1
|
Jardim Poli P, Fischer-Carvalho A, Tahira AC, Chan JD, Verjovski-Almeida S, Sena Amaral M. Long Non-Coding RNA Levels Are Modulated in Schistosoma mansoni following In Vivo Praziquantel Exposure. Noncoding RNA 2024; 10:27. [PMID: 38668385 PMCID: PMC11053911 DOI: 10.3390/ncrna10020027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/05/2024] [Accepted: 04/13/2024] [Indexed: 04/29/2024] Open
Abstract
Schistosomiasis is a disease caused by trematodes of the genus Schistosoma that affects over 200 million people worldwide. For decades, praziquantel (PZQ) has been the only available drug to treat the disease. Despite recent discoveries that identified a transient receptor ion channel as the target of PZQ, schistosome response to this drug remains incompletely understood, since effectiveness relies on other factors that may trigger a complex regulation of parasite gene expression. Long non-coding RNAs (lncRNAs) are transcripts longer than 200 nucleotides with low or no protein-coding potential that play important roles in S. mansoni homeostasis, reproduction, and fertility. Here, we show that in vivo PZQ treatment modulates lncRNA levels in S. mansoni. We re-analyzed public RNA-Seq data from mature and immature S. mansoni worms treated in vivo with PZQ and detected hundreds of lncRNAs differentially expressed following drug exposure, many of which are shared among mature and immature worms. Through RT-qPCR, seven out of ten selected lncRNAs were validated as differentially expressed; interestingly, we show that these lncRNAs are not adult worm stage-specific and are co-expressed with PZQ-modulated protein-coding genes. By demonstrating that parasite lncRNA expression levels alter in response to PZQ, this study unravels an important step toward elucidating the complex mechanisms of S. mansoni response to PZQ.
Collapse
Affiliation(s)
- Pedro Jardim Poli
- Laboratório de Ciclo Celular, Instituto Butantan, São Paulo 05503-900, SP, Brazil; (P.J.P.); (A.F.-C.); (A.C.T.); (S.V.-A.)
| | - Agatha Fischer-Carvalho
- Laboratório de Ciclo Celular, Instituto Butantan, São Paulo 05503-900, SP, Brazil; (P.J.P.); (A.F.-C.); (A.C.T.); (S.V.-A.)
| | - Ana Carolina Tahira
- Laboratório de Ciclo Celular, Instituto Butantan, São Paulo 05503-900, SP, Brazil; (P.J.P.); (A.F.-C.); (A.C.T.); (S.V.-A.)
| | - John D. Chan
- Global Health Institute, University of Wisconsin-Madison, Madison, WI 53792, USA;
| | - Sergio Verjovski-Almeida
- Laboratório de Ciclo Celular, Instituto Butantan, São Paulo 05503-900, SP, Brazil; (P.J.P.); (A.F.-C.); (A.C.T.); (S.V.-A.)
- Instituto de Química, Universidade de São Paulo, São Paulo 05508-900, SP, Brazil
| | - Murilo Sena Amaral
- Laboratório de Ciclo Celular, Instituto Butantan, São Paulo 05503-900, SP, Brazil; (P.J.P.); (A.F.-C.); (A.C.T.); (S.V.-A.)
