1
|
Valero AM, Prins RC, de Vroet T, Billerbeck S. Combining Oligo Pools and Golden Gate Cloning to Create Protein Variant Libraries or Guide RNA Libraries for CRISPR Applications. Methods Mol Biol 2025; 2850:265-295. [PMID: 39363077 DOI: 10.1007/978-1-0716-4220-7_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Oligo pools are array-synthesized, user-defined mixtures of single-stranded oligonucleotides that can be used as a source of synthetic DNA for library cloning. While currently offering the most affordable source of synthetic DNA, oligo pools also come with limitations such as a maximum synthesis length (approximately 350 bases), a higher error rate compared to alternative synthesis methods, and the presence of truncated molecules in the pool due to incomplete synthesis. Here, we provide users with a comprehensive protocol that details how oligo pools can be used in combination with Golden Gate cloning to create user-defined protein mutant libraries, as well as single-guide RNA libraries for CRISPR applications. Our methods are optimized to work within the Yeast Toolkit Golden Gate scheme, but are in principle compatible with any other Golden Gate-based modular cloning toolkit and extendable to other restriction enzyme-based cloning methods beyond Golden Gate. Our methods yield high-quality, affordable, in-house variant libraries.
Collapse
Affiliation(s)
- Alicia Maciá Valero
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Rianne C Prins
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Thijs de Vroet
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Sonja Billerbeck
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
2
|
Shum MHH, Lee Y, Tam L, Xia H, Chung OLW, Guo Z, Lam TTY. Binding affinity between coronavirus spike protein and human ACE2 receptor. Comput Struct Biotechnol J 2024; 23:759-770. [PMID: 38304547 PMCID: PMC10831124 DOI: 10.1016/j.csbj.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/14/2024] [Accepted: 01/15/2024] [Indexed: 02/03/2024] Open
Abstract
Coronaviruses (CoVs) pose a major risk to global public health due to their ability to infect diverse animal species and potential for emergence in humans. The CoV spike protein mediates viral entry into the cell and plays a crucial role in determining the binding affinity to host cell receptors. With particular emphasis on α- and β-coronaviruses that infect humans and domestic animals, current research on CoV receptor use suggests that the exploitation of the angiotensin-converting enzyme 2 (ACE2) receptor poses a significant threat for viral emergence with pandemic potential. This review summarizes the approaches used to study binding interactions between CoV spike proteins and the human ACE2 (hACE2) receptor. Solid-phase enzyme immunoassays and cell binding assays allow qualitative assessment of binding but lack quantitative evaluation of affinity. Surface plasmon resonance, Bio-layer interferometry, and Microscale Thermophoresis on the other hand, provide accurate affinity measurement through equilibrium dissociation constants (KD). In silico modeling predicts affinity through binding structure modeling, protein-protein docking simulations, and binding energy calculations but reveals inconsistent results due to the lack of a standardized approach. Machine learning and deep learning models utilize simulated and experimental protein-protein interaction data to elucidate the critical residues associated with CoV binding affinity to hACE2. Further optimization and standardization of existing approaches for studying binding affinity could aid pandemic preparedness. Specifically, prioritizing surveillance of CoVs that can bind to human receptors stands to mitigate the risk of zoonotic spillover.
