis indicated that POLR3G could serve as an independent prognostic risk factor. Our functional investigations revealed that POLR3G deficiency resulted in reduced migration and invasion of BLCA cells both in vitro and in vivo. Additionally, the expressions of EMT-related mesenchymal markers were also downregulated in POLR3G knockdown cells. Mechanistically, we showed that POLR3G could activate the PI3K/AKT signaling pathway. Inhibition of this pathway with LY294002 reduced the enhanced migration and invasion of BLCA cells induced by POLR3G overexpression, whereas the activation of this pathway using 740Y-P restored the abilities that were inhibited by POLR3G knockdown. Taken together, our findings suggested that POLR3G is a prognostic predictor for BLCA and promotes EMT of BLCA through activation of the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Hualin Chen
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lin Ma
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wenjie Yang
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yingjie Li
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhigang Ji
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
5
|
Adir O, Sagi-Assif O, Meshel T, Ben-Menachem S, Pasmanik-Chor M, Hoon DSB, Witz IP, Izraely S. Heterogeneity in the Metastatic Microenvironment: JunB-Expressing Microglia Cells as Potential Drivers of Melanoma Brain Metastasis Progression. Cancers (Basel) 2023; 15:4979. [PMID: 37894348 PMCID: PMC10605008 DOI: 10.3390/cancers15204979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/02/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Reciprocal signaling between melanoma brain metastatic (MBM) cells and microglia reprograms the phenotype of both interaction partners, including upregulation of the transcription factor JunB in microglia. Here, we aimed to elucidate the impact of microglial JunB upregulation on MBM progression. For molecular profiling, we employed RNA-seq and reverse-phase protein array (RPPA). To test microglial JunB functions, we generated microglia variants stably overexpressing JunB (JunBhi) or with downregulated levels of JunB (JunBlo). Melanoma-derived factors, namely leukemia inhibitory factor (LIF), controlled JunB upregulation through Janus kinase (JAK)/signal transducer and activator of transcription 3 (STAT3) signaling. The expression levels of JunB in melanoma-associated microglia were heterogeneous. Flow cytometry analysis revealed the existence of basal-level JunB-expressing microglia alongside microglia highly expressing JunB. Proteomic profiling revealed a differential protein expression in JunBhi and JunBlo cells, namely the expression of microglia activation markers Iba-1 and CD150, and the immunosuppressive molecules SOCS3 and PD-L1. Functionally, JunBhi microglia displayed decreased migratory capacity and phagocytic activity. JunBlo microglia reduced melanoma proliferation and migration, while JunBhi microglia preserved the ability of melanoma cells to proliferate in three-dimensional co-cultures, that was abrogated by targeting leukemia inhibitory factor receptor (LIFR) in control microglia-melanoma spheroids. Altogether, these data highlight a melanoma-mediated heterogenous effect on microglial JunB expression, dictating the nature of their functional involvement in MBM progression. Targeting microglia highly expressing JunB may potentially be utilized for MBM theranostics.
Collapse
Affiliation(s)
- Orit Adir
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv 6997801, Israel; (O.A.); (O.S.-A.); (T.M.); (S.B.-M.); (I.P.W.)
| | - Orit Sagi-Assif
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv 6997801, Israel; (O.A.); (O.S.-A.); (T.M.); (S.B.-M.); (I.P.W.)
| | - Tsipi Meshel
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv 6997801, Israel; (O.A.); (O.S.-A.); (T.M.); (S.B.-M.); (I.P.W.)
| | - Shlomit Ben-Menachem
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv 6997801, Israel; (O.A.); (O.S.-A.); (T.M.); (S.B.-M.); (I.P.W.)
| | - Metsada Pasmanik-Chor
- Bioinformatics Unit, The George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv 6997801, Israel;
| | - Dave S. B. Hoon
- Department of Translational Molecular Medicine, Saint John’s Cancer Institute, Providence Saint John’s Health Center, Santa Monica, CA 90404, USA;
| | - Isaac P. Witz
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv 6997801, Israel; (O.A.); (O.S.-A.); (T.M.); (S.B.-M.); (I.P.W.)
| | - Sivan Izraely
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv 6997801, Israel; (O.A.); (O.S.-A.); (T.M.); (S.B.-M.); (I.P.W.)
