1
|
Huang M, Wang X, Botchway BOA, Zhang Y, Liu X. The role of long noncoding ribonucleic acids in the central nervous system injury. Mol Cell Biochem 2024; 479:2581-2595. [PMID: 37898578 DOI: 10.1007/s11010-023-04875-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 10/05/2023] [Indexed: 10/30/2023]
Abstract
Central nervous system (CNS) injury involves complex pathophysiological molecular mechanisms. Long noncoding ribonucleic acids (lncRNAs) are an important form of RNA that do not encode proteins but take part in the regulation of gene expression and various biological processes. Multitudinous studies have evidenced lncRNAs to have a significant role in the process of progression and recovery of various CNS injuries. Herein, we review the latest findings pertaining to the role of lncRNAs in CNS, both normal and diseased state. We aim to present a comprehensive clinical application prospect of lncRNAs in CNS, and thus, discuss potential strategies of lncRNAs in treating CNS injury.
Collapse
Affiliation(s)
- Min Huang
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Shaoxing City, 312000, China
| | - Xizhi Wang
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Shaoxing City, 312000, China
- Department of Cardiology, Lihuili Hospital Affiliated to Ningbo University, Ningbo City, China
| | | | - Yong Zhang
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Shaoxing City, 312000, China
| | - Xuehong Liu
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Shaoxing City, 312000, China.
| |
Collapse
|
2
|
Khalil M, Desouky EM, Khaliefa AK, Hozyen WG, Mohamed SS, Hasona NA. Insights into the Crosstalk Between miR-200a/lncRNA H-19 and IL-6/SIRT-1 Axis in Breast Cancer. J Interferon Cytokine Res 2024; 44:191-197. [PMID: 38466957 DOI: 10.1089/jir.2023.0216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024] Open
Abstract
Breast cancer (BC) is a highly prevalent malignancy that poses a significant threat to women's well-being. Novel biomarker identification helps to improve clinical outcomes and provide tailored treatments. Our research aims to explore the diagnostic potential of miR-200a/lncRNA H-19 and interleukin-6 (IL-6)/SIRT-1 axis crosstalk and evaluate the impact of metastasis on gene expression, which provides valuable insights into the diagnosis and treatment of BC. In this case-control study, we collected blood samples from 54 nonmetastatic breast cancer (NMBC) patients, 46 metastatic breast cancer (MBC) patients, and 50 healthy individuals. We used real time-polymerase chain reaction to measure the expression levels of lncRNA H-19 and miR-200a, whereas enzyme linked immunosorbent assay was used to determine the IL-6 levels. In addition, we evaluated SIRT-1 expression level using a Western blot assay. The levels of lncRNA H-19, miR-200a, and IL-6 were higher in BC patients, whereas SIRT-1 levels were lower. Patients with MBC had higher levels of lncRNA H-19, miR-200a, and IL-6 than those with NMBC. In addition, the expression of lncRNA H-19 and miR-200a showed a negative correlation with SIRT-1 expression, whereas the levels of lncRNA H-19 and miR-200a showed a positive correlation with IL-6 expression level. The diagnostic potential of lncRNA H-19 and miR-200a in BC is undeniable. Moreover, the robust association of IL-6/SIRT-1 with lncRNA H-19/miR-200a expression presents a promising opportunity for clinical outcomes and tailored treatments.
