1
|
Sakai Y, Kuwahara K. Carcinogenesis caused by transcription-coupled DNA damage through GANP and other components of the TREX-2 complex. Pathol Int 2024; 74:103-118. [PMID: 38411330 DOI: 10.1111/pin.13415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 02/05/2024] [Accepted: 02/10/2024] [Indexed: 02/28/2024]
Abstract
Perturbation of genes is important for somatic hypermutation to increase antibody affinity during B-cell immunity; however, it may also promote carcinogenesis. Previous studies have revealed that transcription is an important process that can induce DNA damage and genomic instability. Transciption-export-2 (TREX-2) complex, which regulates messenger RNA (mRNA) nuclear export, has been studied in the budding yeast Saccharomyces cerevisiae; however, recent studies have started investigating the molecular function of the mammalian TREX-2 complex. The central molecule in the TREX-2 complex, that is, germinal center-associated nuclear protein (GANP), is closely associated with antibody affinity maturation as well as cancer etiology. In this review, we focus on carcinogenesis, lymphomagenesis, and teratomagenesis caused by transcription-coupled DNA damage through GANP and other components of the TREX-2 complex. We review the basic machinery of mRNA nuclear export and transcription-coupled DNA damage. We then briefly describe the immunological relationship between GANP and the affinity maturation of antibodies. Finally, we illustrate that the aberrant expression of the components of the TREX-2 complex, especially GANP, is associated with the etiology of various solid tumors, lymphomas, and testicular teratoma. These components serve as reliable predictors of cancer prognosis and response to chemotherapy.
Collapse
Affiliation(s)
- Yasuhiro Sakai
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Shizuoka, Japan
- Department of Joint Research Laboratory of Clinical Medicine, Fujita Health University School of Medicine, Aichi, Japan
| | - Kazuhiko Kuwahara
- Department of Diagnostic Pathology, Kindai University Hospital, Osaka, Japan
| |
Collapse
|
2
|
Mishra AP, Hartford S, Chittela RK, Sahu S, Kharat SS, Alvaro-Aranda L, Contreras-Perez A, Sullivan T, Martin BK, Albaugh M, Southon E, Burkett S, Karim B, Carreira A, Tessarollo L, Sharan SK. Characterization of BRCA2 R3052Q variant in mice supports its functional impact as a low-risk variant. Cell Death Dis 2023; 14:753. [PMID: 37980415 PMCID: PMC10657400 DOI: 10.1038/s41419-023-06289-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/29/2023] [Accepted: 11/07/2023] [Indexed: 11/20/2023]
Abstract
Pathogenic variants in BRCA2 are known to significantly increase the lifetime risk of developing breast and ovarian cancers. Sequencing-based genetic testing has resulted in the identification of thousands of BRCA2 variants that are considered to be variants of uncertain significance (VUS) because the disease risk associated with them is unknown. One such variant is p.Arg3052Gln, which has conflicting interpretations of pathogenicity in the ClinVar variant database. Arginine at position 3052 in BRCA2 plays an important role in stabilizing its C-terminal DNA binding domain. We have generated a knock-in mouse model expressing this variant to examine its role on growth and survival in vivo. Homozygous as well as hemizygous mutant mice are viable, fertile and exhibit no overt phenotype. While we did not observe any hematopoietic defects in adults, we did observe a marked reduction in the in vitro proliferative ability of fetal liver cells that were also hypersensitive to PARP inhibitor, olaparib. In vitro studies performed on embryonic and adult fibroblasts derived from the mutant mice showed significant reduction in radiation induced RAD51 foci formation as well as increased genomic instability after mitomycin C treatment. We observed mis-localization of a fraction of R3052Q BRCA2 protein to the cytoplasm which may explain the observed in vitro phenotypes. Our findings suggest that BRCA2 R3052Q should be considered as a hypomorphic variant.
Collapse
Affiliation(s)
- Arun Prakash Mishra
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Suzanne Hartford
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA
| | - Rajani Kant Chittela
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
- Applied Genomics Section, Bhabha Atomic Research Center, Trombay, Mumbai, 400085, India
| | - Sounak Sahu
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Suhas S Kharat
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
- Department of Biochemistry, Vanderbilt University, Nashville, TN, USA
| | - Lucia Alvaro-Aranda
- Genome Instability and Cancer Predisposition Lab, Department of Genome Dynamics and Function, Centro de Biologia Molecular Severo Ochoa (CBMSO, CSIC-UAM), Madrid, Spain
| | - Aida Contreras-Perez
- Genome Instability and Cancer Predisposition Lab, Department of Genome Dynamics and Function, Centro de Biologia Molecular Severo Ochoa (CBMSO, CSIC-UAM), Madrid, Spain
| | - Teresa Sullivan
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Betty K Martin
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
- Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Mary Albaugh
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
- Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Eileen Southon
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
- Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Sandra Burkett
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Baktiar Karim
- Molecular Histotechnology Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Aura Carreira
- Genome Instability and Cancer Predisposition Lab, Department of Genome Dynamics and Function, Centro de Biologia Molecular Severo Ochoa (CBMSO, CSIC-UAM), Madrid, Spain
| | - Lino Tessarollo
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Shyam K Sharan
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA.
