1
|
Marzouka NAD, Alnaqbi H, Al-Aamri A, Tay G, Alsafar H. Investigating the genetic makeup of the major histocompatibility complex (MHC) in the United Arab Emirates population through next-generation sequencing. Sci Rep 2024; 14:3392. [PMID: 38337023 PMCID: PMC10858242 DOI: 10.1038/s41598-024-53986-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 02/07/2024] [Indexed: 02/12/2024] Open
Abstract
The Human leukocyte antigen (HLA) molecules are central to immune response and have associations with the phenotypes of various diseases and induced drug toxicity. Further, the role of HLA molecules in presenting antigens significantly affects the transplantation outcome. The objective of this study was to examine the extent of the diversity of HLA alleles in the population of the United Arab Emirates (UAE) using Next-Generation Sequencing methodologies and encompassing a larger cohort of individuals. A cohort of 570 unrelated healthy citizens of the UAE volunteered to provide samples for Whole Genome Sequencing and Whole Exome Sequencing. The definition of the HLA alleles was achieved through the application of the bioinformatics tools, HLA-LA and xHLA. Subsequently, the findings from this study were compared with other local and international datasets. A broad range of HLA alleles in the UAE population, of which some were previously unreported, was identified. A comparison with other populations confirmed the current population's unique intertwined genetic heritage while highlighting similarities with populations from the Middle East region. Some disease-associated HLA alleles were detected at a frequency of > 5%, such as HLA-B*51:01, HLA-DRB1*03:01, HLA-DRB1*15:01, and HLA-DQB1*02:01. The increase in allele homozygosity, especially for HLA class I genes, was identified in samples with a higher level of genome-wide homozygosity. This highlights a possible effect of consanguinity on the HLA homozygosity. The HLA allele distribution in the UAE population showcases a unique profile, underscoring the need for tailored databases for traditional activities such as unrelated transplant matching and for newer initiatives in precision medicine based on specific populations. This research is part of a concerted effort to improve the knowledge base, particularly in the fields of transplant medicine and investigating disease associations as well as in understanding human migration patterns within the Arabian Peninsula and surrounding regions.
Collapse
Affiliation(s)
- Nour Al Dain Marzouka
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Halima Alnaqbi
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Amira Al-Aamri
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Guan Tay
- Division of Psychiatry, Faculty of Health and Medical Sciences, Medical School, The University of Western Australia, Crawley, WA, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Habiba Alsafar
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates.
- College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates.
- Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
2
|
Alowaysi M, Lehmann R, Al-Shehri M, Baadhaim M, Alzahrani H, Aboalola D, Zia A, Malibari D, Daghestani M, Alghamdi K, Haneef A, Jawdat D, Hakami F, Gomez-Cabrero D, Tegner J, Alsayegh K. HLA-based banking of induced pluripotent stem cells in Saudi Arabia. Stem Cell Res Ther 2023; 14:374. [PMID: 38111036 PMCID: PMC10729375 DOI: 10.1186/s13287-023-03612-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/07/2023] [Indexed: 12/20/2023] Open
Abstract
BACKGROUND Human iPSCs' derivation and use in clinical studies are transforming medicine. Yet, there is a high cost and long waiting time associated with autologous iPS-based cellular therapy, and the genetic engineering of hypo-immunogenic iPS cell lines is hampered with numerous hurdles. Therefore, it is increasingly interesting to create cell stocks based on HLA haplotype distribution in a given population. This study aimed to assess the potential of HLA-based iPS banking for the Saudi population. METHODS In this study, we interrogated the HLA database of the Saudi Stem Cell Donor Registry (SSCDR), containing high-resolution HLA genotype data from 64,315 registered Saudi donors at the time of analysis. This database was considered to be a representative sample of the Saudi population. The most frequent HLA haplotypes in the Saudi population were determined, and an in-house developed iterative algorithm was used to identify their HLA matching percentages in the SSCDR database and cumulative coverage. Subsequently, to develop a clinically relevant protocol for iPSCs generation, and to illustrate the applicability of the concept of HLA-based banking for cell therapy purposes, the first HLA-based iPS cell line in Saudi Arabia was generated. Clinically relevant methods were employed to generate the two iPS clones from a homozygous donor for the most prevalent HLA haplotype in the Saudi population. The generated lines were then assessed for pluripotency markers, and their ability to differentiate into all three germ layers, beating cardiomyocytes, and neural progenitors was examined. Additionally, the genetic stability of the HLA-iPS cell lines was verified by comparing the mutational burden in the clones and the original blood sample, using whole-genome sequencing. The standards set by the American College of Medical Genetics and Genomics (ACMG) were used to determine the clinical significance of identified variants. RESULTS The analysis revealed that the establishment of only 13 iPSC lines would match 30% of the Saudi population, 39 lines would attain 50% coverage, and 596 lines would be necessary for over 90% coverage. The proof-of-concept HLA-iPSCs, which cover 6.1% of the Saudi population, successfully demonstrated pluripotency and the ability to differentiate into various cell types including beating cardiomyocytes and neuronal progenitors. The comprehensive genetic analysis corroborated that all identified variants in the derived iPSCs were inherently present in the original donor sample and were classified as benign according to the standards set by the ACMG. CONCLUSIONS Our study sets a road map for introducing iPS-based cell therapy in the Kingdom of Saudi Arabia. It underscores the pragmatic approach of HLA-based iPSC banking which circumvents the limitations of autologous iPS-based cellular therapies. The successful generation and validation of iPSC lines based on the most prevalent HLA haplotype in the Saudi population signify a promising step toward broadening the accessibility and applicability of stem cell therapies and regenerative medicine in Saudi Arabia.
