1
|
Wu A, Liu F, Zhou L, Jiang R, Yu S, Zhou Z, Zhang Q, Zhang Q, Jiang D, He S, Wei H. A novel histone acetylation-associated gene signature with prognostic value in Ewing sarcoma. Discov Oncol 2024; 15:848. [PMID: 39738986 DOI: 10.1007/s12672-024-01689-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 12/09/2024] [Indexed: 01/02/2025] Open
Abstract
Histone acetylation is an important epigenetic modification, modulating the development of many tumors. However, the functions of most histone acetylation-related genes (HARGs) and their prognostic values in Ewing sarcoma (EWS) remain unclear. The current study aimed to investigate the prognostic values and potential functions of HARGs in EWS. After collecting EWS patients with mRNA sequencing data from the Gene Expression Omnibus (GEO) database and a list of HARGs from previous studies, Cox regression and Least Absolute Shrinkage and Selection Operator (LASSO) regression were performed to construct a prognostic gene signature based on HARGs. Then, four HARGs (TAF4, ATF2, HDAC2 and OGA) composed a formula to calculate risk score for each patient in the training cohort. Based on median risk score, all patients were classified into low- and high-risk group, and patients with high-risk score had a poor survival outcome (p < 0.001). The 1-, 2-,3- and 5-year AUC (0.853, 0.886,0.909and 0.833, respectively) showed the good ability of this signature to predict the prognoses of EWS patients. In addition, distinct functional enrichment and immune-related pathways were also observed in two risk groups. All results were validated in an external cohort from two dataset in GEO database. Moreover, it was found that silencing HDAC2 expression in EWS cells significantly suppressed the cell viability and migration capability. In conclusion, this is the first study to detect the prognostic values of HARGs in EWS patients, further developing a good prognostic signature based on HARGs, and HDAC2 might be an oncogene in the development of EWS.
Collapse
Affiliation(s)
- Anshun Wu
- Clinical Medical College, North China University of Science and Technology, Tangshan, 063210, China
| | - Fayin Liu
- Department of Orthopedics, Zibo Orthopaedics Hospital, Zibo, 255000, China
| | - Lei Zhou
- Department of Orthopaedic Oncology, Spinal Tumor Center, No. 905 Hospital of PLA Navy, Second Affiliated Hospital of Naval Medical University, Naval Medical University, Shanghai, 200003, China
| | - Runyi Jiang
- Department of Orthopaedic Oncology, Spinal Tumor Center, No. 905 Hospital of PLA Navy, Second Affiliated Hospital of Naval Medical University, Naval Medical University, Shanghai, 200003, China
| | - Shangjiang Yu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Zihuan Zhou
- Department of Orthopaedic Oncology, Spinal Tumor Center, No. 905 Hospital of PLA Navy, Second Affiliated Hospital of Naval Medical University, Naval Medical University, Shanghai, 200003, China
| | - Qi Zhang
- Department of Orthopaedic Oncology, Spinal Tumor Center, No. 905 Hospital of PLA Navy, Second Affiliated Hospital of Naval Medical University, Naval Medical University, Shanghai, 200003, China
| | - Qian Zhang
- Department of Orthopaedic Oncology, Spinal Tumor Center, No. 905 Hospital of PLA Navy, Second Affiliated Hospital of Naval Medical University, Naval Medical University, Shanghai, 200003, China
| | - Dongjie Jiang
- Department of Orthopaedic Oncology, Spinal Tumor Center, No. 905 Hospital of PLA Navy, Second Affiliated Hospital of Naval Medical University, Naval Medical University, Shanghai, 200003, China.
| | - Shaohui He
- Department of Orthopaedic Oncology, Spinal Tumor Center, No. 905 Hospital of PLA Navy, Second Affiliated Hospital of Naval Medical University, Naval Medical University, Shanghai, 200003, China.
| | - Haifeng Wei
- Clinical Medical College, North China University of Science and Technology, Tangshan, 063210, China.
