1
|
Luo J, Huang R, Xiao P, Xu A, Dong Z, Zhang L, Wu R, Qiu Y, Zhu L, Zhang R, Tang L. Construction of hub transcription factor-microRNAs-messenger RNA regulatory network in recurrent implantation failure. J Assist Reprod Genet 2024; 41:3-13. [PMID: 37878219 PMCID: PMC10789703 DOI: 10.1007/s10815-023-02947-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 09/14/2023] [Indexed: 10/26/2023] Open
Abstract
PURPOSE Recurrent implantation failure (RIF) affects up to 10% of in vitro fertilization (IVF) patients worldwide. However, the pathogenesis of RIF remains unclear. This study was aimed at identifying hub transcription factors (TFs) of RIF in bioinformatics approaches. METHODS The GSE111974 (mRNA), GSE71332 (miRNA), and GSE103465 (mRNA) datasets were downloaded from the Gene Expression Omnibus database from human endometrial tissue using R version 4.2.1 and used to identify differentially expressed TFs (DETFs), differentially expressed miRNAs, and differentially expressed genes for RIF, respectively. DETFs were subjected to functional enrichment analysis and the protein-protein interaction network analysis using the Search Tool for the Retrieval of Interacting Genes (version 11.5) database. Hub TFs were identified using the cytoHubb plug-in, after which a hub TF-miRNA-mRNA network was constructed using Cytoscape v3.8.2. RESULTS Fifty-seven DETFs were identified, in which Gene Ontology analysis revealed to be mainly involved in the regulation of transcription. Kyoto Encyclopedia of Genes and Genomes pathway analysis suggested that DETFs were enriched in transcriptional misregulation in cancer, aldosterone synthesis and secretion, AMPK signaling pathway, and cGMP-PKG signaling pathway. EOMES, NKX2-1, and POU5F1 were identified as hub TFs, and a hub TF-miRNA-mRNA regulatory network was constructed using these three hub TFs, four miRNAs, and four genes. CONCLUSION Collectively, we identified three promising molecular biomarkers for the diagnosis of RIF, which may further be potential therapeutic targets. This study provides novel insights into the molecular mechanisms underlying RIF. However, further experiments are required to verify these results.
Collapse
Affiliation(s)
- Jiahuan Luo
- Department of Reproductive Genetics, The First Affiliated Hospital of Kunming Medical University, No. 295, Xichang Road, Wuhua District, Kunming, China
- Department of Reproductive Medicine, The First Affiliated Hospital of Dali University, Dali, China
- Innovation Team in Reproductive Medicine, Dali University, No. 32, Carlsberg Avenue, Dali, Yunnan, China
- First Clinical Medical College, Kunming Medical University, Kunming, China
| | - Rongxia Huang
- Department of Gynecology, Kunming Maternal and Child Health Hospital, Kunming, China
| | - Pengying Xiao
- Reproductive Medicine Center, Dongguan Songshan Lake Central Hospital, Dongguan, 523429, China
| | - Anli Xu
- Department of Reproductive Medicine, The First Affiliated Hospital of Dali University, Dali, China
- Innovation Team in Reproductive Medicine, Dali University, No. 32, Carlsberg Avenue, Dali, Yunnan, China
- Reproductive Medicine Center, Kunming Maternal and Child Health Hospital, No. 43, Huashan West Road, Huashan Street, Wuhua District, Kunming, China
| | - Zhaomei Dong
- Department of Reproductive Medicine, The First Affiliated Hospital of Dali University, Dali, China
- Innovation Team in Reproductive Medicine, Dali University, No. 32, Carlsberg Avenue, Dali, Yunnan, China
- Reproductive Medicine Center, Kunming Maternal and Child Health Hospital, No. 43, Huashan West Road, Huashan Street, Wuhua District, Kunming, China
| | - Lirong Zhang
- Department of Reproductive Medicine, The First Affiliated Hospital of Dali University, Dali, China
- Innovation Team in Reproductive Medicine, Dali University, No. 32, Carlsberg Avenue, Dali, Yunnan, China
- Reproductive Medicine Center, Kunming Maternal and Child Health Hospital, No. 43, Huashan West Road, Huashan Street, Wuhua District, Kunming, China
| | - Rui Wu
- Department of Reproductive Medicine, The First Affiliated Hospital of Dali University, Dali, China
- Reproductive Medicine Center, Kunming Maternal and Child Health Hospital, No. 43, Huashan West Road, Huashan Street, Wuhua District, Kunming, China
| | - Yunlin Qiu
- Department of Reproductive Medicine, The First Affiliated Hospital of Dali University, Dali, China
- Reproductive Medicine Center, Kunming Maternal and Child Health Hospital, No. 43, Huashan West Road, Huashan Street, Wuhua District, Kunming, China
| | - Li Zhu
- Department of Reproductive Medicine, The First Affiliated Hospital of Dali University, Dali, China.
- Innovation Team in Reproductive Medicine, Dali University, No. 32, Carlsberg Avenue, Dali, Yunnan, China.
