1
|
Zhao H, Dong Q, Hua H, Wu H, Ao L. Contemporary insights and prospects on ferroptosis in rheumatoid arthritis management. Front Immunol 2024; 15:1455607. [PMID: 39381004 PMCID: PMC11458427 DOI: 10.3389/fimmu.2024.1455607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/03/2024] [Indexed: 10/10/2024] Open
Abstract
Rheumatoid arthritis (RA) is a common autoimmune disease characterized primarily by persistent synovial inflammation and joint destruction. In recent years, ferroptosis, as a novel form of cell death, has garnered widespread attention due to its critical role in various diseases. This review explores the potential mechanisms of ferroptosis in RA and its relationship with the pathogenesis of RA, systematically analyzing the regulatory role of ferroptosis in synovial cells, chondrocytes, and immune cells. We emphasize the evaluation of ferroptosis-related pathways and their potential as therapeutic targets, including the development and application of inhibitors and activators. Although ferroptosis shows some promise in RA treatment, its dual role and safety issues in clinical application still require in-depth study. Future research should focus on elucidating the specific mechanisms of ferroptosis in RA pathology and developing more effective and safer therapeutic strategies to provide new treatment options for RA patients.
Collapse
Affiliation(s)
| | | | | | | | - Limei Ao
- College of Traditional Chinese Medicine, Inner Mongolia Medical University, Huhhot, Inner Mongolia, China
| |
Collapse
|
2
|
Bieri S, Möller B, Amsler J. Ferroptosis in Arthritis: Driver of the Disease or Therapeutic Option? Int J Mol Sci 2024; 25:8212. [PMID: 39125782 PMCID: PMC11311315 DOI: 10.3390/ijms25158212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/12/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Ferroptosis is a form of iron-dependent regulated cell death caused by the accumulation of lipid peroxides. In this review, we summarize research on the impact of ferroptosis on disease models and isolated cells in various types of arthritis. While most studies have focused on rheumatoid arthritis (RA) and osteoarthritis (OA), there is limited research on spondylarthritis and crystal arthropathies. The effects of inducing or inhibiting ferroptosis on the disease strongly depend on the studied cell type. In the search for new therapeutic targets, inhibiting ferroptosis in chondrocytes might have promising effects for any type of arthritis. On the other hand, ferroptosis induction may also lead to a desired decrease of synovial fibroblasts in RA. Thus, ferroptosis research must consider the cell-type-specific effects on arthritis. Further investigation is needed to clarify these complexities.
Collapse
Affiliation(s)
- Shania Bieri
- Faculty of Medicine, University of Bern, 3012 Bern, Switzerland
| | - Burkhard Möller
- Department of Rheumatology and Immunology, Bern University Hospital, University of Bern, 3010 Bern, Switzerland;
| | - Jennifer Amsler
- Department of Rheumatology and Immunology, Bern University Hospital, University of Bern, 3010 Bern, Switzerland;
- Department for BioMedical Research DBMR, University of Bern, 3008 Bern, Switzerland
| |
Collapse
|
3
|
Ao Q, Hu H, Huang Y. Ferroptosis and endoplasmic reticulum stress in rheumatoid arthritis. Front Immunol 2024; 15:1438803. [PMID: 39076977 PMCID: PMC11284608 DOI: 10.3389/fimmu.2024.1438803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 07/01/2024] [Indexed: 07/31/2024] Open
Abstract
Ferroptosis is an iron-dependent mode of cell death distinct from apoptosis and necrosis. Its mechanisms mainly involve disordered iron metabolism, lipid peroxide deposition, and an imbalance of the antioxidant system. The endoplasmic reticulum is an organelle responsible for protein folding, lipid metabolism, and Ca2+ regulation in cells. It can be induced to undergo endoplasmic reticulum stress in response to inflammation, oxidative stress, and hypoxia, thereby regulating intracellular environmental homeostasis through unfolded protein responses. It has been reported that ferroptosis and endoplasmic reticulum stress (ERS) have an interaction pathway and jointly regulate cell survival and death. Both have also been reported separately in rheumatoid arthritis (RA) mechanism studies. However, studies on the correlation between ferroptosis and ERS in RA have not been reported so far. Therefore, this paper reviews the current status of studies and the potential correlation between ferroptosis and ERS in RA, aiming to provide a research reference for developing treatments for RA.
