1
|
Oliveira RCD, Cavalcante GC, Soares-Souza GB. Exploring Aerobic Energy Metabolism in Breast Cancer: A Mutational Profile of Glycolysis and Oxidative Phosphorylation. Int J Mol Sci 2024; 25:12585. [PMID: 39684297 DOI: 10.3390/ijms252312585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/12/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
Energy metabolism is a fundamental aspect of the aggressiveness and invasiveness of breast cancer (BC), the neoplasm that most affects women worldwide. Nonetheless, the impact of genetic somatic mutations on glycolysis and oxidative phosphorylation (OXPHOS) genes in BC remains unclear. To fill these gaps, the mutational profiles of 205 screened genes related to glycolysis and OXPHOS in 968 individuals with BC from The Cancer Genome Atlas (TCGA) project were performed. We carried out analyses to characterize the mutational profile of BC, assess the clonality of tumors, identify somatic mutation co-occurrence, and predict the pathogenicity of these alterations. In total, 408 mutations in 132 genes related to the glycolysis and OXPHOS pathways were detected. The PGK1, PC, PCK1, HK1, DONSON, GPD1, NDUFS1, and FOXRED1 genes are also associated with the tumorigenesis process in other types of cancer, as are the genes BRCA1, BRCA2, and HMCN1, which had been previously described as oncogenes in BC, with whom the target genes of this work were associated. Seven mutations were identified and highlighted due to the high pathogenicity, which are present in more than one of our results and are documented in the literature as being correlated with other diseases. These mutations are rs267606829 (FOXRED1), COSV53860306 (HK1), rs201634181 (NDUFS1), rs774052186 (DONSON), rs119103242 (PC), rs1436643226 (PC), and rs104894677 (ETFB). They could be further investigated as potential biomarkers for diagnosis, prognosis, and treatment of BC patients.
Collapse
Affiliation(s)
- Ricardo Cunha de Oliveira
- Laboratório de Genética Humana e Médica, Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Pará, Belém 66075-110, Pará, Brazil
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo 05508-900, São Paulo, Brazil
| | - Giovanna C Cavalcante
- Laboratório de Genética Humana e Médica, Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Pará, Belém 66075-110, Pará, Brazil
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo 05508-900, São Paulo, Brazil
| | - Giordano B Soares-Souza
- Laboratório de Genética Humana e Médica, Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Pará, Belém 66075-110, Pará, Brazil
- Instituto Tecnológico Vale (ITV-DS), Belém 66055-090, Pará, Brazil
| |
Collapse
|
2
|
Gatenby RA, Luddy KA, Teer JK, Berglund A, Freischel AR, Carr RM, Lam AE, Pienta KJ, Amend SR, Austin RH, Hammarlund EU, Cleveland JL, Tsai KY, Brown JS. Lung adenocarcinomas without driver genes converge to common adaptive strategies through diverse genetic, epigenetic, and niche construction evolutionary pathways. Med Oncol 2024; 41:135. [PMID: 38704802 PMCID: PMC11070398 DOI: 10.1007/s12032-024-02344-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 02/21/2024] [Indexed: 05/07/2024]
Abstract
Somatic evolution selects cancer cell phenotypes that maximize survival and proliferation in dynamic environments. Although cancer cells are molecularly heterogeneous, we hypothesized convergent adaptive strategies to common host selection forces can be inferred from patterns of epigenetic and genetic evolutionary selection in similar tumors. We systematically investigated gene mutations and expression changes in lung adenocarcinomas with no common driver genes (n = 313). Although 13,461 genes were mutated in at least one sample, only 376 non-synonymous mutations evidenced positive evolutionary selection with conservation of 224 genes, while 1736 and 2430 genes exhibited ≥ two-fold increased and ≥ 50% decreased expression, respectively. Mutations under positive selection are more frequent in genes with significantly altered expression suggesting they often "hardwire" pre-existing epigenetically driven adaptations. Conserved genes averaged 16-fold higher expression in normal lung tissue compared to those with selected mutations demonstrating pathways necessary for both normal cell function and optimal cancer cell fitness. The convergent LUAD phenotype exhibits loss of differentiated functions and cell-cell interactions governing tissue organization. Conservation with increased expression is found in genes associated with cell cycle, DNA repair, p53 pathway, epigenetic modifiers, and glucose metabolism. No canonical driver gene pathways exhibit strong positive selection, but extensive down-regulation of membrane ion channels suggests decreased transmembrane potential may generate persistent proliferative signals. NCD LUADs perform niche construction generating a stiff, immunosuppressive microenvironment through selection of specific collagens and proteases. NCD LUADs evolve to a convergent phenotype through a network of interconnected genetic, epigenetic, and ecological pathways.