- Reproductive Medicine Center, Kunming Maternal and Child Health Hospital, No. 43, Huashan West Road, Huashan Street, Wuhua District, Kunming, China.
| | - Ruopeng Zhang
- Reproductive Medicine Center, Dongguan Songshan Lake Central Hospital, Dongguan, 523429, China.
- Reproductive Medicine Center, Kunming Maternal and Child Health Hospital, No. 43, Huashan West Road, Huashan Street, Wuhua District, Kunming, China.
| | - Li Tang
- Department of Reproductive Genetics, The First Affiliated Hospital of Kunming Medical University, No. 295, Xichang Road, Wuhua District, Kunming, China.
- First Clinical Medical College, Kunming Medical University, Kunming, China.
| |
Collapse
|
2
|
Dong X, Zhou M, Li X, Huang H, Sun Y. Gene profiling reveals the role of inflammation, abnormal uterine muscle contraction and vascularity in recurrent implantation failure. Front Genet 2023; 14:1108805. [PMID: 36911409 PMCID: PMC9998698 DOI: 10.3389/fgene.2023.1108805] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 02/15/2023] [Indexed: 03/14/2023] Open
Abstract
Objective: Recurrent implantation failure (RIF) is now disturbing numerous infertile couples accepting assisted reproductive technology (ART). And the endometrial factors are crucial causes of recurrent implantation failure. However, its mechanism is still unclear. Thus, the aim of this study is to identify altered biologic processes in endometrium that may contribute to recurrent implantation failure. Methods: We recruited two microarray datasets (GSE103465, GSE111974) from Gene Expression Omnibus database (GEO), which contain endometrium from RIF and normal women during implantation period. Using the online tools GEO2R and Venny, we identified Differentially Expressed Genes (DEGs) of selected datasets, and obtained common DEGs. Gene Ontology (GO) terms, Kyoto Encyclopedia of Genes and Genomes (KEGG) and BioCatar pathway enrichment were conducted with Enrichr platform, "ssgsea" and "ggplot2" package of RStudio. PPI networks and hub gene related TF-gene interaction and TF-miRNA co-regulation networks were built via online tools STRING and NetworkAnalyst. Immune infiltration analysis was performed by CIBERSORT platform. Recurrent implantation failure subgroup identification was achieved through "ConsensusClusterPlus," "tsne," "ssgsea", and "ggpubr" package in RStudio. Diagnostic characteristic ROC curves were constructed via "pROC" and "ggplot2" package of RStudio. Enrichr platform was utilized to find drugs targeting hub genes. Results: 26 common DEGs were confirmed. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes/BioCarta analysis determined common DEGs were mainly enriched in inflammation associated pathways including TNF, NF-κB, IL-4, IL-10, IL-6, and TGF-β signaling pathways. Five hub genes (PTGS2, VCAM1, EDNRB, ACTA2, and LIF) and related TF-gene and TF-miRNA interactions were identified. Immune infiltration analysis indicated the importance of macrophage M2 in recurrent implantation failure patients. Importantly, subgroup identification analysis highlighted that recurrent implantation failure patients can be divided into two subgroups with different phenotypes. Moreover, the ROC curves and drugs may provide new diagnostic and therapeutic thought for recurrent implantation failure.
Collapse
Affiliation(s)
- Xinyi Dong
- Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Mi Zhou
- Department of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Xinyu Li
- Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Huijing Huang
- Department of Rheumatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yun Sun
- Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| |
Collapse
|
3
|
Goharitaban S, Abedelahi A, Hamdi K, Khazaei M, Esmaeilivand M, Niknafs B. Role of endometrial microRNAs in repeated implantation failure (mini-review). Front Cell Dev Biol 2022; 10:936173. [PMID: 36060804 PMCID: PMC9437697 DOI: 10.3389/fcell.2022.936173] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/12/2022] [Indexed: 11/28/2022] Open
Abstract
MicroRNAs (miRNAs) play various roles in the implantation and pregnancy process. Abnormal regulation of miRNAs leads to reproductive disorders such as repeated implantation failure (RIF). During the window of implantation, different miRNAs are released from the endometrium, which can potentially reflect the status of the endometrium for in vitro fertilization (IVF). The focus of this review is to determine whether endometrial miRNAs may be utilized as noninvasive biomarkers to predict the ability of endometrium to implant and provide live birth during IVF cycles. The levels of certain miRNAs in the endometrium have been linked to implantation potential and pregnancy outcomes in previous studies. Endometrial miRNAs could be employed as non-invasive biomarkers in the assisted reproductive technology (ART) cycle to determine the optimal time for implantation. Few human studies have evaluated the association between ART outcomes and endometrial miRNAs in RIF patients. This review may pave the way for more miRNA transcriptomic studies on human endometrium and introduce a specific miRNA profile as a multivariable prediction model for choosing the optimal time in the IVF cycle.
Collapse
Affiliation(s)
- Sepide Goharitaban
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran
| | - Ali Abedelahi
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran
| | - Kobra Hamdi
- Womens Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mozafar Khazaei
- Fertility and Infertility Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Masoumeh Esmaeilivand
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behrooz Niknafs
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- *Correspondence: Behrooz Niknafs, , 0000-0003-4438-1880
| |
Collapse
|