Collapse
Affiliation(s)
- Marcus Ho-Hin Shum
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China
- School of Public Health, The University of Hong Kong, Hong Kong, China
- Laboratory of Data Discovery for Health (D24H), Hong Kong Science Park, Hong Kong, China
| | - Yang Lee
- School of Public Health, The University of Hong Kong, Hong Kong, China
- Centre for Immunology and Infection (C2i), Hong Kong Science Park, Hong Kong, China
| | - Leighton Tam
- School of Public Health, The University of Hong Kong, Hong Kong, China
- Laboratory of Data Discovery for Health (D24H), Hong Kong Science Park, Hong Kong, China
| | - Hui Xia
- Department of Chemistry, South University of Science and Technology of China, China
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Oscar Lung-Wa Chung
- Department of Chemistry, South University of Science and Technology of China, China
| | - Zhihong Guo
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Tommy Tsan-Yuk Lam
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China
- School of Public Health, The University of Hong Kong, Hong Kong, China
- Laboratory of Data Discovery for Health (D24H), Hong Kong Science Park, Hong Kong, China
- Centre for Immunology and Infection (C2i), Hong Kong Science Park, Hong Kong, China
| |
Collapse
|
3
|
Kavanaugh LG, Dey D, Shafer WM, Conn GL. Structural and functional diversity of Resistance-Nodulation-Division (RND) efflux pump transporters with implications for antimicrobial resistance. Microbiol Mol Biol Rev 2024; 88:e0008923. [PMID: 39235227 PMCID: PMC11426026 DOI: 10.1128/mmbr.00089-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024] Open
Abstract
SUMMARYThe discovery of bacterial efflux pumps significantly advanced our understanding of how bacteria can resist cytotoxic compounds that they encounter. Within the structurally and functionally distinct families of efflux pumps, those of the Resistance-Nodulation-Division (RND) superfamily are noteworthy for their ability to reduce the intracellular concentration of structurally diverse antimicrobials. RND systems are possessed by many Gram-negative bacteria, including those causing serious human disease, and frequently contribute to resistance to multiple antibiotics. Herein, we review the current literature on the structure-function relationships of representative transporter proteins of tripartite RND efflux pumps of clinically important pathogens. We emphasize their contribution to bacterial resistance to clinically used antibiotics, host defense antimicrobials and other biocides, as well as highlighting structural similarities and differences among efflux transporters that help bacteria survive in the face of antimicrobials. Furthermore, we discuss technical advances that have facilitated and advanced efflux pump research and suggest future areas of investigation that will advance antimicrobial development efforts.
Collapse
Affiliation(s)
- Logan G Kavanaugh
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
- Graduate Program in Microbiology and Molecular Genetics, Emory University, Atlanta, Georgia, USA
| | - Debayan Dey
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
| | - William M Shafer
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
- Laboratories of Microbial Pathogenesis, VA Medical Research Service, Veterans Affairs Medical Center, Decatur, Georgia, USA
- Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Graeme L Conn
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
4
|
Valbuena R, Nigam A, Tycko J, Suzuki P, Spees K, Aradhana, Arana S, Du P, Patel RA, Bintu L, Kundaje A, Bassik MC. Prediction and design of transcriptional repressor domains with large-scale mutational scans and deep learning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.21.614253. [PMID: 39386603 PMCID: PMC11463546 DOI: 10.1101/2024.09.21.614253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Regulatory proteins have evolved diverse repressor domains (RDs) to enable precise context-specific repression of transcription. However, our understanding of how sequence variation impacts the functional activity of RDs is limited. To address this gap, we generated a high-throughput mutational scanning dataset measuring the repressor activity of 115,000 variant sequences spanning more than 50 RDs in human cells. We identified thousands of clinical variants with loss or gain of repressor function, including TWIST1 HLH variants associated with Saethre-Chotzen syndrome and MECP2 domain variants associated with Rett syndrome. We also leveraged these data to annotate short linear interacting motifs (SLiMs) that are critical for repression in disordered RDs. Then, we designed a deep learning model called TENet ( T ranscriptional E ffector Net work) that integrates sequence, structure and biochemical representations of sequence variants to accurately predict repressor activity. We systematically tested generalization within and across domains with varying homology using the mutational scanning dataset. Finally, we employed TENet within a directed evolution sequence editing framework to tune the activity of both structured and disordered RDs and experimentally test thousands of designs. Our work highlights critical considerations for future dataset design and model training strategies to improve functional variant prioritization and precision design of synthetic regulatory proteins.