- Department of Orthopaedic Oncology, Spinal Tumor Center, No. 905 Hospital of PLA Navy, Second Affiliated Hospital of Naval Medical University, Naval Medical University, Shanghai, 200003, China.
| |
Collapse
|
2
|
Qin H, Qi T, Xu J, Wang T, Zeng H, Yang J, Yu F. Integration of ubiquitination-related genes in predictive signatures for prognosis and immunotherapy response in sarcoma. Front Oncol 2024; 14:1446522. [PMID: 39469643 PMCID: PMC11513255 DOI: 10.3389/fonc.2024.1446522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 09/19/2024] [Indexed: 10/30/2024] Open
Abstract
Background Ubiquitination is one of the most prevalent and complex post-translational modifications of proteins in eukaryotes, playing a critical role in regulating various physiological and pathological processes. Targeting ubiquitination pathways, either through inhibition or activation, holds promise as a novel therapeutic approach for cancer treatment. However, the expression patterns, prognostic significance, and underlying mechanisms of ubiquitination-related genes (URGs) in sarcoma (SARC) remain unclear. Methods We analyzed URG expression patterns and prognostic implications in TCGA-SARC using public databases, identifying DEGs related to ubiquitination among SARC molecular subtypes. Functional enrichment analysis elucidated their biological significance. Prognostic signatures were developed using LASSO-Cox regression, and a predictive nomogram was constructed. External validation was performed using GEO datasets and clinical tissue samples. The association between URG risk scores and various clinical parameters, immune response, drug sensitivity, and RNA modification regulators was investigated. Integration of data from multiple sources and RT-qPCR confirmed upregulated expression of prognostic URGs in SARC. Single-cell RNA sequencing data analyzed URG distribution across immune cell types. Prediction analysis identified potential target genes of microRNAs and long non-coding RNAs. Results We identified five valuable genes (CALR, CASP3, BCL10, PSMD7, PSMD10) and constructed a prognostic model, simultaneously identifying two URG-related subtypes in SARC. The UEGs between subtypes in SARC are mainly enriched in pathways such as Cell cycle, focal adhesion, and ECM-receptor interaction. Analysis of URG risk scores reveals that patients with a low-risk score have better prognoses compared to those with high-risk scores. There is a significant correlation between DRG riskscore and clinical features, immune therapy response, drug sensitivity, and genes related to pan-RNA epigenetic modifications. High-risk SARC patients were identified as potential beneficiaries of immune checkpoint inhibitor therapy. We established regulatory axes in SARC, including CALR/hsa-miR-29c-3p/LINC00943, CASP3/hsa-miR-143-3p/LINC00944, and MIR503HG. RT-qPCR data further confirmed the upregulation of prognostic URGs in SARC. Finally, we validated the prognostic model's excellent predictive performance in predicting outcomes for SARC patients. Conclusion We discovered a significant correlation between aberrant expression of URGs and prognosis in SARC patients, identifying a prognostic model related to ubiquitination. This model provides a basis for individualized treatment and immunotherapy decisions for SARC patients.
Collapse
Affiliation(s)
- Haotian Qin
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, China
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Tiantian Qi
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, China
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Juan Xu
- Department of Oncology, Chaohu Hospital of Anhui Medical University, Hefei, China
| | - Tianbing Wang
- Department of Orthopedics and Trauma, Peking University People’s Hospital, Beijing, China
| | - Hui Zeng
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, China
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Jun Yang
- Department of Radiology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Fei Yu
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, China
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
3
|
Liu J, Lu J, Wang G, Gu L, Li W. Prognostic characteristics of a six-gene signature based on ssGSEA in sarcoma. Aging (Albany NY) 2024; 16:1536-1554. [PMID: 38240704 PMCID: PMC10866427 DOI: 10.18632/aging.205443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/07/2023] [Indexed: 02/06/2024]
Abstract
BACKGROUND Sarcoma is a rare malignant tumor originating of the interstitial or connective tissue with a poor prognosis. Next-generation sequencing technology offers new opportunities for accurate diagnosis and treatment of sarcomas. There is an urgent need for new gene signature to predict prognosis and evaluate treatment outcomes. METHODS We used transcriptome data from the Cancer Genome Atlas (TCGA) database and single sample gene set enrichment analysis (ssGSEA) to explore the cancer hallmarks most associated with prognosis in sarcoma patients. Then, weighted gene coexpression network analysis, univariate COX regression analysis and random forest algorithm were used to construct prognostic gene characteristics. Finally, the prognostic value of gene markers was validated in the TCGA and Integrated Gene Expression (GEO) (GSE17118) datasets, respectively. RESULTS MYC targets V1 and V2 are the main cancer hallmarks affecting the overall survival (OS) of sarcoma patients. A six-gene signature including VEGFA, HMGB3, FASN, RCC1, NETO2 and BIRC5 were constructed. Kaplan-Meier analysis suggested that higher risk scores based on the six-gene signature associated with poorer OS (P < 0.001). The receiver Operating characteristic curve showed that the risk score based on the six-gene signature was a good predictor of sarcoma, with an area under the curve (AUC) greater than 0.73. In addition, the prognostic value of the six-gene signature was validated in GSE17118 with an AUC greater than 0.72. CONCLUSION This six-gene signature is an independent prognostic factor in patients with sarcoma and is expected to be a potential therapeutic target for sarcoma.
