1
|
Desclos le Peley V, Grateau S, Moreau-Vauzelle C, Raboteau D, Chevallereau C, Requier F, Aupinel P, Richard FJ. Experimental Ecotoxicology Procedures Interfere with Honey Bee Life History. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:1320-1331. [PMID: 38661473 DOI: 10.1002/etc.5872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 01/30/2024] [Accepted: 03/19/2024] [Indexed: 04/26/2024]
Abstract
Apis mellifera was used as a model species for ecotoxicological testing. In the present study, we tested the effects of acetone (0.1% in feed), a solvent commonly used to dissolve pesticides, on bees exposed at different developmental stages (larval and/or adult). Moreover, we explored the potential effect of in vitro larval rearing, a commonly used technique for accurately monitoring worker exposure at the larval stage, by combining acetone exposure and treatment conditions (in vitro larval rearing vs. in vivo larval rearing). We then analyzed the life-history traits of the experimental bees using radio frequency identification technology over three sessions (May, June, and August) to assess the potential seasonal dependence of the solvent effects. Our results highlight the substantial influence of in vitro larval rearing on the life cycle of bees, with a 47.7% decrease in life span, a decrease of 0.9 days in the age at first exit, an increase of 57.3% in the loss rate at first exit, and a decrease of 40.6% in foraging tenure. We did not observe any effect of exposure to acetone at the larval stage on the capacities of bees reared in vitro. Conversely, acetone exposure at the adult stage reduced the bee life span by 21.8% to 60%, decreased the age at first exit by 1.12 to 4.34 days, and reduced the foraging tenure by 30% to 37.7%. Interestingly, we found a significant effect of season on acetone exposure, suggesting that interference with the life-history traits of honey bees is dependent on season. These findings suggest improved integration of long-term monitoring for assessing sublethal responses in bees following exposure to chemicals during both the larval and adult stages. Environ Toxicol Chem 2024;43:1320-1331. © 2024 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Victor Desclos le Peley
- Laboratoire Écologie et Biologie des Interactions-UMR CNRS 7267, Laboratoire EBI-Équipe Écologie Évolution Symbiose, Université de Poitiers, Poitiers, France
| | - Stéphane Grateau
- UE 1255 Abeilles, Paysages, Interactions et Systèmes de culture,Station du Magneraud, Institut national de recherche pour l'agriculture, l'alimentation et l'environnement, Surgères, France
| | - Carole Moreau-Vauzelle
- UE 1255 Abeilles, Paysages, Interactions et Systèmes de culture,Station du Magneraud, Institut national de recherche pour l'agriculture, l'alimentation et l'environnement, Surgères, France
| | - Daniel Raboteau
- UE 1255 Abeilles, Paysages, Interactions et Systèmes de culture,Station du Magneraud, Institut national de recherche pour l'agriculture, l'alimentation et l'environnement, Surgères, France
| | - Colombe Chevallereau
- UE 1255 Abeilles, Paysages, Interactions et Systèmes de culture,Station du Magneraud, Institut national de recherche pour l'agriculture, l'alimentation et l'environnement, Surgères, France
| | - Fabrice Requier
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, Gif-sur-Yvette, France
| | - Pierrick Aupinel
- UE 1255 Abeilles, Paysages, Interactions et Systèmes de culture,Station du Magneraud, Institut national de recherche pour l'agriculture, l'alimentation et l'environnement, Surgères, France
| | - Freddie-Jeanne Richard
- Laboratoire Écologie et Biologie des Interactions-UMR CNRS 7267, Laboratoire EBI-Équipe Écologie Évolution Symbiose, Université de Poitiers, Poitiers, France
| |
Collapse
|
2
|
Lu RX, Bhatia S, Simone-Finstrom M, Rueppell O. Quantitative trait loci mapping for survival of virus infection and virus levels in honey bees. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 116:105534. [PMID: 38036199 DOI: 10.1016/j.meegid.2023.105534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/22/2023] [Accepted: 11/25/2023] [Indexed: 12/02/2023]
Abstract