Collapse
|
5
|
Ma K, Huang S, Ng KK, Lake NJ, Joseph S, Xu J, Lek A, Ge L, Woodman KG, Koczwara KE, Cohen J, Ho V, O'Connor CL, Brindley MA, Campbell KP, Lek M. Saturation mutagenesis-reinforced functional assays for disease-related genes. Cell 2024:S0092-8674(24)00976-0. [PMID: 39326416 DOI: 10.1016/j.cell.2024.08.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 07/29/2024] [Accepted: 08/23/2024] [Indexed: 09/28/2024]
Abstract
Interpretation of disease-causing genetic variants remains a challenge in human genetics. Current costs and complexity of deep mutational scanning methods are obstacles for achieving genome-wide resolution of variants in disease-related genes. Our framework, saturation mutagenesis-reinforced functional assays (SMuRF), offers simple and cost-effective saturation mutagenesis paired with streamlined functional assays to enhance the interpretation of unresolved variants. Applying SMuRF to neuromuscular disease genes FKRP and LARGE1, we generated functional scores for all possible coding single-nucleotide variants, which aid in resolving clinically reported variants of uncertain significance. SMuRF also demonstrates utility in predicting disease severity, resolving critical structural regions, and providing training datasets for the development of computational predictors. Overall, our approach enables variant-to-function insights for disease genes in a cost-effective manner that can be broadly implemented by standard research laboratories.
Collapse
Affiliation(s)
- Kaiyue Ma
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA; Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China.
| | - Shushu Huang
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Kenneth K Ng
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Nicole J Lake
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Soumya Joseph
- Howard Hughes Medical Institute, Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, Department of Molecular Physiology and Biophysics and Department of Neurology, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, USA
| | - Jenny Xu
- Yale University, New Haven, CT, USA
| | - Angela Lek
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA; Muscular Dystrophy Association, Chicago, IL, USA
| | - Lin Ge
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA; Department of Neurology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Keryn G Woodman
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | | | - Justin Cohen
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Vincent Ho
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | | | - Melinda A Brindley
- Department of Infectious Diseases, Department of Population Health, University of Georgia, Athens, GA, USA
| | - Kevin P Campbell
- Howard Hughes Medical Institute, Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, Department of Molecular Physiology and Biophysics and Department of Neurology, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, USA
| | - Monkol Lek
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
6
|
Son A, Park J, Kim W, Lee W, Yoon Y, Ji J, Kim H. Integrating Computational Design and Experimental Approaches for Next-Generation Biologics. Biomolecules 2024; 14:1073. [PMID: 39334841 PMCID: PMC11430650 DOI: 10.3390/biom14091073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/13/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024] Open
Abstract
Therapeutic protein engineering has revolutionized medicine by enabling the development of highly specific and potent treatments for a wide range of diseases. This review examines recent advances in computational and experimental approaches for engineering improved protein therapeutics. Key areas of focus include antibody engineering, enzyme replacement therapies, and cytokine-based drugs. Computational methods like structure-based design, machine learning integration, and protein language models have dramatically enhanced our ability to predict protein properties and guide engineering efforts. Experimental techniques such as directed evolution and rational design approaches continue to evolve, with high-throughput methods accelerating the discovery process. Applications of these methods have led to breakthroughs in affinity maturation, bispecific antibodies, enzyme stability enhancement, and the development of conditionally active cytokines. Emerging approaches like intracellular protein delivery, stimulus-responsive proteins, and de novo designed therapeutic proteins offer exciting new possibilities. However, challenges remain in predicting in vivo behavior, scalable manufacturing, immunogenicity mitigation, and targeted delivery. Addressing these challenges will require continued integration of computational and experimental methods, as well as a deeper understanding of protein behavior in complex physiological environments. As the field advances, we can anticipate increasingly sophisticated and effective protein therapeutics for treating human diseases.
