1
|
McHugo GP, Ward JA, Ng'ang'a SI, Frantz LAF, Salter-Townshend M, Hill EW, O'Gorman GM, Meade KG, Hall TJ, MacHugh DE. Genome-wide local ancestry and the functional consequences of admixture in African and European cattle populations. Heredity (Edinb) 2024:10.1038/s41437-024-00734-w. [PMID: 39516247 DOI: 10.1038/s41437-024-00734-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 10/26/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024] Open
Abstract
Bos taurus (taurine) and Bos indicus (indicine) cattle diverged at least 150,000 years ago and, since that time, substantial genomic differences have evolved between the two lineages. During the last two millennia, genetic exchange in Africa has resulted in a complex tapestry of taurine-indicine ancestry, with most cattle populations exhibiting varying levels of admixture. Similarly, there are several Southern European cattle populations that also show evidence for historical gene flow from indicine cattle, the highest levels of which are found in the Central Italian White breeds. Here we use two different software tools (MOSAIC and ELAI) for local ancestry inference (LAI) with genome-wide high- and low-density SNP array data sets in hybrid African and residually admixed Southern European cattle populations and obtained broadly similar results despite critical differences in the two LAI methodologies used. Our analyses identified genomic regions with elevated levels of retained or introgressed ancestry from the African taurine, European taurine, and Asian indicine lineages. Functional enrichment of genes underlying these ancestry peaks highlighted biological processes relating to immunobiology and olfaction, some of which may relate to differing susceptibilities to infectious diseases, including bovine tuberculosis, East Coast fever, and tropical theileriosis. Notably, for retained African taurine ancestry in admixed trypanotolerant cattle we observed enrichment of genes associated with haemoglobin and oxygen transport. This may reflect positive selection of genomic variants that enhance control of severe anaemia, a debilitating feature of trypanosomiasis disease, which severely constrains cattle agriculture across much of sub-Saharan Africa.
Collapse
Affiliation(s)
- Gillian P McHugo
- UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, D04 V1W8, Ireland
| | - James A Ward
- UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, D04 V1W8, Ireland
| | - Said Ismael Ng'ang'a
- Palaeogenomics Group, Department of Veterinary Sciences, Ludwig Maximilian University, 80539, Munich, Germany
- School of Biological and Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK
| | - Laurent A F Frantz
- Palaeogenomics Group, Department of Veterinary Sciences, Ludwig Maximilian University, 80539, Munich, Germany
- School of Biological and Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK
| | | | - Emmeline W Hill
- UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, D04 V1W8, Ireland
| | - Grace M O'Gorman
- UK Agri-Tech Centre, Innovation Centre, York Science Park, York, YO10 5DG, UK
| | - Kieran G Meade
- UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, D04 V1W8, Ireland
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, D04 V1W8, Ireland
- UCD One Health Centre, University College Dublin, Dublin, D04 V1W8, Ireland
| | - Thomas J Hall
- UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, D04 V1W8, Ireland
| | - David E MacHugh
- UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, D04 V1W8, Ireland.
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, D04 V1W8, Ireland.
- UCD One Health Centre, University College Dublin, Dublin, D04 V1W8, Ireland.