| |
Collapse
|
3
|
Biegała Ł, Gajek A, Marczak A, Rogalska A. Olaparib-Resistant BRCA2MUT Ovarian Cancer Cells with Restored BRCA2 Abrogate Olaparib-Induced DNA Damage and G2/M Arrest Controlled by the ATR/CHK1 Pathway for Survival. Cells 2023; 12:cells12071038. [PMID: 37048111 PMCID: PMC10093185 DOI: 10.3390/cells12071038] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/07/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
The PARP inhibitor (PARPi) olaparib is currently the drug of choice for serous ovarian cancer (OC), especially in patients with homologous recombination (HR) repair deficiency associated with deleterious BRCA1/2 mutations. Unfortunately, OC patients who fail to respond to PARPi or relapse after treatment have limited therapeutic options. To elucidate olaparib resistance and enhance the efficacy of olaparib, intracellular factors exploited by OC cells to achieve decreased sensitivity to PARPi were examined. An olaparib-resistant OC cell line, PEO1-OR, was established from BRCA2MUT PEO1 cells. The anticancer activity and action of olaparib combined with inhibitors of the ATR/CHK1 pathway (ceralasertib as ATRi, MK-8776 as CHK1i) in olaparib-sensitive and -resistant OC cell lines were evaluated. Whole-exome sequencing revealed that PEO1-OR cells acquire resistance through subclonal enrichment of BRCA2 secondary mutations that restore functional full-length protein. Moreover, PEO1-OR cells upregulate HR repair-promoting factors (BRCA1, BRCA2, RAD51) and PARP1. Olaparib-inducible activation of the ATR/CHK1 pathway and G2/M arrest is abrogated in olaparib-resistant cells. Drug sensitivity assays revealed that PEO1-OR cells are less sensitive to ATRi and CHK1i agents. Combined treatment is less effective in olaparib-resistant cells considering inhibition of metabolic activity, colony formation, survival, accumulation of DNA double-strand breaks, and chromosomal aberrations. However, synergistic antitumor activity between compounds is achievable in PEO1-OR cells. Collectively, olaparib-resistant cells display co-existing HR repair-related mechanisms that confer resistance to olaparib, which may be effectively utilized to resensitize them to PARPi via combination therapy. Importantly, the addition of ATR/CHK1 pathway inhibitors to olaparib has the potential to overcome acquired resistance to PARPi.
Collapse
|
4
|
Jimenez-Sainz J, Mathew J, Moore G, Lahiri S, Garbarino J, Eder JP, Rothenberg E, Jensen RB. BRCA2 BRC missense variants disrupt RAD51-dependent DNA repair. eLife 2022; 11:e79183. [PMID: 36098506 PMCID: PMC9545528 DOI: 10.7554/elife.79183] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 09/12/2022] [Indexed: 11/24/2022] Open
Abstract
Pathogenic mutations in the BRCA2 tumor suppressor gene predispose to breast, ovarian, pancreatic, prostate, and other cancers. BRCA2 maintains genome stability through homology-directed repair (HDR) of DNA double-strand breaks (DSBs) and replication fork protection. Nonsense or frameshift mutations leading to truncation of the BRCA2 protein are typically considered pathogenic; however, missense mutations resulting in single amino acid substitutions can be challenging to functionally interpret. The majority of missense mutations in BRCA2 have been classified as Variants of Uncertain Significance (VUS) with unknown functional consequences. In this study, we identified three BRCA2 VUS located within the BRC repeat region to determine their impact on canonical HDR and fork protection functions. We provide evidence that S1221P and T1980I, which map to conserved residues in the BRC2 and BRC7 repeats, compromise the cellular response to chemotherapeutics and ionizing radiation, and display deficits in fork protection. We further demonstrate biochemically that S1221P and T1980I disrupt RAD51 binding and diminish the ability of BRCA2 to stabilize RAD51-ssDNA complexes. The third variant, T1346I, located within the spacer region between BRC2 and BRC3 repeats, is fully functional. We conclude that T1346I is a benign allele, whereas S1221P and T1980I are hypomorphic disrupting the ability of BRCA2 to fully engage and stabilize RAD51 nucleoprotein filaments. Our results underscore the importance of correctly classifying BRCA2 VUS as pathogenic variants can impact both future cancer risk and guide therapy selection during cancer treatment.
Collapse
Affiliation(s)
| | - Joshua Mathew
- Department of Therapeutic Radiology, Yale UniversityNew HavenUnited States
| | - Gemma Moore
- Department of Therapeutic Radiology, Yale UniversityNew HavenUnited States
| | - Sudipta Lahiri
- Department of Therapeutic Radiology, Yale UniversityNew HavenUnited States
| | - Jennifer Garbarino
- Department of Therapeutic Radiology, Yale UniversityNew HavenUnited States
| | - Joseph P Eder
- Department of Medical Oncology, Yale University School of Medicine, Yale Cancer CenterNew HavenUnited States
| | - Eli Rothenberg
- Department of Biochemistry and Molecular Pharmacology, New York UniversityNew YorkUnited States
| | - Ryan B Jensen
- Department of Therapeutic Radiology, Yale UniversityNew HavenUnited States
| |
Collapse
|