Collapse
Affiliation(s)
- Ahrum Son
- Department of Molecular Medicine, Scripps Research, La Jolla, CA 92037, USA;
| | - Jongham Park
- Department of Bio-AI Convergence, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea; (J.P.); (W.K.); (W.L.); (Y.Y.)
| | - Woojin Kim
- Department of Bio-AI Convergence, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea; (J.P.); (W.K.); (W.L.); (Y.Y.)
| | - Wonseok Lee
- Department of Bio-AI Convergence, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea; (J.P.); (W.K.); (W.L.); (Y.Y.)
| | - Yoonki Yoon
- Department of Bio-AI Convergence, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea; (J.P.); (W.K.); (W.L.); (Y.Y.)
| | - Jaeho Ji
- Department of Convergent Bioscience and Informatics, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea;
| | - Hyunsoo Kim
- Department of Bio-AI Convergence, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea; (J.P.); (W.K.); (W.L.); (Y.Y.)
- Department of Convergent Bioscience and Informatics, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea;
- Protein AI Design Institute, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
- SCICS (Sciences for Panomics), 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| |
Collapse
|
7
|
McDonnell AF, Plech M, Livesey BJ, Gerasimavicius L, Owen LJ, Hall HN, FitzPatrick DR, Marsh JA, Kudla G. Deep mutational scanning quantifies DNA binding and predicts clinical outcomes of PAX6 variants. Mol Syst Biol 2024; 20:825-844. [PMID: 38849565 PMCID: PMC11219921 DOI: 10.1038/s44320-024-00043-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 04/05/2024] [Accepted: 05/14/2024] [Indexed: 06/09/2024] Open
Abstract
Nonsense and missense mutations in the transcription factor PAX6 cause a wide range of eye development defects, including aniridia, microphthalmia and coloboma. To understand how changes of PAX6:DNA binding cause these phenotypes, we combined saturation mutagenesis of the paired domain of PAX6 with a yeast one-hybrid (Y1H) assay in which expression of a PAX6-GAL4 fusion gene drives antibiotic resistance. We quantified binding of more than 2700 single amino-acid variants to two DNA sequence elements. Mutations in DNA-facing residues of the N-terminal subdomain and linker region were most detrimental, as were mutations to prolines and to negatively charged residues. Many variants caused sequence-specific molecular gain-of-function effects, including variants in position 71 that increased binding to the LE9 enhancer but decreased binding to a SELEX-derived binding site. In the absence of antibiotic selection, variants that retained DNA binding slowed yeast growth, likely because such variants perturbed the yeast transcriptome. Benchmarking against known patient variants and applying ACMG/AMP guidelines to variant classification, we obtained supporting-to-moderate evidence that 977 variants are likely pathogenic and 1306 are likely benign. Our analysis shows that most pathogenic mutations in the paired domain of PAX6 can be explained simply by the effects of these mutations on PAX6:DNA association, and establishes Y1H as a generalisable assay for the interpretation of variant effects in transcription factors.
Collapse
Affiliation(s)
- Alexander F McDonnell
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Marcin Plech
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Benjamin J Livesey
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Lukas Gerasimavicius
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Liusaidh J Owen
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Hildegard Nikki Hall
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - David R FitzPatrick
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Joseph A Marsh
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Grzegorz Kudla
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK.
