1
|
Cao J, Yang Z. FOXA2 inhibits the TLR4/NF-κB signaling pathway and alleviates inflammatory activation of macrophages in rheumatoid arthritis by repressing LY96 transcription. Cytokine 2024; 184:156796. [PMID: 39486110 DOI: 10.1016/j.cyto.2024.156796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/21/2024] [Accepted: 10/24/2024] [Indexed: 11/04/2024]
Abstract
BACKGROUND Rheumatoid arthritis (RA) remains a devastating autoimmune disease characterized by joint damage, inflammation, and disability. This study investigates the function of lymphocyte antigen 96 (LY96) in the inflammatory response in RA and explores its regulatory mechanism. METHODS A mouse model of RA was developed using type II collagen, and the LY96 expression in the ankle joint tissue was determined. Upstream regulators targeting LY96 were investigated using bioinformatics, followed by chromatin immunoprecipitation and luciferase reporter assays for validation. Gain- or loss-of-functions of LY96 and forkhead box A2 (FOXA2) were performed to analyze their roles in arthritis score, pathological changes, and inflammatory responses in mice. The effects of FOXA2 and LY96 on pro-inflammatory activation of macrophages were additionally investigated in vitro using a mouse RAW264.7 macrophage model with lipopolysaccharide treatment. RESULTS LY96 mRNA and protein (MD-2) levels were increased in the RA mice. Knockdown of LY96 alleviated arthritis severity, joint deformities, inflammation, and cartilage destruction in mice. In vitro, the LY96 knockdown reduced the pro-inflammatory activation of RAW264.7 macrophages by inhibiting the TLR4/NF-κB inflammatory signaling transduction. FOXA2 was identified as a transcriptional repressor of LP96 poorly expressed in RA. Overexpression of FOXA2 similarly alleviated inflammation and reduced M1-type macrophages in vivo and in vitro. However, these changes were reversed by the additional LY96 upregulation. CONCLUSION This study suggests that FOXA2 represses LY96 transcription to inhibit the TLR4/NF-κB signaling transduction, thus reducing pro-inflammatory activation of macrophages in the context of RA.
Collapse
Affiliation(s)
- Jin Cao
- Department of Rheumatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, PR China
| | - Zhaowen Yang
- Department of Rheumatology, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, Shandong, PR China.
| |
Collapse
|
2
|
Wang C, He J, Chen C, Luo W, Dang X, Mao L. A potential role of human esophageal cancer-related gene-4 in cardiovascular homeostasis. Gene 2024; 894:147977. [PMID: 37956966 DOI: 10.1016/j.gene.2023.147977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/10/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023]
Abstract
Human esophageal cancer related gene-4 (ECRG-4) encodes a 148-aminoacid pre-pro-peptide that can be processed tissue-dependently into multiple small peptides possessing multiple functions distinct from, similar to, or opposite to the tumor suppressor function of the full-length Ecrg4. Ecrg-4 is covalently bound to the cell surface through its signal peptide, colocalized with the innate immunity complex (TLR4-CD14-MD2), and functions as a 'sentinel' molecule in the maintenance of epithelium and leukocyte homeostasis, meaning that the presence of Ecrg-4 on the cell surface signals the maintained homeostasis, whereas the loss of Ecrg-4 due to tissue injury activates pro-inflammatory and tissue proliferative responses, and the level of Ecrg-4 gradually returns to its pre-injury level upon wound healing. Interestingly, Ecrg-4 is also highly expressed in the heart and its conduction system, endothelial cells, and vascular smooth muscle cells. Accumulating evidence has shown that Ecrg-4 is involved in cardiac rate/rhythm control, the development of atrial fibrillation, doxorubicin-induced cardiotoxicity, the ischemic response of the heart and hypoxic response in the carotid body, the pathogenesis of atherosclerosis, and likely the endemic incidence of idiopathic dilated cardiomyopathy. These preliminary discoveries suggest that Ecrg-4 may function as a 'sentinel' molecule in cardiovascular system as well. Here, we briefly review the basic characteristics of ECRG-4 as a tumor suppressor gene and its regulatory functions on inflammation and apoptosis; summarize the discoveries about its distribution in cardiovascular system and involvement in the development of CVDs, and discuss its potential as a novel therapeutic target for the maintenance of cardiovascular system homeostasis.