Collapse
Affiliation(s)
- Qin Ao
- Guizhou Universisity of Traditional Chinese Medicine, Guiyang, China
- Department of Rheumatology and Immunology, The Affiliated Hospital of Guizhou Medical Universisity, Guiyang, China
| | - Huan Hu
- Center for General Practice Medicine, Department of Rheumatology and Immunology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Ying Huang
- Guizhou Universisity of Traditional Chinese Medicine, Guiyang, China
- Department of Rheumatology and Immunology, The Affiliated Hospital of Guizhou Medical Universisity, Guiyang, China
| |
Collapse
|
4
|
Hu Z, Li Y, Zhang L, Jiang Y, Long C, Yang Q, Yang M. Metabolic changes in fibroblast-like synoviocytes in rheumatoid arthritis: state of the art review. Front Immunol 2024; 15:1250884. [PMID: 38482018 PMCID: PMC10933078 DOI: 10.3389/fimmu.2024.1250884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 02/06/2024] [Indexed: 03/22/2024] Open
Abstract
Fibroblast-like synoviocytes (FLS) are important components of the synovial membrane. They can contribute to joint damage through crosstalk with inflammatory cells and direct actions on tissue damage pathways in rheumatoid arthritis (RA). Recent evidence suggests that, compared with FLS in normal synovial tissue, FLS in RA synovial tissue exhibits significant differences in metabolism. Recent metabolomic studies have demonstrated that metabolic changes, including those in glucose, lipid, and amino acid metabolism, exist before synovitis onset. These changes may be a result of increased biosynthesis and energy requirements during the early phases of the disease. Activated T cells and some cytokines contribute to the conversion of FLS into cells with metabolic abnormalities and pro-inflammatory phenotypes. This conversion may be one of the potential mechanisms behind altered FLS metabolism. Targeting metabolism can inhibit FLS proliferation, providing relief to patients with RA. In this review, we aimed to summarize the evidence of metabolic changes in FLS in RA, analyze the mechanisms of these metabolic alterations, and assess their effect on RA phenotype. Finally, we aimed to summarize the advances and challenges faced in targeting FLS metabolism as a promising therapeutic strategy for RA in the future.
Collapse
Affiliation(s)
| | | | | | | | | | - Qiyue Yang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Maoyi Yang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
5
|
Zhao H, Tang C, Wang M, Zhao H, Zhu Y. Ferroptosis as an emerging target in rheumatoid arthritis. Front Immunol 2023; 14:1260839. [PMID: 37928554 PMCID: PMC10620966 DOI: 10.3389/fimmu.2023.1260839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/22/2023] [Indexed: 11/07/2023] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease of unknown etiology. Due to the rise in the incidence rate of RA and the limitations of existing therapies, the search for new treatment strategies for RA has become a global focus. Ferroptosis is a novel programmed cell death characterized by iron-dependent lipid peroxidation, with distinct differences from apoptosis, autophagy, and necrosis. Under the conditions of iron accumulation and the glutathione peroxidase 4 (GPX4) activity loss, the lethal accumulation of lipid peroxide is the direct cause of ferroptosis. Ferroptosis mediates inflammation, oxidative stress, and lipid oxidative damage processes, and also participates in the occurrence and pathological progression of inflammatory joint diseases including RA. This review provides insight into the role and mechanism of ferroptosis in RA and discusses the potential and challenges of ferroptosis as a new therapeutic strategy for RA, with an effort to provide new targets for RA prevention and treatment.