| |
Collapse
|
8
|
Ma K, Huang S, Ng KK, Lake NJ, Joseph S, Xu J, Lek A, Ge L, Woodman KG, Koczwara KE, Cohen J, Ho V, O’Connor CL, Brindley MA, Campbell KP, Lek M. Deep Mutational Scanning in Disease-related Genes with Saturation Mutagenesis-Reinforced Functional Assays (SMuRF). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.12.548370. [PMID: 37873263 PMCID: PMC10592615 DOI: 10.1101/2023.07.12.548370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Interpretation of disease-causing genetic variants remains a challenge in human genetics. Current costs and complexity of deep mutational scanning methods hamper crowd-sourcing approaches toward genome-wide resolution of variants in disease-related genes. Our framework, Saturation Mutagenesis-Reinforced Functional assays (SMuRF), addresses these issues by offering simple and cost-effective saturation mutagenesis, as well as streamlining functional assays to enhance the interpretation of unresolved variants. Applying SMuRF to neuromuscular disease genes FKRP and LARGE1, we generated functional scores for all possible coding single nucleotide variants, which aid in resolving clinically reported variants of uncertain significance. SMuRF also demonstrates utility in predicting disease severity, resolving critical structural regions, and providing training datasets for the development of computational predictors. Our approach opens new directions for enabling variant-to-function insights for disease genes in a manner that is broadly useful for crowd-sourcing implementation across standard research laboratories.
Collapse
Affiliation(s)
- Kaiyue Ma
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Shushu Huang
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Equal second authors
| | - Kenneth K. Ng
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Equal second authors
| | - Nicole J. Lake
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Soumya Joseph
- Howard Hughes Medical Institute, Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, Department of Molecular Physiology and Biophysics and Department of Neurology, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, USA
| | - Jenny Xu
- Yale University, New Haven, CT, USA
| | - Angela Lek
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Muscular Dystrophy Association, Chicago, IL, USA
| | - Lin Ge
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Department of Neurology, National Center for Children’s Health, Beijing Children’s Hospital, Capital Medical University, Beijing, China
| | - Keryn G. Woodman
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | | | - Justin Cohen
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Vincent Ho
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | | | - Melinda A. Brindley
- Department of Infectious Diseases, Department of Population Health, University of Georgia, Athens, GA, USA
- Senior Authors
| | - Kevin P. Campbell
- Howard Hughes Medical Institute, Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, Department of Molecular Physiology and Biophysics and Department of Neurology, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, USA
- Senior Authors
| | - Monkol Lek
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Senior Authors
- Lead Contact
| |
Collapse
|
9
|
Bendel AM, Skendo K, Klein D, Shimada K, Kauneckaite-Griguole K, Diss G. Optimization of a deep mutational scanning workflow to improve quantification of mutation effects on protein-protein interactions. BMC Genomics 2024; 25:630. [PMID: 38914936 PMCID: PMC11194945 DOI: 10.1186/s12864-024-10524-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 06/14/2024] [Indexed: 06/26/2024] Open
Abstract
Deep Mutational Scanning (DMS) assays are powerful tools to study sequence-function relationships by measuring the effects of thousands of sequence variants on protein function. During a DMS experiment, several technical artefacts might distort non-linearly the functional score obtained, potentially biasing the interpretation of the results. We therefore tested several technical parameters in the deepPCA workflow, a DMS assay for protein-protein interactions, in order to identify technical sources of non-linearities. We found that parameters common to many DMS assays such as amount of transformed DNA, timepoint of harvest and library composition can cause non-linearities in the data. Designing experiments in a way to minimize these non-linear effects will improve the quantification and interpretation of mutation effects.
Collapse
Affiliation(s)
- Alexandra M Bendel
- Friedrich Miescher Institute for Biomedical Research (FMI), Basel, Switzerland
- University of Basel, Basel, Switzerland
| | | | - Dominique Klein
- Friedrich Miescher Institute for Biomedical Research (FMI), Basel, Switzerland
| | - Kenji Shimada
- Friedrich Miescher Institute for Biomedical Research (FMI), Basel, Switzerland
| | - Kotryna Kauneckaite-Griguole
- Friedrich Miescher Institute for Biomedical Research (FMI), Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Guillaume Diss
- Friedrich Miescher Institute for Biomedical Research (FMI), Basel, Switzerland.