| |
Collapse
|
6
|
Chen H, Yang W, Ji Z. Machine learning-based identification of tumor-infiltrating immune cell-associated model with appealing implications in improving prognosis and immunotherapy response in bladder cancer patients. Front Immunol 2023; 14:1171420. [PMID: 37063886 PMCID: PMC10102422 DOI: 10.3389/fimmu.2023.1171420] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 03/23/2023] [Indexed: 04/03/2023] Open
Abstract
BackgroundImmune cells are crucial components of the tumor microenvironment (TME) and regulate cancer cell development. Nevertheless, the clinical implications of immune cell infiltration-related mRNAs for bladder cancer (BCa) are still unclear.MethodsA 10-fold cross-validation framework with 101 combinations of 10 machine-learning algorithms was employed to develop a consensus immune cell infiltration-related signature (IRS). The predictive performance of IRS in terms of prognosis and immunotherapy was comprehensively evaluated.ResultsThe IRS demonstrated high accuracy and stable performance in prognosis prediction across multiple datasets including TCGA-BLCA, eight independent GEO datasets, our in-house cohort (PUMCH_Uro), and thirteen immune checkpoint inhibitors (ICIs) cohorts. Additionally, IRS was superior to traditional clinicopathological features (e.g., stage and grade) and 94 published signatures. Furthermore, IRS was an independent risk factor for overall survival in TCGA-BLCA and several GEO datasets, and for recurrence-free survival in PUMCH_Uro. In the PUMCH_Uro cohort, patients in the high-IRS group were characterized by upregulated CD8A and PD-L1 and TME of inflamed and immunosuppressive phenotypes. As predicted, these patients should benefit from ICI therapy and chemotherapy. Furthermore, in the ICI cohorts, the high-IRS group was related to a favorable prognosis and responders have dramatically higher IRS compared to non-responders.ConclusionsGenerally, these indicators suggested the promising application of IRS in urological practices for the early identification of high-risk patients and potential candidates for ICI application to prolong the survival of individual BCa patients.
Collapse
|
7
|
Chen H, Yang W, Xue X, Li Y, Jin Z, Ji Z. Integrated Analysis Revealed an Inflammatory Cancer-Associated Fibroblast-Based Subtypes with Promising Implications in Predicting the Prognosis and Immunotherapeutic Response of Bladder Cancer Patients. Int J Mol Sci 2022; 23:ijms232415970. [PMID: 36555612 PMCID: PMC9781727 DOI: 10.3390/ijms232415970] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/10/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Inflammatory cancer-associated fibroblasts (iCAFs) are closely related to progression, anticancer therapeutic resistance, and poor prognosis of bladder cancer (BCa). However, the functional role of iCAFs in BCa has been poorly studied. In our study, two BCa scRNA-seq datasets (GSE130001 and GSE146137) were obtained and integrated by the Seurat pipeline. Based on reported markers (COL1A1 and PDGFRA), iCAFs were identified and the related signature of 278 markers was developed. Following unsupervised consensus clustering, two molecular subtypes of TCGA-BLCA were identified and characterized by distinct dysregulated cancer hallmarks, immunological tumor microenvironments, prognoses, responses to chemotherapy/immunotherapy, and stemness. Subsequently, the robustness of the signature-based clustering, in terms of prognosis and therapeutic response prediction, was validated in a GEO-meta cohort with seven independent GEO datasets of 519 BCa patients, and three immune checkpoint inhibitor (ICI)-treated cohorts. Considering the heterogeneity, re-clustering of iCAFs was performed and a subpopulation, named "LOXL2+ iCAFs", was identified. Co-culture CM derived from LOXL2 overexpression/silencing CAFs with T24 cells revealed that overexpression of LOXL2 in CAFs promoted while silencing LOXL2 inhibited the proliferation, migration, and invasion of T24 cells through IL32. Moreover, the positive correlation between LOXL2 and CD206, an M2 macrophage polarization marker, has been observed and validated. Collectively, integrated single-cell and bulk RNA sequencing analyses revealed an iCAF-related signature that can predict prognosis and response to immunotherapy for BCa. Additionally, the hub gene LOXL2 may serve as a promising target for BCa treatment.
Collapse
|