Collapse
Affiliation(s)
- Maryam Alowaysi
- King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard for Health Affairs, Jeddah, Saudi Arabia
| | - Robert Lehmann
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Mohammad Al-Shehri
- King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard for Health Affairs, Jeddah, Saudi Arabia
| | - Moayad Baadhaim
- King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard for Health Affairs, Jeddah, Saudi Arabia
| | - Hajar Alzahrani
- King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard for Health Affairs, Jeddah, Saudi Arabia
| | - Doaa Aboalola
- King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard for Health Affairs, Jeddah, Saudi Arabia
| | - Asima Zia
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Dalal Malibari
- King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard for Health Affairs, Jeddah, Saudi Arabia
| | - Mustafa Daghestani
- Molecular Medicine Section, Department of Pathology and Laboratory Medicine, Ministry of the National Guard - Health Affairs, Jeddah, Saudi Arabia
| | - Khaled Alghamdi
- Forensic Laboratories, Criminal Evidence Department, Jeddah, Saudi Arabia
| | - Ali Haneef
- King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard for Health Affairs, Jeddah, Saudi Arabia
| | - Dunia Jawdat
- King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard for Health Affairs, Jeddah, Saudi Arabia
| | - Fahad Hakami
- Molecular Medicine Section, Department of Pathology and Laboratory Medicine, Ministry of the National Guard - Health Affairs, Jeddah, Saudi Arabia
| | - David Gomez-Cabrero
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Jesper Tegner
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Khaled Alsayegh
- King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard for Health Affairs, Jeddah, Saudi Arabia.
| |
Collapse
|
3
|
Elmakki EE, Madkhali MA, Oraibi O, Alqassimi S, Saleh E. Transfusion-Associated Graft-Versus-Host Disease in Adults. Cureus 2023; 15:e44148. [PMID: 37753040 PMCID: PMC10518734 DOI: 10.7759/cureus.44148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2023] [Indexed: 09/28/2023] Open
Abstract
Transfusion-associated graft-versus-host disease (TA-GVHD) is a rare but fatal complication of blood transfusion that usually develops two to 30 days following a blood transfusion giving rise to graft versus host disease (GVHD) clinical features that are consisting of fever, skin rash, jaundice, diarrhea, and pancytopenia. The disease is fulminant in most patients with a mortality rate of >90% of cases. The main aim of this review is to enhance awareness among medical practitioners about this fatal disease. Data were extracted manually from the main medical databases (Medline, Scopus, and Google Scholar) after the revision of selected articles and assessed for their contribution to the knowledge of TA-GVHD. TA-GVHD occurs when the viable donor T-cells in the blood or blood products attack the recipient's tissues which his/her immune system is incapable to destroy due to several reasons. The recipient's tissues that are usually involved in TA-GVHD include the liver, intestine, skin, lungs, and bone marrow. Any blood component either whole blood, packed red blood cells (RBCs), platelets, or fresh non-frozen plasma that contains viable T lymphocytes can cause TA-GVHD. Host immunodeficiency, transfusion of fresh blood, and partial human leukocyte antigen (HLA) matching between the donors and the recipients represent the major risk factors of TA-GVHD. Partial HLA matching includes immunocompetent recipients who receive blood from a first-degree relative also, seen in genetically homogenous populations because of high rates of consanguineous marriage. The diagnosis of TA-GVHD is mainly suspected based on clinical manifestations. However, a histopathological study of either skin or rectal biopsy is diagnostic. The treatment of TA-GVHD is generally not effective, unless the patient received emergency stem cell transplantation, while prevention via irradiation of blood or blood products represents the standard of care for this disease. In conclusion, medical practitioners should have a high index of suspicion for this disease. Moreover, future clinical trials targeting and comparing the outcomes of the different therapeutic options for TA-GVHD are required.
Collapse
Affiliation(s)
- Erwa Eltayib Elmakki
- Department of Internal Medicine, Faculty of Medicine, Jazan University, Jazan, SAU
| | | | - Omar Oraibi
- Department of Internal Medicine, Faculty of Medicine, Jazan University, Jazan, SAU
| | - Sameer Alqassimi
- Department of Internal Medicine, Faculty of Medicine, Jazan University, Jazan, SAU
| | - Eman Saleh
- Department of Internal Medicine, Faculty of Medicine, Jazan University, Jazan, SAU
| |
Collapse
|