| |
Collapse
|
10
|
Ma K, Gauthier LO, Cheung F, Huang S, Lek M. High-throughput assays to assess variant effects on disease. Dis Model Mech 2024; 17:dmm050573. [PMID: 38940340 PMCID: PMC11225591 DOI: 10.1242/dmm.050573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024] Open
Abstract
Interpreting the wealth of rare genetic variants discovered in population-scale sequencing efforts and deciphering their associations with human health and disease present a critical challenge due to the lack of sufficient clinical case reports. One promising avenue to overcome this problem is deep mutational scanning (DMS), a method of introducing and evaluating large-scale genetic variants in model cell lines. DMS allows unbiased investigation of variants, including those that are not found in clinical reports, thus improving rare disease diagnostics. Currently, the main obstacle limiting the full potential of DMS is the availability of functional assays that are specific to disease mechanisms. Thus, we explore high-throughput functional methodologies suitable to examine broad disease mechanisms. We specifically focus on methods that do not require robotics or automation but instead use well-designed molecular tools to transform biological mechanisms into easily detectable signals, such as cell survival rate, fluorescence or drug resistance. Here, we aim to bridge the gap between disease-relevant assays and their integration into the DMS framework.
Collapse
Affiliation(s)
- Kaiyue Ma
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Logan O. Gauthier
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Frances Cheung
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Shushu Huang
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Monkol Lek
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
11
|
McDermott SM, Pham V, Oliver B, Carnes J, Sather DN, Stuart KD. Deep mutational scanning of the RNase III-like domain in Trypanosoma brucei RNA editing protein KREPB4. Front Cell Infect Microbiol 2024; 14:1381155. [PMID: 38650737 PMCID: PMC11033214 DOI: 10.3389/fcimb.2024.1381155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 03/14/2024] [Indexed: 04/25/2024] Open
Abstract
Kinetoplastid pathogens including Trypanosoma brucei, T. cruzi, and Leishmania species, are early diverged, eukaryotic, unicellular parasites. Functional understanding of many proteins from these pathogens has been hampered by limited sequence homology to proteins from other model organisms. Here we describe the development of a high-throughput deep mutational scanning approach in T. brucei that facilitates rapid and unbiased assessment of the impacts of many possible amino acid substitutions within a protein on cell fitness, as measured by relative cell growth. The approach leverages several molecular technologies: cells with conditional expression of a wild-type gene of interest and constitutive expression of a library of mutant variants, degron-controlled stabilization of I-SceI meganuclease to mediate highly efficient transfection of a mutant allele library, and a high-throughput sequencing readout for cell growth upon conditional knockdown of wild-type gene expression and exclusive expression of mutant variants. Using this method, we queried the effects of amino acid substitutions in the apparently non-catalytic RNase III-like domain of KREPB4 (B4), which is an essential component of the RNA Editing Catalytic Complexes (RECCs) that carry out mitochondrial RNA editing in T. brucei. We measured the impacts of thousands of B4 variants on bloodstream form cell growth and validated the most deleterious variants containing single amino acid substitutions. Crucially, there was no correlation between phenotypes and amino acid conservation, demonstrating the greater power of this method over traditional sequence homology searching to identify functional residues. The bloodstream form cell growth phenotypes were combined with structural modeling, RECC protein proximity data, and analysis of selected substitutions in procyclic form T. brucei. These analyses revealed that the B4 RNaseIII-like domain is essential for maintenance of RECC integrity and RECC protein abundances and is also involved in changes in RECCs that occur between bloodstream and procyclic form life cycle stages.