Israeli acute paralysis virus (IAPV) is a highly virulent, Varroa-vectored virus that is of global concern for honey bee health. Little is known about the genetic basis of honey bees to withstand infection with IAPV or other viruses. We set up and analyzed a backcross between preselected honey bee colonies of low and high IAPV susceptibility to identify quantitative trait loci (QTL) associated with IAPV susceptibility. Experimentally inoculated adult worker bees were surveyed for survival and selectively sampled for QTL analysis based on SNPs identified by whole-genome resequencing and composite interval mapping. Additionally, natural titers of other viruses were quantified in the abdomen of these workers via qPCR and also used for QTL mapping. In addition to the full dataset, we analyzed distinct subpopulations of susceptible and non-susceptible workers separately. These subpopulations are distinguished by a single, suggestive QTL on chromosome 6, but we identified numerous other QTL for different abdominal virus titers, particularly in the subpopulation that was not susceptible to IAPV. The pronounced QTL differences between the susceptible and non-susceptible subpopulations indicate either an interaction between IAPV infection and the bees' interaction with other viruses or heterogeneity among workers of a single cohort that manifests itself as IAPV susceptibility and results in distinct subgroups that differ in their interaction with other viruses. Furthermore, our results indicate that low susceptibility of honey bees to viruses can be caused by both, virus tolerance and virus resistance. QTL were partially overlapping among different viruses, indicating a mixture of shared and specific processes that control viruses. Some functional candidate genes are located in the QTL intervals, but their genomic co-localization with numerous genes of unknown function delegates any definite characterization of the underlying molecular mechanisms to future studies.
Collapse
Affiliation(s)
- Robert X Lu
- Department of Biological Sciences, University of Alberta, 116 Street & 85 Avenue, Edmonton, Alberta, T6G 2E9, Canada
| | - Shilpi Bhatia
- Department of Biology, North Carolina Agricultural and Technical State University, 1601 E Market Street, Greensboro, NC 27411, USA
| | - Michael Simone-Finstrom
- USDA-ARS Honey Bee Breeding, Genetics and Physiology Research Laboratory, 1157 Ben Hur Road, Baton Rouge, LA 70820, USA
| | - Olav Rueppell
- Department of Biological Sciences, University of Alberta, 116 Street & 85 Avenue, Edmonton, Alberta, T6G 2E9, Canada; Department of Biology, University of North Carolina at Greensboro, 321 McIver Street, Greensboro, NC 27412, USA.
| |
Collapse
|
3
|
Fowler PD, Schroeder DC, Kevill JL, Milbrath MOG. No impact of hygienic behavior and viral coinfection on the development of European foulbrood in honey bee (Apis mellifera) colonies during blueberry pollination in Michigan. JOURNAL OF INSECT SCIENCE (ONLINE) 2023; 23:21. [PMID: 38055945 DOI: 10.1093/jisesa/iead094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/25/2023] [Accepted: 10/19/2023] [Indexed: 12/08/2023]
Abstract
European foulbrood (EFB) is a severe disease of honey bee (Apis mellifera) larvae caused by the bacterium Linnaeus [Hymenoptera: Apidae]) Melissococcus plutonius (ex White) Bailey and Collins (Lactobacillales: Enterococcaceae). Many beekeepers in North America report severe EFB following blueberry pollination, but it is not clear what factors during pollination are related to clinical disease. Additionally, the impact that other factors such as viral load and hygienic behavior have on EFB has not been studied. In Spring of 2020 we enrolled 60 commercial honey bee colonies in a prospective cohort study. Colonies were inspected 3 times over the season with hive metrics and samples taken for viral testing. Each colony was tested for hygienic behavior twice and the score was averaged. Viral loads were determined by qPCR for deformed wing virus (DWV) A and B. We found no statistical difference in the EFB prevalence or severity between the 2 yards at any timepoint; 50% (n = 16) of the colonies in the holding yard and 63% (n = 17) in blueberry developed moderate to severe EFB over the study period. When colonies from both yards were pooled, we found no relationship between viral load or hygienic behavior and development of EFB. These results suggest that other factors may be responsible for driving EFB virulence and hygienic behavior is not likely helpful in managing this disease.