Collapse
Affiliation(s)
- Hui Zhao
- The Geriatrics, Graduate School of Anhui University of Chinese Medicine, Hefei, China
| | - Cheng Tang
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Miao Wang
- The Geriatrics, Graduate School of Anhui University of Chinese Medicine, Hefei, China
| | - Hongfang Zhao
- The Geriatrics, Graduate School of Anhui University of Chinese Medicine, Hefei, China
| | - Yan Zhu
- The Geriatrics, Graduate School of Anhui University of Chinese Medicine, Hefei, China
- The Geriatrics, The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
6
|
Chen H, Han Z, Wang Y, Su J, Lin Y, Cheng X, Liu W, He J, Fan Y, Chen L, Zuo H. Targeting Ferroptosis in Bone-Related Diseases: Facts and Perspectives. J Inflamm Res 2023; 16:4661-4677. [PMID: 37872954 PMCID: PMC10590556 DOI: 10.2147/jir.s432111] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/12/2023] [Indexed: 10/25/2023] Open
Abstract
Ferroptosis is a new cell fate decision discovered in recent years. Unlike apoptosis, autophagy or pyroptosis, ferroptosis is characterized by iron-dependent lipid peroxidation and mitochondrial morphological changes. Ferroptosis is involved in a variety of physiological and pathological processes. Since its discovery, ferroptosis has been increasingly studied concerning bone-related diseases. In this review, we focus on the latest research progress and prospects, summarize the regulatory mechanisms of ferroptosis, and discuss the role of ferroptosis in the pathogenesis of bone-related diseases, such as osteoporosis (OP), osteoarthritis (OA), rheumatoid arthritis (RA), and osteosarcoma (OS), as well as its therapeutic potential.
Collapse
Affiliation(s)
- Haoran Chen
- Department of Orthopaedics, Chengdu Xinhua Hospital, Chengdu, 610000, People’s Republic of China
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 610000, People’s Republic of China
| | - Zhongyu Han
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 610000, People’s Republic of China
| | - Yi Wang
- Department of Orthopaedics, Chengdu Xinhua Hospital, Chengdu, 610000, People’s Republic of China
| | - Junyan Su
- Department of Orthopaedics, The First People’s Hospital of Longquanyi District, Chengdu, 610000, People’s Republic of China
| | - Yumeng Lin
- School of Ophthalmology, Chengdu University of Traditional Chinese Medicine, Chengdu, 610000, People’s Republic of China
| | - Xuhua Cheng
- Department of Orthopaedics, Chengdu Xinhua Hospital, Chengdu, 610000, People’s Republic of China
| | - Wen Liu
- Department of Orthopaedics, Chengdu Xinhua Hospital, Chengdu, 610000, People’s Republic of China
| | - Jingyu He
- Sichuan Judicial and Police Officers Professional College, Deyang, 618000, People’s Republic of China
| | - Yiyue Fan
- Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, People’s Republic of China
| | - Liuyan Chen
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 610000, People’s Republic of China
| | - Houdong Zuo
- Department of Orthopaedics, Chengdu Xinhua Hospital, Chengdu, 610000, People’s Republic of China
| |
Collapse
|
7
|
Feng S, Tang D, Wang Y, Li X, Bao H, Tang C, Dong X, Li X, Yang Q, Yan Y, Yin Z, Shang T, Zheng K, Huang X, Wei Z, Wang K, Qi S. The mechanism of ferroptosis and its related diseases. MOLECULAR BIOMEDICINE 2023; 4:33. [PMID: 37840106 PMCID: PMC10577123 DOI: 10.1186/s43556-023-00142-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/23/2023] [Indexed: 10/17/2023] Open
Abstract
Ferroptosis, a regulated form of cellular death characterized by the iron-mediated accumulation of lipid peroxides, provides a novel avenue for delving into the intersection of cellular metabolism, oxidative stress, and disease pathology. We have witnessed a mounting fascination with ferroptosis, attributed to its pivotal roles across diverse physiological and pathological conditions including developmental processes, metabolic dynamics, oncogenic pathways, neurodegenerative cascades, and traumatic tissue injuries. By unraveling the intricate underpinnings of the molecular machinery, pivotal contributors, intricate signaling conduits, and regulatory networks governing ferroptosis, researchers aim to bridge the gap between the intricacies of this unique mode of cellular death and its multifaceted implications for health and disease. In light of the rapidly advancing landscape of ferroptosis research, we present a comprehensive review aiming at the extensive implications of ferroptosis in the origins and progress of human diseases. This review concludes with a careful analysis of potential treatment approaches carefully designed to either inhibit or promote ferroptosis. Additionally, we have succinctly summarized the potential therapeutic targets and compounds that hold promise in targeting ferroptosis within various diseases. This pivotal facet underscores the burgeoning possibilities for manipulating ferroptosis as a therapeutic strategy. In summary, this review enriched the insights of both investigators and practitioners, while fostering an elevated comprehension of ferroptosis and its latent translational utilities. By revealing the basic processes and investigating treatment possibilities, this review provides a crucial resource for scientists and medical practitioners, aiding in a deep understanding of ferroptosis and its effects in various disease situations.