Collapse
Affiliation(s)
- Suzanne M. McDermott
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, United States
| | - Vy Pham
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Brian Oliver
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Jason Carnes
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
| | - D. Noah Sather
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, United States
| | - Kenneth D. Stuart
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, United States
| |
Collapse
|
12
|
Dziubańska-Kusibab PJ, Nevedomskaya E, Haendler B. Preclinical Anticipation of On- and Off-Target Resistance Mechanisms to Anti-Cancer Drugs: A Systematic Review. Int J Mol Sci 2024; 25:705. [PMID: 38255778 PMCID: PMC10815614 DOI: 10.3390/ijms25020705] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/22/2023] [Accepted: 12/28/2023] [Indexed: 01/24/2024] Open
Abstract
The advent of targeted therapies has led to tremendous improvements in treatment options and their outcomes in the field of oncology. Yet, many cancers outsmart precision drugs by developing on-target or off-target resistance mechanisms. Gaining the ability to resist treatment is the rule rather than the exception in tumors, and it remains a major healthcare challenge to achieve long-lasting remission in most cancer patients. Here, we discuss emerging strategies that take advantage of innovative high-throughput screening technologies to anticipate on- and off-target resistance mechanisms before they occur in treated cancer patients. We divide the methods into non-systematic approaches, such as random mutagenesis or long-term drug treatment, and systematic approaches, relying on the clustered regularly interspaced short palindromic repeats (CRISPR) system, saturated mutagenesis, or computational methods. All these new developments, especially genome-wide CRISPR-based screening platforms, have significantly accelerated the processes for identification of the mechanisms responsible for cancer drug resistance and opened up new avenues for future treatments.
Collapse
Affiliation(s)
| | | | - Bernard Haendler
- Research and Early Development Oncology, Pharmaceuticals, Bayer AG, Müllerstr. 178, 13353 Berlin, Germany; (P.J.D.-K.); (E.N.)
| |
Collapse
|
13
|
Christowitz C, Olivier DW, Schneider JW, Kotze MJ, Engelbrecht AM. Incorporating functional genomics into the pathology-supported genetic testing framework implemented in South Africa: A future view of precision medicine for breast carcinomas. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2024; 793:108492. [PMID: 38631437 DOI: 10.1016/j.mrrev.2024.108492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/25/2024] [Accepted: 04/11/2024] [Indexed: 04/19/2024]
Abstract
A pathology-supported genetic testing (PSGT) framework was established in South Africa to improve access to precision medicine for patients with breast carcinomas. Nevertheless, the frequent identification of variants of uncertain significance (VUSs) with the use of genome-scale next-generation sequencing has created a bottleneck in the return of results to patients. This review highlights the importance of incorporating functional genomics into the PSGT framework as a proposed initiative. Here, we explore various model systems and experimental methods available for conducting functional studies in South Africa to enhance both variant classification and clinical interpretation. We emphasize the distinct advantages of using in vitro, in vivo, and translational ex vivo models to improve the effectiveness of precision oncology. Moreover, we highlight the relevance of methodologies such as protein modelling and structural bioinformatics, multi-omics, metabolic activity assays, flow cytometry, cell migration and invasion assays, tube-formation assays, multiplex assays of variant effect, and database mining and machine learning models. The selection of the appropriate experimental approach largely depends on the molecular mechanism of the gene under investigation and the predicted functional effect of the VUS. However, before making final decisions regarding the pathogenicity of VUSs, it is essential to assess the functional evidence and clinical outcomes under current variant interpretation guidelines. The inclusion of a functional genomics infrastructure within the PSGT framework will significantly advance the reclassification of VUSs and enhance the precision medicine pipeline for patients with breast carcinomas in South Africa.
Collapse
Affiliation(s)
- Claudia Christowitz
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch 7600, South Africa.