| |
Collapse
|
2
|
Woellner-Santos D, Tahira AC, Malvezzi JVM, Mesel V, Morales-Vicente DA, Trentini MM, Marques-Neto LM, Matos IA, Kanno AI, Pereira ASA, Teixeira AAR, Giordano RJ, Leite LCC, Pereira CAB, DeMarco R, Amaral MS, Verjovski-Almeida S. Schistosoma mansoni vaccine candidates identified by unbiased phage display screening in self-cured rhesus macaques. NPJ Vaccines 2024; 9:5. [PMID: 38177171 PMCID: PMC10767053 DOI: 10.1038/s41541-023-00803-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/30/2023] [Indexed: 01/06/2024] Open
Abstract
Schistosomiasis, a challenging neglected tropical disease, affects millions of people worldwide. Developing a prophylactic vaccine against Schistosoma mansoni has been hindered by the parasite's biological complexity. In this study, we utilized the innovative phage-display immunoprecipitation followed by a sequencing approach (PhIP-Seq) to screen the immune response of 10 infected rhesus macaques during self-cure and challenge-resistant phases, identifying vaccine candidates. Our high-throughput S. mansoni synthetic DNA phage-display library encoded 99.6% of 119,747 58-mer peptides, providing comprehensive coverage of the parasite's proteome. Library screening with rhesus macaques' antibodies, from the early phase of establishment of parasite infection, identified significantly enriched epitopes of parasite extracellular proteins known to be expressed in the digestive tract, shifting towards intracellular proteins during the late phase of parasite clearance. Immunization of mice with a selected pool of PhIP-Seq-enriched phage-displayed peptides from MEG proteins, cathepsins B, and asparaginyl endopeptidase significantly reduced worm burden in a vaccination assay. These findings enhance our understanding of parasite-host immune responses and provide promising prospects for developing an effective schistosomiasis vaccine.
Collapse
Affiliation(s)
- Daisy Woellner-Santos
- Laboratório de Ciclo Celular, Instituto Butantan, São Paulo, SP, Brazil
- Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Ana C Tahira
- Laboratório de Ciclo Celular, Instituto Butantan, São Paulo, SP, Brazil
| | - João V M Malvezzi
- Laboratório de Ciclo Celular, Instituto Butantan, São Paulo, SP, Brazil
- Instituto de Matemática e Estatística, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Vinicius Mesel
- Laboratório de Ciclo Celular, Instituto Butantan, São Paulo, SP, Brazil
| | - David A Morales-Vicente
- Laboratório de Ciclo Celular, Instituto Butantan, São Paulo, SP, Brazil
- Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Monalisa M Trentini
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, SP, Brazil
| | - Lázaro M Marques-Neto
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, SP, Brazil
| | - Isaac A Matos
- Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Alex I Kanno
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, SP, Brazil
| | - Adriana S A Pereira
- Laboratório de Ciclo Celular, Instituto Butantan, São Paulo, SP, Brazil
- Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | - André A R Teixeira
- Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
- Institute for Protein Innovation, Boston, MA, USA
| | | | - Luciana C C Leite
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, SP, Brazil
| | - Carlos A B Pereira
- Instituto de Matemática e Estatística, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Ricardo DeMarco
- Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, SP, Brazil
| | - Murilo S Amaral
- Laboratório de Ciclo Celular, Instituto Butantan, São Paulo, SP, Brazil
| | - Sergio Verjovski-Almeida
- Laboratório de Ciclo Celular, Instituto Butantan, São Paulo, SP, Brazil.
- Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
3
|
Cheng S, You Y, Wang X, Yi C, Zhang W, Xie Y, Xiu L, Luo F, Lu Y, Wang J, Hu W. Dynamic profiles of lncRNAs reveal a functional natural antisense RNA that regulates the development of Schistosoma japonicum. PLoS Pathog 2024; 20:e1011949. [PMID: 38285715 PMCID: PMC10878521 DOI: 10.1371/journal.ppat.1011949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 02/20/2024] [Accepted: 01/06/2024] [Indexed: 01/31/2024] Open
Abstract
Schistosomes are flatworm parasites that undergo a complex life cycle involving two hosts. The regulation of the parasite's developmental processes relies on both coding RNAs and non-coding RNAs. However, the roles of non-coding RNAs, including long non-coding RNAs (lncRNAs) in schistosomes remain largely unexplored. Here we conduct advanced RNA sequencing on male and female S. japonicum during their pairing and reproductive development, resulting in the identification of nearly 8,000 lncRNAs. This extensive dataset enables us to construct a comprehensive co-expression network of lncRNAs and mRNAs, shedding light on their interactions during the crucial reproductive stages within the mammalian host. Importantly, we have also revealed a specific lncRNA, LNC3385, which appears to play a critical role in the survival and reproduction of the parasite. These findings not only enhance our understanding of the dynamic nature of lncRNAs during the reproductive phase of schistosomes but also highlight LNC3385 as a potential therapeutic target for combating schistosomiasis.