Collapse
Affiliation(s)
- Robert A Gatenby
- Department of Cancer Biology and Evolution, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL, 33612, USA.
| | - Kimberly A Luddy
- Department of Cancer Biology and Evolution, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL, 33612, USA
| | - Jamie K Teer
- Department of Cancer Biology and Evolution, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL, 33612, USA
- Department of Bioinformatics, Moffitt Cancer Center, Tampa, USA
| | - Anders Berglund
- Department of Cancer Biology and Evolution, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL, 33612, USA
- Department of Bioinformatics, Moffitt Cancer Center, Tampa, USA
| | | | - Ryan M Carr
- Department of Oncology, Mayo Clinic, Rochester, USA
| | | | - Kenneth J Pienta
- Cancer Ecology Program, Johns Hopkins University, Baltimore, USA
| | - Sarah R Amend
- Cancer Ecology Program, Johns Hopkins University, Baltimore, USA
| | | | - Emma U Hammarlund
- Division of Translational Cancer Research, Lund University, Lund, Sweden
| | - John L Cleveland
- Department of Cancer Biology and Evolution, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL, 33612, USA
| | - Kenneth Y Tsai
- Departments of Pathology and Tumor Biology, Moffitt Cancer Center, Tampa, USA
| | - Joel S Brown
- Department of Cancer Biology and Evolution, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL, 33612, USA
| |
Collapse
|
3
|
Liu D, An M, Wen G, Xing Y, Xia P. Both In Situ and Circulating SLC3A2 Could Be Used as Prognostic Markers for Human Lung Squamous Cell Carcinoma and Lung Adenocarcinoma. Cancers (Basel) 2022; 14:cancers14215191. [PMID: 36358610 PMCID: PMC9658420 DOI: 10.3390/cancers14215191] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 12/03/2022] Open
Abstract
Simple Summary With the continuous progress of diagnosis and treatment technology, the early diagnosis rate and survival rate of lung cancer have improved, but the incidence rate and mortality rate of lung cancer are still very high. Therefore, it has become an urgent problem to analyze the molecular mechanism of lung cancer and to determine the markers related to early diagnosis. SLC3A2 protein is a cell-surface marker that plays an important role in tumorigenesis and development, and it is expected to become a new target for the treatment of tumors. The in-depth study of SLC3A2 can provide a new molecular target for the early diagnosis, treatment, and prognosis of lung cancer. Abstract SLC3A2, the heavy chain of the CD98 protein, is highly expressed in many cancers, including lung cancer. It can regulate the proliferation and the metastasis of cancer cells via the integrin signaling pathway. Liquid biopsy is a novel method for tumor diagnosis. The diagnostic or prognostic roles of serum SLC3A2 in lung cancer are still not clear. In this study, we analyzed SLC3A2 mRNA levels in human lung squamous cell carcinoma (LUSC) and lung adenocarcinoma (LUAD) using the TCGA database and serum SLC3A2 protein levels using ELISA. We confirmed high SLC3A2 levels in both the serum and tissue of LUAD and LUSC patients. Both serum and tissue SLC3A2 could be used as prognostic markers for overall LUAD and subgroups of LUSC patients. SLC3A2 induced tumorigenesis via the MEK/ERK signaling pathway in LUAD and LUSC cells.
Collapse
Affiliation(s)
- Dahua Liu
- Biological Anthropology Institute, College of Basic Medical Science, Jinzhou Medical University, Jinzhou 121001, China
| | - Min An
- Department of Cardiology, Jinzhou Central Hospital, Jinzhou 121001, China
| | - Guimin Wen
- Department of Basic Nursing, College of Nursing, Jinzhou Medical University, Jinzhou 121001, China
| | - Yanan Xing
- Department of Surgical Oncology, First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Pu Xia
- Biological Anthropology Institute, College of Basic Medical Science, Jinzhou Medical University, Jinzhou 121001, China
- Correspondence:
| |
Collapse
|