Collapse
Affiliation(s)
- Chaoying Wang
- The Key Laboratory of Medical Electrophysiology of Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, China
| | - Jianghui He
- The Key Laboratory of Medical Electrophysiology of Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, China
| | - Chunyue Chen
- The Key Laboratory of Medical Electrophysiology of Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, China
| | - Wenjun Luo
- The Key Laboratory of Medical Electrophysiology of Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, China
| | - Xitong Dang
- The Key Laboratory of Medical Electrophysiology of Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, China.
| | - Liang Mao
- The Key Laboratory of Medical Electrophysiology of Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, China; Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China.
| |
Collapse
|
3
|
Kurabi A, Dewan K, Kerschner JE, Leichtle A, Li JD, Santa Maria PL, Preciado D. PANEL 3: Otitis media animal models, cell culture, tissue regeneration & pathophysiology. Int J Pediatr Otorhinolaryngol 2024; 176:111814. [PMID: 38101097 DOI: 10.1016/j.ijporl.2023.111814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/13/2023] [Accepted: 11/29/2023] [Indexed: 12/17/2023]
Abstract
OBJECTIVE To review and summarize recently published key articles on the topics of animal models, cell culture studies, tissue biomedical engineering and regeneration, and new models in relation to otitis media (OM). DATA SOURCE Electronic databases: PubMed, National Library of Medicine, Ovid Medline. REVIEW METHODS Key topics were assigned to the panel participants for identification and detailed evaluation. The PubMed reviews were focused on the period from June 2019 to June 2023, in any of the objective subject(s) or keywords listed above, noting the relevant references relating to these advances with a global overview and noting areas of recommendation(s). The final manuscript was prepared with input from all panel members. CONCLUSIONS In conclusion, ex vivo and in vivo OM research models have seen great advancements in the past 4 years. From the usage of novel genetic and molecular tools to the refinement of in vivo inducible and spontaneous mouse models, to the introduction of a wide array of reliable middle ear epithelium (MEE) cell culture systems, the next five years are likely to experience exponential growth in OM pathophysiology discoveries. Moreover, advances in these systems will predictably facilitate rapid means for novel molecular therapeutic studies.
Collapse
Affiliation(s)
- Arwa Kurabi
- Department of Otolaryngology, University of California San Diego, School of Medicine, La Jolla, CA, USA.
| | - Kalyan Dewan
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Joseph E Kerschner
- Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Anke Leichtle
- Department of Otorhinolaryngology, University of Luebeck, Luebeck, Germany
| | - Jian-Dong Li
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Peter Luke Santa Maria
- Department of Otolaryngology - Head & Neck Surgery, Stanford University, Stanford, CA, USA
| | - Diego Preciado
- Children's National Hospital, Division of Pediatric Otolaryngology, Washington, DC, USA
| |
Collapse
|
4
|
Nokso-Koivisto J, Ehrlich GD, Enoksson F, Komatsu K, Mason K, Melhus Å, Patel JA, Vijayasekaran S, Ryan A. Otitis media: Interactions between host and environment, immune and inflammatory responses. Int J Pediatr Otorhinolaryngol 2024; 176:111798. [PMID: 38041988 DOI: 10.1016/j.ijporl.2023.111798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/12/2023] [Accepted: 11/19/2023] [Indexed: 12/04/2023]
Abstract
OBJECTIVE To review and highlight progress in otitis media (OM) research in the areas of immunology, inflammation, environmental influences and host-pathogen responses from 2019 to 2023. Opportunities for innovative future research were also identified. DATA SOURCES PubMed database of the National Library of Medicine. REVIEW METHODS Key topics were assigned to each panel member for detailed review. Search of the literature was from June 2019 until February 2023. Draft reviews were collated, circulated, and discussed among panel members at the 22nd International Symposium on Recent Advances in Otitis Media in June 2023. The final manuscript was prepared and approved by all the panel members. CONCLUSIONS Important advances were identified in: environmental influences that enhance OM susceptibility; polymicrobial middle ear (ME) infections; the role of adaptive immunity defects in otitis-proneness; additional genes linked to OM; leukocyte contributions to OM pathogenesis and recovery; and novel interventions in OM based on host responses to infection. Innovative areas of research included: identification of novel bacterial genes and pathways important for OM persistence, bacterial adaptations and evolution that enhance chronicity; animal and human ME gene expression, including at the single-cell level; and Sars-CoV-2 infection of the ME and Eustachian tube.
Collapse
Affiliation(s)
- Johanna Nokso-Koivisto
- Department of Otorhinolaryngology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland.
| | - Garth D Ehrlich
- Department of Microbiology and Immunology and Department of Otolaryngology - Head and Neck Surgery, Drexel University College of Medicine, Philadelphia, PA, USA
| | | | - Kensei Komatsu
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Kevin Mason
- The Research Institute at Nationwide Children's Hospital, Infectious Diseases Institute, The Ohio State University School of Medicine, Columbus, OH, USA
| | - Åsa Melhus
- Department of Medical Sciences, Section of Clinical Bacteriology, Uppsala University, Uppsala, Sweden
| | - Janak A Patel
- Department of Infection Control & Healthcare Epidemiology and Division of Pediatric Infectious Diseases, Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, USA
| | - Shiyan Vijayasekaran
- Perth ENT Centre, Perth Children's Hospital, University of Western Australia, Perth, Australia
| | - Allen Ryan
- Department of Surgery, Division of Otolaryngology, University of California San Diego, San Diego, CA, USA
| |
Collapse
|