Collapse
Affiliation(s)
- Shijian Feng
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Dan Tang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Yichang Wang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xiang Li
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Hui Bao
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Chengbing Tang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xiuju Dong
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xinna Li
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Qinxue Yang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Yun Yan
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Zhijie Yin
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Tiantian Shang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Kaixuan Zheng
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xiaofang Huang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Zuheng Wei
- Chengdu Jinjiang Jiaxiang Foreign Languages High School, Chengdu, People's Republic of China
| | - Kunjie Wang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China.
| | - Shiqian Qi
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China.
| |
Collapse
|
8
|
Wu D, Li Y, Xu R. Can pyroptosis be a new target in rheumatoid arthritis treatment? Front Immunol 2023; 14:1155606. [PMID: 37426634 PMCID: PMC10324035 DOI: 10.3389/fimmu.2023.1155606] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/07/2023] [Indexed: 07/11/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease of undefined etiology, with persistent synovial inflammation and destruction of articular cartilage and bone. Current clinical drugs for RA mainly include non-steroidal anti-inflammatory drugs (NSAIDs), glucocorticoids, disease modifying anti-rheumatic drugs (DMARDs) and so on, which can relieve patients' joint symptoms. If we want to have a complete cure for RA, there are still some limitations of these drugs. Therefore, we need to explore new mechanisms of RA to prevent and treat RA radically. Pyroptosis is a newly discovered programmed cell death (PCD) in recent years, which is characterized by the appearance of holes in cell membranes, cell swelling and rupture, and the release of intracellular pro-inflammatory factors into the extracellular space, resulting in a strong inflammatory response. The nature of pyroptosis is pro-inflammatory, and whether it is participating in the development of RA has attracted a wide interest among scholars. This review describes the discovery and mechanism of pyroptosis, the main therapeutic strategies for RA, and the role of pyroptosis in the mechanism of RA development. From the perspective of pyroptosis, the study of new mechanisms of RA may provide a potential target for the treatment of RA and the development of new drugs in the clinics.
Collapse
Affiliation(s)
- Dengqiang Wu
- Department of Clinical Laboratory, Ningbo No.6 Hospital, Ningbo, China
| | - Yujie Li
- Department of Clinical Laboratory, Ningbo Medical Center Lihuili Hospital, Ningbo, China
| | - Ranxing Xu
- Department of Clinical Laboratory, Ningbo No.6 Hospital, Ningbo, China
| |
Collapse
|
9
|
Xie M, Zhu C, Ye Y. Ferroptosis-Related Molecular Clusters and Diagnostic Model in Rheumatoid Arthritis. Int J Mol Sci 2023; 24:ijms24087342. [PMID: 37108505 PMCID: PMC10138921 DOI: 10.3390/ijms24087342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/09/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Rheumatoid arthritis (RA) is a systemic autoimmune disease characterized by synovitis, joint damage and deformity. A newly described type of cell death, ferroptosis, has an important role in the pathogenesis of RA. However, the heterogeneity of ferroptosis and its association with the immune microenvironment in RA remain unknown. Synovial tissue samples from 154 RA patients and 32 healthy controls (HCs) were obtained from the Gene Expression Omnibus database. Twelve of twenty-six ferroptosis-related genes (FRGs) were differentially expressed between RA patients and HCs. Furthermore, the patterns of correlation among the FRGs were significantly different between the RA and HC groups. RA patients were classified into two distinct ferroptosis-related clusters, of which cluster 1 had a higher abundance of activated immune cells and a corresponding lower ferroptosis score. Enrichment analysis suggested that tumor necrosis factor-α signaling via nuclear factor-κB was upregulated in cluster 1. RA patients in cluster 1 responded better to anti-tumor necrosis factor (anti-TNF) therapy, which was verified by the GSE 198520 dataset. A diagnostic model to identify RA subtypes and immunity was constructed and verified, in which the area under the curve values in the training (70%) and validation (30%) cohorts were 0.849 and 0.810, respectively. This study demonstrated that there were two ferroptosis clusters in RA synovium that exhibited distinct immune profiles and ferroptosis sensitivity. Additionally, a gene scoring system was constructed to classify individual RA patients.