| |
Collapse
|
2
|
MacPhillamy C, Ren Y, Chen T, Hiendleder S, Low WY. MicroRNA breed and parent-of-origin effects provide insights into biological pathways differentiating cattle subspecies in fetal liver. Front Genet 2023; 14:1329939. [PMID: 38162682 PMCID: PMC10757722 DOI: 10.3389/fgene.2023.1329939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/01/2023] [Indexed: 01/03/2024] Open
Abstract
Introduction: MicroRNAs (miRNAs) play a crucial role in regulating gene expression during key developmental processes, including fetal development. Brahman (Bos taurus indicus) and Angus (Bos taurus taurus) cattle breeds represent two major cattle subspecies with strikingly different phenotypes. Methods: We analyzed miRNA expression in liver samples of purebred and reciprocal crosses of Angus and Brahman to investigate breed and parent-of-origin effects at the onset of accelerated fetal growth. Results: We identified eight novel miRNAs in fetal liver samples and 14 differentially expressed miRNAs (DEMs) between purebred samples. Correlation of gene expression modules and miRNAs by breed and parent-of-origin effects revealed an enrichment of genes associated with breed-specific differences in traits such as heat tolerance (Brahman) and fat deposition (Angus). We demonstrate that genes predicted to be targets of DEMs were more likely to be differentially expressed than non-targets (p-value < 0.05). We identified several miRNAs (bta-miR-187, bta-miR-216b, bta-miR-2284c, bta-miR-2285c, bta-miR-2285cp, bta-miR-2419-3p, bta-miR-2419-5p, and bta-miR-11984) that showed similar correlation patterns as bta-miR-2355-3p, which has been associated with the glutamatergic synapse pathway, a key facilitator of heat tolerance. Furthermore, we report Angus-breed-specific miRNAs (bta-miR-2313-5p, btamiR-490, bta-miR-2316, and bta-miR-11990) that may be involved in fat deposition. Finally, we showed that the DEMs identified in fetal liver are involved in Rap1, MAPK, and Ras signalling pathways, which are important for fetal development, muscle development and metabolic traits such as fat metabolism. Conclusion: Our work sheds light on the miRNA expression patterns that contribute to gene expression differences driving phenotypic differences in indicine and taurine cattle.
Collapse
Affiliation(s)
- Callum MacPhillamy
- The Davies Research Centre, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, SA, Australia
| | - Yan Ren
- The Davies Research Centre, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, SA, Australia
| | - Tong Chen
- The Davies Research Centre, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, SA, Australia
| | - Stefan Hiendleder
- The Davies Research Centre, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, SA, Australia
- Robinson Research Institute, The University of Adelaide, North Adelaide, SA, Australia
| | - Wai Yee Low
- The Davies Research Centre, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, SA, Australia
| |
Collapse
|
3
|
Ye XW, Gu JM, Cao CY, Zhang ZY, Cheng H, Chen Z, Fang XM, Zhang Z, Wang QS, Pan YC, Wang Z. The jigsaw puzzle of pedigree: whole-genome resequencing reveals genetic diversity and ancestral lineage in Sunong black pigs. Animal 2023; 17:101014. [PMID: 37952495 DOI: 10.1016/j.animal.2023.101014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/07/2023] [Accepted: 10/09/2023] [Indexed: 11/14/2023] Open
Abstract
The Sunong black pig is a new composite breed under development generated from Chinese indigenous pig breeds (i.e., Taihu and Huai) and intensive pig breeds (i.e., Landrace and Berkshire), which is an important genetic material for studying breeding mechanisms. However, there is currently limited knowledge about the genetic structure and germplasm characteristics of Sunong black pigs. To comprehensively understand their genetic composition and ancestry proportions, we performed population structure and local ancestry inference analysis based on whole-genome sequencing information. The results showed that Sunong black pigs could be clustered independently into a group, whose pedigree was intermediate between indigenous and commercial pig breeds, but closer to commercial pigs. Furthermore, local ancestry inference analysis revealed that Sunong black pigs inherited immune and reproductive traits from indigenous pig breeds, including CC and CXC chemokine family, Toll-like receptor family, IFN gene family, ESR1, AREG and EREG gene, while growth and development-related traits were inherited from commercial pig breeds, including IGF1 and GSY2 gene. Overall, Sunong black pigs have formed a relatively stable genome structure with some advantageous traits inherited from their ancestral breeds. This study deepened the understanding of the breeding mechanism of Sunong black pigs and provided a reference for cross-breeding programmes in livestock.
Collapse
Affiliation(s)
- X W Ye
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Rd, Hangzhou 310058, China
| | - J M Gu
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Rd, Hangzhou 310058, China
| | - C Y Cao
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Rd, Hangzhou 310058, China
| | - Z Y Zhang
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Rd, Hangzhou 310058, China
| | - H Cheng
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Rd, Hangzhou 310058, China
| | - Z Chen
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Str, Nanjing 210014, China
| | - X M Fang
- Institute of Agricultural Product Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Str, Nanjing 210014, China
| | - Z Zhang
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Rd, Hangzhou 310058, China
| | - Q S Wang
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Rd, Hangzhou 310058, China
| | - Y C Pan
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Rd, Hangzhou 310058, China
| | - Z Wang
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Rd, Hangzhou 310058, China.
| |
Collapse
|