Collapse
Affiliation(s)
- Peter D Fowler
- Comparative Medicine and Integrative Biology, Michigan State University, East Lansing, MI 48824,USA
| | - Declan C Schroeder
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN, USA
- School of Biological Sciences, University of Reading, Reading, UK
| | - Jessica L Kevill
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN, USA
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor LL57 2UW, Gwynedd, UK
| | - Meghan O G Milbrath
- Department of Entomology, Michigan State University, Pollinator Performance Center, 4090 N. College Road, RM 100, Lansing, MI 48910, USA
| |
Collapse
|
4
|
Ray AM, Gordon EC, Seeley TD, Rasgon JL, Grozinger CM. Signatures of adaptive decreased virulence of deformed wing virus in an isolated population of wild honeybees ( Apis mellifera). Proc Biol Sci 2023; 290:20231965. [PMID: 37876196 PMCID: PMC10598435 DOI: 10.1098/rspb.2023.1965] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 09/28/2023] [Indexed: 10/26/2023] Open
Abstract
Understanding the ecological and evolutionary processes that drive host-pathogen interactions is critical for combating epidemics and conserving species. The Varroa destructor mite and deformed wing virus (DWV) are two synergistic threats to Western honeybee (Apis mellifera) populations across the globe. Distinct honeybee populations have been found to self-sustain despite Varroa infestations, including colonies within the Arnot Forest outside Ithaca, NY, USA. We hypothesized that in these bee populations, DWV has been selected to produce an avirulent infection phenotype, allowing for the persistence of both host and disease-causing agents. To investigate this, we assessed the titre of viruses in bees from the Arnot Forest and managed apiaries, and assessed genomic variation and virulence differences between DWV isolates. Across groups, we found viral abundance was similar, but DWV genotypes were distinct. We also found that infections with isolates from the Arnot Forest resulted in higher survival and lower rates of symptomatic deformed wings, compared to analogous isolates from managed colonies, providing preliminary evidence to support the hypothesis of adaptive decreased viral virulence. Overall, this multi-level investigation of virus genotype and phenotype indicates that host ecological context can be a significant driver of viral evolution and host-pathogen interactions in honeybees.
Collapse
Affiliation(s)
- Allyson M. Ray
- Department of Entomology, The Pennsylvania State University, University Park, PA 16802-1503, USA
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37240-0002, USA
| | - Emma C. Gordon
- Department of Entomology, The Pennsylvania State University, University Park, PA 16802-1503, USA
| | - Thomas D. Seeley
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14850, USA
| | - Jason L. Rasgon
- Department of Entomology, The Pennsylvania State University, University Park, PA 16802-1503, USA
| | - Christina M. Grozinger
- Department of Entomology, The Pennsylvania State University, University Park, PA 16802-1503, USA
| |
Collapse
|
5
|
Penn HJ, Simone-Finstrom MD, de Guzman LI, Tokarz PG, Dickens R. Viral species differentially influence macronutrient preferences based on honey bee genotype. Biol Open 2022; 11:bio059039. [PMID: 36082847 PMCID: PMC9548382 DOI: 10.1242/bio.059039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 09/05/2022] [Indexed: 11/30/2022] Open
Abstract
Food quantity and macronutrients contribute to honey bee health and colony survival by mediating immune responses. We determined if this held true for bees injected with chronic bee paralysis virus (CBPV) and deformed wing virus (DWV), two common honey bee ssRNA viruses. Pollen-substitute diet and syrup consumption rates and macronutrient preferences of two Varroa-resistant stocks (Pol-Line and Russian bees) were compared to Varroa-susceptible Italian bees. Bee stocks varied in consumption, where Italian bees consumed more than Pol-Line and Russian bees. However, the protein: lipid (P:L) ratios of diet consumed by the Italian and Russian bees was greater than that of the Pol-Line bees. Treatment had different effects on consumption based on the virus injected. CBPV was positively correlated with syrup consumption, while DWV was not correlated with consumption. P:L ratios of consumed diet were significantly impacted by the interaction of bee stock and treatment, with the trends differing between CBPV and DWV. Variation in macronutrient preferences based on viral species may indicate differences in energetic costs associated with immune responses to infections impacting different systems. Further, virus species interacted with bee genotype, indicating different mechanisms of viral resistance or tolerance among honey bee genotypes.