Collapse
Affiliation(s)
- Maosheng Xie
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Chao Zhu
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Yujin Ye
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
10
|
Wang X, Li W, Dong Y, Zhang Y, Huo Q, Lu L, Zhang J, Zhao Y, Fan S, Dong H, Li D. Ferrostatin-1 mitigates ionizing radiation-induced intestinal injuries by inhibiting apoptosis and ferroptosis: an in vitro and in vivo study. Int J Radiat Biol 2023; 99:1607-1618. [PMID: 36947642 DOI: 10.1080/09553002.2023.2194399] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 03/10/2023] [Indexed: 03/24/2023]
Abstract
PURPOSE Intestinal injuries caused by ionizing radiation (IR) are a major complication of radiotherapy. Ferrostatin-1 (Fer-1) exerts antioxidant and anti-inflammatory effects. We investigated the influence of Fer-1 on IR-induced intestinal damage and explored the possible mechanisms. MATERIALS AND METHODS IEC-6 cells were administrated with Fer-1 for 30 min and subsequently subjected to 9.0 Gy-irradiation. Flow cytometry, qPCR, and WB were used to detect changes. For in vivo experiments, Fer-1 was given intraperitoneally to mice at 1 h before and 24 h after 9.0 Gy total body irradiation (TBI) respectively. Three days after TBI, the small intestines were isolated for analysis. The diversity and composition of the gut microbiota were analyzed by 16S rRNA gene sequencing. RESULTS In vitro, Fer-1 protected IEC-6 cells from IR injury by reducing the production of ROS and inhibiting both ferroptosis and apoptosis. In vivo, Fer-1 enhanced the survival rates of mice subjected to lethal doses of IR and restored intestinal structure and physiological function. Further investigation showed that Fer-1 protected IEC-6 cells and mice by inhibiting the p53-mediated apoptosis signaling pathway and restoring the gut-microbe balance. CONCLUSION This study confirms that Fer-1 protects intestinal injuries through suppressing apoptosis and ferroptosis.
Collapse
Affiliation(s)
- Xinyue Wang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
| | - Wenxuan Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
| | - Yinping Dong
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
| | - Yuanyang Zhang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
| | - Qidong Huo
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
| | - Lu Lu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
| | - Junling Zhang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
| | - Yu Zhao
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
| | - Saijun Fan
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
| | - Hui Dong
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
| | - Deguan Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
| |
Collapse
|
11
|
Wang Z, Liu H, Fu R, Ou J, Wang B. Structural characterization and anti-inflammatory activity of a novel polysaccharide PKP2-1 from Polygonatum kingianum. Front Nutr 2023; 10:1156798. [PMID: 37051130 PMCID: PMC10083337 DOI: 10.3389/fnut.2023.1156798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/13/2023] [Indexed: 03/28/2023] Open
Abstract
IntroductionThis study aimed to investigate the structure characterization and antiinflammatory activity of a novel polysaccharide, PKP2-1, from the rhizomes of Polygonatum kingianum Coll. and Hemsl.MethodsWe isolated a novel polysaccharide, PKP2-1, from the rhizomes of Polygonatum kingianum Coll. and Hemsl. for the first time, which was then successively purified through hot-water extraction, 80% alcohol precipitation, anion exchange and gel permeation chromatography. The in vitro anti-inflammatory activity of PKP2-1 in MH7A cells was assessed using a CCK-8 kit assay.ResultsMonosaccharide composition assay revealed that PKP2-1 was mainly composed of glucose, galactose, mannose, and glucuronic acid at an approximate molar ratio of 6:2:2:1. It had a molecular weight of approximately 17.34 kDa. Structural investigation revealed that the backbone of PKP2-1 consisted of (→2, 3)-α-D-Galp(4→, →2)-α-D-Manp(3→, →2)-β-D-Glcp(4→) and α-D-Glcp(3→) residues with side chains (→2)-β-D-Glcp(4→, →1)-α-D-Galp(4→) and α-D-Glcp(3→) branches located at O-3 position of (→2, 3)-α-D-Galp(4→). The in vitro anti-inflammatory activity of PKP2-1 in MH7A cells revealed that PKP2-1 could reduce the expression of IL-11β and IL-6, increase the expression of IL-10 and induce apoptosis of synovial fibroblasts.ConclusionThe PKP2-1 could inhibit MH7A cell growth and potentially be exploited as an anti-inflammatory agent.