Collapse
Affiliation(s)
- Mera Khalil
- Department of Biochemistry, Faculty of Science, Beni-Suef University, Beni Suef, Egypt
| | - Ekram M Desouky
- Department of Biochemistry, Faculty of Science, Beni-Suef University, Beni Suef, Egypt
| | - Amal K Khaliefa
- Department of Biochemistry, Faculty of Science, Beni-Suef University, Beni Suef, Egypt
| | - Walaa G Hozyen
- Department of Biochemistry, Faculty of Science, Beni-Suef University, Beni Suef, Egypt
| | - Saeed S Mohamed
- Department of Oncology, Faculty of Medicine, Beni-Suef University, Beni Suef, Egypt
| | - Nabil A Hasona
- Department of Biochemistry, Faculty of Science, Beni-Suef University, Beni Suef, Egypt
- Department of Biochemistry, Faculty of Science, Beni Suef National University, Beni Suef, Egypt
| |
Collapse
|
3
|
Neagu AN, Whitham D, Bruno P, Morrissiey H, Darie CA, Darie CC. Omics-Based Investigations of Breast Cancer. Molecules 2023; 28:4768. [PMID: 37375323 DOI: 10.3390/molecules28124768] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/08/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Breast cancer (BC) is characterized by an extensive genotypic and phenotypic heterogeneity. In-depth investigations into the molecular bases of BC phenotypes, carcinogenesis, progression, and metastasis are necessary for accurate diagnoses, prognoses, and therapy assessments in predictive, precision, and personalized oncology. This review discusses both classic as well as several novel omics fields that are involved or should be used in modern BC investigations, which may be integrated as a holistic term, onco-breastomics. Rapid and recent advances in molecular profiling strategies and analytical techniques based on high-throughput sequencing and mass spectrometry (MS) development have generated large-scale multi-omics datasets, mainly emerging from the three "big omics", based on the central dogma of molecular biology: genomics, transcriptomics, and proteomics. Metabolomics-based approaches also reflect the dynamic response of BC cells to genetic modifications. Interactomics promotes a holistic view in BC research by constructing and characterizing protein-protein interaction (PPI) networks that provide a novel hypothesis for the pathophysiological processes involved in BC progression and subtyping. The emergence of new omics- and epiomics-based multidimensional approaches provide opportunities to gain insights into BC heterogeneity and its underlying mechanisms. The three main epiomics fields (epigenomics, epitranscriptomics, and epiproteomics) are focused on the epigenetic DNA changes, RNAs modifications, and posttranslational modifications (PTMs) affecting protein functions for an in-depth understanding of cancer cell proliferation, migration, and invasion. Novel omics fields, such as epichaperomics or epimetabolomics, could investigate the modifications in the interactome induced by stressors and provide PPI changes, as well as in metabolites, as drivers of BC-causing phenotypes. Over the last years, several proteomics-derived omics, such as matrisomics, exosomics, secretomics, kinomics, phosphoproteomics, or immunomics, provided valuable data for a deep understanding of dysregulated pathways in BC cells and their tumor microenvironment (TME) or tumor immune microenvironment (TIMW). Most of these omics datasets are still assessed individually using distinct approches and do not generate the desired and expected global-integrative knowledge with applications in clinical diagnostics. However, several hyphenated omics approaches, such as proteo-genomics, proteo-transcriptomics, and phosphoproteomics-exosomics are useful for the identification of putative BC biomarkers and therapeutic targets. To develop non-invasive diagnostic tests and to discover new biomarkers for BC, classic and novel omics-based strategies allow for significant advances in blood/plasma-based omics. Salivaomics, urinomics, and milkomics appear as integrative omics that may develop a high potential for early and non-invasive diagnoses in BC. Thus, the analysis of the tumor circulome is considered a novel frontier in liquid biopsy. Omics-based investigations have applications in BC modeling, as well as accurate BC classification and subtype characterization. The future in omics-based investigations of BC may be also focused on multi-omics single-cell analyses.
Collapse
Affiliation(s)
- Anca-Narcisa Neagu
- Laboratory of Animal Histology, Faculty of Biology, "Alexandru Ioan Cuza" University of Iasi, Carol I Bvd, No. 20A, 700505 Iasi, Romania
| | - Danielle Whitham
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA
| | - Pathea Bruno
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA
| | - Hailey Morrissiey
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA
| | - Celeste A Darie
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA
| | - Costel C Darie
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA
| |
Collapse
|