Collapse
Affiliation(s)
- Shaoyun Cheng
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Yanmin You
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Xiaoling Wang
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Cun Yi
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Wei Zhang
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Yuxiang Xie
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Lei Xiu
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Fang Luo
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Yan Lu
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Jipeng Wang
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Wei Hu
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai, China
- College of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia Autonomous Region, China
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
4
|
Silveira GO, Coelho HS, Pereira ASA, Miyasato PA, Santos DW, Maciel LF, Olberg GGG, Tahira AC, Nakano E, Oliveira MLS, Amaral MS, Verjovski-Almeida S. Long non-coding RNAs are essential for Schistosoma mansoni pairing-dependent adult worm homeostasis and fertility. PLoS Pathog 2023; 19:e1011369. [PMID: 37146077 DOI: 10.1371/journal.ppat.1011369] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 05/17/2023] [Accepted: 04/18/2023] [Indexed: 05/07/2023] Open
Abstract
The trematode parasite Schistosoma mansoni causes schistosomiasis, which affects over 200 million people worldwide. Schistosomes are dioecious, with egg laying depending on the females' obligatory pairing with males. Long non-coding RNAs (lncRNAs) are transcripts longer than 200 nucleotides with low or no protein-coding potential that have been involved in other species with reproduction, stem cell maintenance, and drug resistance. In S. mansoni, we recently showed that the knockdown of one lncRNA affects the pairing status of these parasites. Here, we re-analyzed public RNA-Seq data from paired and unpaired adult male and female worms and their gonads, obtained from mixed-sex or single-sex cercariae infections, and found thousands of differentially expressed pairing-dependent lncRNAs among the 23 biological samples that were compared. The expression levels of selected lncRNAs were validated by RT-qPCR using an in vitro unpairing model. In addition, the in vitro silencing of three selected lncRNAs showed that knockdown of these pairing-dependent lncRNAs reduced cell proliferation in adult worms and their gonads, and are essential for female vitellaria maintenance, reproduction, and/or egg development. Remarkably, in vivo silencing of each of the three selected lncRNAs significantly reduced worm burden in infected mice by 26 to 35%. Whole mount in situ hybridization experiments showed that these pairing-dependent lncRNAs are expressed in reproductive tissues. These results show that lncRNAs are key components intervening in S. mansoni adult worm homeostasis, which affects pairing status and survival in the mammalian host, thus presenting great potential as new therapeutic target candidates.
Collapse
Affiliation(s)
- Gilbert O Silveira
- Laboratório de Ciclo Celular, Instituto Butantan, São Paulo, São Paulo, Brazil
- Instituto de Química, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Helena S Coelho
- Laboratório de Ciclo Celular, Instituto Butantan, São Paulo, São Paulo, Brazil
| | - Adriana S A Pereira
- Laboratório de Ciclo Celular, Instituto Butantan, São Paulo, São Paulo, Brazil
- Instituto de Química, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Patrícia A Miyasato
- Laboratório de Parasitologia, Instituto Butantan, São Paulo, São Paulo, Brazil
| | - Daisy W Santos
- Laboratório de Ciclo Celular, Instituto Butantan, São Paulo, São Paulo, Brazil
- Instituto de Química, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Lucas F Maciel
- Laboratório de Ciclo Celular, Instituto Butantan, São Paulo, São Paulo, Brazil
| | - Giovanna G G Olberg
- Laboratório de Ciclo Celular, Instituto Butantan, São Paulo, São Paulo, Brazil
| | - Ana C Tahira
- Laboratório de Ciclo Celular, Instituto Butantan, São Paulo, São Paulo, Brazil
| | - Eliana Nakano
- Laboratório de Parasitologia, Instituto Butantan, São Paulo, São Paulo, Brazil
| | | | - Murilo S Amaral
- Laboratório de Ciclo Celular, Instituto Butantan, São Paulo, São Paulo, Brazil
| | - Sergio Verjovski-Almeida
- Laboratório de Ciclo Celular, Instituto Butantan, São Paulo, São Paulo, Brazil
- Instituto de Química, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| |
Collapse
|