Collapse
|
12
|
Zhang F, Yan Y, Cai Y, Liang Q, Liu Y, Peng B, Xu Z, Liu W. Current insights into the functional roles of ferroptosis in musculoskeletal diseases and therapeutic implications. Front Cell Dev Biol 2023; 11:1112751. [PMID: 36819098 PMCID: PMC9936329 DOI: 10.3389/fcell.2023.1112751] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/20/2023] [Indexed: 02/05/2023] Open
Abstract
Ferroptosis is a novel type of cell death associated with iron accumulation and excessive lipid peroxidation. Elucidating the underlying molecular mechanisms of ferroptosis is intensively related to the development and treatment of multiple diseases, including musculoskeletal disorders. Moreover, in vitro and in vivo studies have shown the importance of oxidative stress in musculoskeletal conditions such as osteoporosis, osteoarthritis, rheumatoid arthritis, and osteosarcoma. Ferroptosis-derived clinical management of musculoskeletal diseases offers tremendous and attractive opportunities. Notably, ferroptosis agonists have been proven to enhance the sensitivity of osteosarcoma cells to conventional therapeutic strategies. In this review, we have mainly focused on the implications of ferroptosis regulation in the pathophysiology and therapeutic response of musculoskeletal disorders. Understanding roles of ferroptosis for controlling musculoskeletal diseases might provide directions for ferroptosis-driven therapies, which could be promising for the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Gynecology, Xiangya Hospital, Central South University, Changsha, China
| | - Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yuan Cai
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China,Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Qiuju Liang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
| | - Yuanhong Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
| | - Bi Peng
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China,Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China,*Correspondence: Zhijie Xu, ; Wei Liu,
| | - Wei Liu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China,Department of Orthopedic Surgery, The Second Hospital University of South China, Hengyang, China,*Correspondence: Zhijie Xu, ; Wei Liu,
| |
Collapse
|
13
|
Zeng F, Lan Y, Wang N, Huang X, Zhou Q, Wang Y. Ferroptosis: A new therapeutic target for bladder cancer. Front Pharmacol 2022; 13:1043283. [PMID: 36408230 PMCID: PMC9669411 DOI: 10.3389/fphar.2022.1043283] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/17/2022] [Indexed: 12/13/2023] Open
Abstract
Bladder cancer (BC) is the most frequent type of urinary system cancer. The prognosis of BC is poor due to high metastasis rates and multidrug resistance. Hence, development of novel therapies targeting BC cell death is urgently needed. As a novel cell death type with strong antitumor potential, ferroptosis has been investigated by many groups for its potential in BC treatment. As an iron-dependent cell death process, ferroptosis is characterized by excessive oxidative phospholipids. The molecular mechanisms of ferroptosis include iron overload and the system Xc-GSH-GPX4 signaling pathway. A recent study revealed that ferroptosis is involved in the metastasis, treatment, and prognosis of BC. Herein, in this review, we comprehensively summarize the mechanism of ferroptosis, address newly identified targets involved in ferroptosis, and discuss the potential of new clinical therapies targeting ferroptosis in BC.