Collapse
Affiliation(s)
- Hannah J. Penn
- USDA ARS Sugarcane Research Unit, 5883 Usda Rd., Houma, LA, USA70360-5578
| | - Michael D. Simone-Finstrom
- USDA ARS Honey Bee Breeding, Genetics and Physiology Laboratory, 1157 Ben Hur Rd., Baton Rouge, LA, USA70820-5502
| | - Lilia I. de Guzman
- USDA ARS Honey Bee Breeding, Genetics and Physiology Laboratory, 1157 Ben Hur Rd., Baton Rouge, LA, USA70820-5502
| | - Philip G. Tokarz
- USDA ARS Honey Bee Breeding, Genetics and Physiology Laboratory, 1157 Ben Hur Rd., Baton Rouge, LA, USA70820-5502
| | - Rachel Dickens
- USDA ARS Honey Bee Breeding, Genetics and Physiology Laboratory, 1157 Ben Hur Rd., Baton Rouge, LA, USA70820-5502
| |
Collapse
|
6
|
Ramos-Cuellar AK, De la Mora A, Contreras-Escareño F, Morfin N, Tapia-González JM, Macías-Macías JO, Petukhova T, Correa-Benítez A, Guzman-Novoa E. Genotype, but Not Climate, Affects the Resistance of Honey Bees ( Apis mellifera) to Viral Infections and to the Mite Varroa destructor. Vet Sci 2022; 9:358. [PMID: 35878375 PMCID: PMC9320602 DOI: 10.3390/vetsci9070358] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 11/16/2022] Open
Abstract
This study was conducted to analyze the effect of genotype and climate on the resistance of honey bee (Apis mellifera) colonies to parasitic and viral diseases. The prevalence and intensity of parasitism by Varroa destructor, or infection by Nosema spp., and four honey bee viruses were determined in 365 colonies of predominantly European or African ancestry (descendants of A. m. scutellata) in subtropical and temperate regions of Mexico. Varroa destructor was the most prevalent parasite (95%), whilst N. ceranae was the least prevalent parasite (15%). Deformed wing virus (DWV) and black queen cell virus (BQCV) were the only viruses detected, at frequencies of 38% and 66%, respectively. Varroa destructor was significantly more prevalent in colonies of European ancestry (p < 0.05), and the intensity of parasitism by V. destructor or infection by DWV and BQCV was also significantly higher in colonies of European descent than in African descent colonies (p < 0.01), although no genotype−parasite associations were found for N. ceranae. Additionally, significant and positive correlations were found between V. destructor and DWV levels, and the abundance of these pathogens was negatively correlated with the African ancestry of colonies (p < 0.01). However, there were no significant effects of environment on parasitism or infection intensity for the colonies of both genotypes. Therefore, it is concluded that the genotype of honey bee colonies, but not climate, influences their resistance to DWV, BQCV, and V. destructor.
Collapse
Affiliation(s)
- Ana K. Ramos-Cuellar
- Departamento de Medicina y Zootecnia de Abejas, FMVZ, UNAM, Cd. Universitaria, Mexico City 04510, Mexico; (A.K.R.-C.); (A.C.-B.)
| | - Alvaro De la Mora
- School of Environmental Sciences, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada; (A.D.l.M.); (N.M.)
| | - Francisca Contreras-Escareño
- Departamento de Producción Agrícola, CUCSUR, Universidad de Guadalajara, Independencia Nal. 161, Autlan 48900, Mexico;
| | - Nuria Morfin
- School of Environmental Sciences, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada; (A.D.l.M.); (N.M.)
| | - José M. Tapia-González
- Departamento de Ciencias de la Naturaleza, CUSUR, Universidad de Guadalajara, Enrique Arreola Silva 883, Ciudad Guzman 49000, Mexico; (J.M.T.-G.); (J.O.M.-M.)
| | - José O. Macías-Macías
- Departamento de Ciencias de la Naturaleza, CUSUR, Universidad de Guadalajara, Enrique Arreola Silva 883, Ciudad Guzman 49000, Mexico; (J.M.T.-G.); (J.O.M.-M.)
| | - Tatiana Petukhova
- Department of Population Medicine, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada;
| | - Adriana Correa-Benítez
- Departamento de Medicina y Zootecnia de Abejas, FMVZ, UNAM, Cd. Universitaria, Mexico City 04510, Mexico; (A.K.R.-C.); (A.C.-B.)
| | - Ernesto Guzman-Novoa
- School of Environmental Sciences, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada; (A.D.l.M.); (N.M.)
| |
Collapse
|