| | - Daniel W Olivier
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch 7600, South Africa; Division of Chemical Pathology, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7505, South Africa
| | - Johann W Schneider
- Division of Anatomical Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7505, South Africa; National Health Laboratory Service, Tygerberg Hospital, Cape Town 7505, South Africa
| | - Maritha J Kotze
- Division of Chemical Pathology, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7505, South Africa; National Health Laboratory Service, Tygerberg Hospital, Cape Town 7505, South Africa
| | - Anna-Mart Engelbrecht
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch 7600, South Africa; Department of Global Health, African Cancer Institute, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7505, South Africa
| |
Collapse
|
14
|
Yu H, Zhang X, Acevedo-Rocha CG, Li A, Reetz MT. Protein engineering using mutability landscapes: Controlling site-selectivity of P450-catalyzed steroid hydroxylation. Methods Enzymol 2023; 693:191-229. [PMID: 37977731 DOI: 10.1016/bs.mie.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Directed evolution and rational design have been used widely in engineering enzymes for their application in synthetic organic chemistry and biotechnology. With stereoselectivity playing a crucial role in catalysis for the synthesis of valuable chemical and pharmaceutical compounds, rational design has not achieved such wide success in this specific area compared to directed evolution. Nevertheless, one bottleneck of directed evolution is the laborious screening efforts and the observed trade-offs in catalytic profiles. This has motivated researchers to develop more efficient protein engineering methods. As a prime approach, mutability landscaping avoids such trade-offs by providing more information of sequence-function relationships. Here, we describe an application of this efficient protein engineering method to improve the regio-/stereoselectivity and activity of P450BM3 for steroid hydroxylation, while keeping the mutagenesis libraries small so that they will require only minimal screening.
Collapse
Affiliation(s)
- Huili Yu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of life science, Hubei University, Wuhan, P.R. China
| | - Xiaodong Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of life science, Hubei University, Wuhan, P.R. China
| | - Carlos G Acevedo-Rocha
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Aitao Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of life science, Hubei University, Wuhan, P.R. China.
| | - Manfred T Reetz
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1, Muelheim, Germany; Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin, P. R. China.
| |
Collapse
|
15
|
Verkhivker G, Alshahrani M, Gupta G, Xiao S, Tao P. From Deep Mutational Mapping of Allosteric Protein Landscapes to Deep Learning of Allostery and Hidden Allosteric Sites: Zooming in on "Allosteric Intersection" of Biochemical and Big Data Approaches. Int J Mol Sci 2023; 24:7747. [PMID: 37175454 PMCID: PMC10178073 DOI: 10.3390/ijms24097747] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/22/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023] Open
Abstract
The recent advances in artificial intelligence (AI) and machine learning have driven the design of new expert systems and automated workflows that are able to model complex chemical and biological phenomena. In recent years, machine learning approaches have been developed and actively deployed to facilitate computational and experimental studies of protein dynamics and allosteric mechanisms. In this review, we discuss in detail new developments along two major directions of allosteric research through the lens of data-intensive biochemical approaches and AI-based computational methods. Despite considerable progress in applications of AI methods for protein structure and dynamics studies, the intersection between allosteric regulation, the emerging structural biology technologies and AI approaches remains largely unexplored, calling for the development of AI-augmented integrative structural biology. In this review, we focus on the latest remarkable progress in deep high-throughput mining and comprehensive mapping of allosteric protein landscapes and allosteric regulatory mechanisms as well as on the new developments in AI methods for prediction and characterization of allosteric binding sites on the proteome level. We also discuss new AI-augmented structural biology approaches that expand our knowledge of the universe of protein dynamics and allostery. We conclude with an outlook and highlight the importance of developing an open science infrastructure for machine learning studies of allosteric regulation and validation of computational approaches using integrative studies of allosteric mechanisms. The development of community-accessible tools that uniquely leverage the existing experimental and simulation knowledgebase to enable interrogation of the allosteric functions can provide a much-needed boost to further innovation and integration of experimental and computational technologies empowered by booming AI field.
Collapse
Affiliation(s)
- Gennady Verkhivker
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA; (M.A.); (G.G.)
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA 92618, USA
| | - Mohammed Alshahrani
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA; (M.A.); (G.G.)
| | - Grace Gupta
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA; (M.A.); (G.G.)
| | - Sian Xiao
- Department of Chemistry, Center for Research Computing, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, TX 75275, USA; (S.X.); (P.T.)
| | - Peng Tao
- Department of Chemistry, Center for Research Computing, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, TX 75275, USA; (S.X.); (P.T.)
| |
Collapse
|