Collapse
Affiliation(s)
- Fan Zeng
- Department of Critical Care Medicine, Sichuan Academy of Medical Science, Chengdu, China
| | - Yunping Lan
- Department of Critical Care Medicine, Sichuan Academy of Medical Science, Chengdu, China
| | - Ning Wang
- Department of Critical Care Medicine, Sichuan Academy of Medical Science, Chengdu, China
| | - Xiaobo Huang
- Department of Critical Care Medicine, Sichuan Academy of Medical Science, Chengdu, China
| | - Qiao Zhou
- Department of Rheumatology and Immunology, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yi Wang
- Department of Critical Care Medicine, Sichuan Academy of Medical Science, Chengdu, China
| |
Collapse
|
14
|
Zhou Q, Li T, Qin Q, Huang X, Wang Y. Ferroptosis in lymphoma: Emerging mechanisms and a novel therapeutic approach. Front Genet 2022; 13:1039951. [PMID: 36406116 PMCID: PMC9669386 DOI: 10.3389/fgene.2022.1039951] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 10/24/2022] [Indexed: 11/16/2023] Open
Abstract
Unlike apoptosis, necroptosis, autophagy, and pyroptosis, ferroptosis represents a new type of cell death, which is characterized by iron-dependent lipid peroxidation. This process relies largely on the metabolite reactive oxygen species (ROS), phospholipids containing polyunsaturated fatty acids (PUFA-PL), transition metal iron, intra-, and intercellular signaling events, and environmental stress that regulate cellular metabolism and ROS levels. Recent studies show that ferroptosis plays an important role in tumorigenesis, tumor development, and the treatment of hematological malignancies, including lymphoma. Despite the constant emergence of new drugs, the differences in morphological features, immunophenotypes, biological patterns, rates of onset, and response to treatment in lymphoma pose major therapeutic challenges. Since lymphoma is associated with ferroptosis and shows sensitivity towards it, targeting the potential regulatory factors may regulate lymphoma progression. This has emerged as a research hotspot. This review summarizes the current knowledge on ferroptosis induction and resistance mechanisms, their roles and mechanistic details of ferroptosis in lymphoma suppression and immunity, and finally the treatment strategies for lymphoma by targeting ferroptosis.
Collapse
Affiliation(s)
- Qiao Zhou
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Department of Rheumatology and Immunology, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Ting Li
- Department of Rheumatology, Wenjiang District People’s Hospital, Chengdu, China
| | - Qin Qin
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaobo Huang
- Department of Critical Care Medicine, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yi Wang
- Department of Critical Care Medicine, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
15
|
Long L, Guo H, Chen X, Liu Y, Wang R, Zheng X, Huang X, Zhou Q, Wang Y. Advancement in understanding the role of ferroptosis in rheumatoid arthritis. Front Physiol 2022; 13:1036515. [PMID: 36267583 PMCID: PMC9576928 DOI: 10.3389/fphys.2022.1036515] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic, systemic disease of unknown etiology. The primary manifestation of RA is inflammatory synovitis, which eventually leads to deformity and functional loss. Ferroptosis is a non-apoptosis form of cell death that depends on intracellular iron accumulation. This leads to an increase in reactive oxygen species (ROS) induced-lipid peroxidation. The underlying mechanisms of ferroptosis are System Xc- and Glutathione metabolism, regulation of glutathione peroxidase 4 activity, and ROS generation. Recent studies have shown an association between the pathogenesis of RA and ferroptosis, suggesting the involvement of ferroptosis in the onset and progression of RA. In this review, we have focused on the mechanism of ferroptosis and its association with RA pathogenesis. Further, we discuss the status of therapeutics targeting ferroptosis in the treatment of patients with RA. Targeting ferroptosis could be a potential therapeutic approach for RA treatment.
Collapse
Affiliation(s)
- Li Long
- Department of Rheumatology and Immunology, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, Chengdu, China
| | - Hongmei Guo
- Department of Rheumatology and Immunology, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, Chengdu, China
| | - Xixi Chen
- Department of Rheumatology and Immunology, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, Chengdu, China
| | - Yan Liu
- Department of Rheumatology and Immunology, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, Chengdu, China
- Zunyi Medical University, Zunyi, China
| | - Ruyi Wang
- Department of Rheumatology and Immunology, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, Chengdu, China
- Southwest Medical University, Luzhou, China
| | - Xiaomei Zheng
- Department of Rheumatology and Immunology, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, Chengdu, China
- Southwest Medical University, Luzhou, China
| | - Xiaobo Huang
- Department of Critical Care Medicine, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, Chengdu, China
- *Correspondence: Yi Wang, ; Xiaobo Huang, ; Qiao Zhou,
| | - Qiao Zhou
- Department of Rheumatology and Immunology, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, Chengdu, China
- *Correspondence: Yi Wang, ; Xiaobo Huang, ; Qiao Zhou,
| | - Yi Wang
- Department of Critical Care Medicine, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, Chengdu, China
- *Correspondence: Yi Wang, ; Xiaobo Huang, ; Qiao Zhou,
| |
Collapse
|