Collapse
Affiliation(s)
- Jun Liu
- Department of Clinical Laboratory, Dongguan Hospital of Guangzhou University of Chinese Medicine, Dongguan 523005, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515000, China
| | - Jianjun Lu
- Department of Quality Control and Evaluation, First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Gefei Wang
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515000, China
| | - Liming Gu
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515000, China
| | - Wenli Li
- Department of Clinical Laboratory, Dongguan Hospital of Guangzhou University of Chinese Medicine, Dongguan 523005, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515000, China
| |
Collapse
|
4
|
Wen J, Yi L, Wan L, Dong X. Prognostic value of GLCE and infiltrating immune cells in Ewing sarcoma. Heliyon 2023; 9:e19357. [PMID: 37662777 PMCID: PMC10474439 DOI: 10.1016/j.heliyon.2023.e19357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 08/10/2023] [Accepted: 08/20/2023] [Indexed: 09/05/2023] Open
Abstract
Background The prognostic value of D-glucuronyl C5-epimerase (GLCE) and mast cell infiltration in Ewing sarcoma (ES) has not been well specified and highlighted, which may facilitate survival prediction and treatment. Methods Several qualified datasets were downloaded from the GEO website. Common differentially expressed genes between normal subjects and ES patients in GSE17679, GSE45544, and GSE68776 were identified and screened by multiple algorithms to find hub genes with prognostic value. The prognostic value of 64 infiltrating cells was also explored. A prognostic model was established and then validated with GSE63155 and GSE63156. Finally, functional analysis was performed. Results GLCE and mast cell infiltration were screened as two indicators for a prognostic model. The Kaplan‒Meier analysis showed that patients in the low GLCE expression, mast cell infiltration and risk score groups had poorer outcomes than patients in the high GLCE expression, mast cell infiltration and risk score groups, both in the training and validation sets. Scatter plots and heatmaps also indicated the same results. The concordance indices and calibration analyses indicated a high prediction accuracy of the model in the training and validation sets. The time-dependent receiver operating characteristic analyses suggested high sensitivity and specificity of the model, with area under the curve values between 0.76 and 0.98. The decision curve analyses suggested a significantly higher net benefit by the model than the treat-all and treat-none strategies. Functional analyses suggested that glycosaminoglycan biosynthesis-heparan sulfate/heparin, the cell cycle and microRNAs in cancer were upregulated in ES patients. Conclusions GLCE and mast cell infiltration are potential prognostic indicators in ES. GLCE may affect the proliferation, angiogenesis and metastasis of ES by affecting the biosynthesis of heparan sulfate and heparin.
Collapse
Affiliation(s)
- Jian Wen
- Medical College of Nanchang University, Nanchang, Jiangxi, 330006, China
- Department of Orthopedics, JXHC Key Laboratory of Digital Orthopedics, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, 152 Aiguo Road, Nanchang, Jiangxi, 330006, China
| | - Lijun Yi
- Central Laboratory, Jiangxi Provincial Children's Hospital, Yangming Rd, Nanchang, Jiangxi, 330006, China
| | - Lijia Wan
- Department of Child Healthcare, Hunan Provincial Maternal and Child Health Hospital, Changsha, Hunan, 410008, China
| | - Xieping Dong
- Medical College of Nanchang University, Nanchang, Jiangxi, 330006, China
- Department of Orthopedics, JXHC Key Laboratory of Digital Orthopedics, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, 152 Aiguo Road, Nanchang, Jiangxi, 330006, China
| |
Collapse
|
5
|
Bareke H, Ibáñez-Navarro A, Guerra-García P, González Pérez C, Rubio-Aparicio P, Plaza López de Sabando D, Sastre-Urgelles A, Ortiz-Cruz EJ, Pérez-Martínez A. Prospects and Advances in Adoptive Natural Killer Cell Therapy for Unmet Therapeutic Needs in Pediatric Bone Sarcomas. Int J Mol Sci 2023; 24:ijms24098324. [PMID: 37176035 PMCID: PMC10178897 DOI: 10.3390/ijms24098324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/25/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
Malignant bone tumors are aggressive tumors, with a high tendency to metastasize, that are observed most frequently in adolescents during rapid growth spurts. Pediatric patients with malignant bone sarcomas, Ewing sarcoma and osteosarcoma, who present with progressive disease have dire survival rates despite aggressive therapy. These therapies can have long-term effects on bone growth, such as decreased bone mineral density and reduced longitudinal growth. New therapeutic approaches are therefore urgently needed for targeting pediatric malignant bone tumors. Harnessing the power of the immune system against cancer has improved the survival rates dramatically in certain cancer types. Natural killer (NK) cells are a heterogeneous group of innate effector cells that possess numerous antitumor effects, such as cytolysis and cytokine production. Pediatric sarcoma cells have been shown to be especially susceptible to NK-cell-mediated killing. NK-cell adoptive therapy confers numerous advantages over T-cell adoptive therapy, including a good safety profile and a lack of major histocompatibility complex restriction. NK-cell immunotherapy has the potential to be a new therapy for pediatric malignant bone tumors. In this manuscript, we review the general characteristics of osteosarcoma and Ewing sarcoma, discuss the long-term effects of sarcoma treatment on bones, and the barriers to effective immunotherapy in bone sarcomas. We then present the laboratory and clinical studies on NK-cell immunotherapy for pediatric malignant bone tumors. We discuss the various donor sources and NK-cell types, the engineering of NK cells and combinatorial treatment approaches that are being studied to overcome the current challenges in adoptive NK-cell therapy, while suggesting approaches for future studies on NK-cell immunotherapy in pediatric bone tumors.
Collapse
Affiliation(s)
- Halin Bareke
- Translational Research Group in Pediatric Oncology, Haematopoietic Transplantation and Cell Therapy, Hospital La Paz Institute for Health Research, IdiPAZ, La Paz University Hospital, 28046 Madrid, Spain
| | - Adrián Ibáñez-Navarro
- Translational Research Group in Pediatric Oncology, Haematopoietic Transplantation and Cell Therapy, Hospital La Paz Institute for Health Research, IdiPAZ, La Paz University Hospital, 28046 Madrid, Spain
| | - Pilar Guerra-García
- Department of Pediatric Hemato-Oncology, La Paz University Hospital, 28046 Madrid, Spain
| | - Carlos González Pérez
- Department of Pediatric Hemato-Oncology, La Paz University Hospital, 28046 Madrid, Spain
| | - Pedro Rubio-Aparicio
- Department of Pediatric Hemato-Oncology, La Paz University Hospital, 28046 Madrid, Spain
| | | | - Ana Sastre-Urgelles
- Department of Pediatric Hemato-Oncology, La Paz University Hospital, 28046 Madrid, Spain
| | - Eduardo José Ortiz-Cruz
- Department of Orthopedic Surgery and Traumatology, La Paz University Hospital, 28046 Madrid, Spain
| | - Antonio Pérez-Martínez
- Translational Research Group in Pediatric Oncology, Haematopoietic Transplantation and Cell Therapy, Hospital La Paz Institute for Health Research, IdiPAZ, La Paz University Hospital, 28046 Madrid, Spain
- Department of Pediatric Hemato-Oncology, La Paz University Hospital, 28046 Madrid, Spain
- School of Medicine, Autonomous University of Madrid, 28046 Madrid, Spain
| |
Collapse
|