1
|
Gong JR, Lee J, Han Y, Cho KH. DDX54 downregulation enhances anti-PD1 therapy in immune-desert lung tumors with high tumor mutational burden. Proc Natl Acad Sci U S A 2025; 122:e2412310122. [PMID: 40172969 PMCID: PMC12002276 DOI: 10.1073/pnas.2412310122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 02/25/2025] [Indexed: 04/04/2025] Open
Abstract
High tumor mutational burden (TMB-H) is a predictive biomarker for the responsiveness of cancer to immune checkpoint inhibitor (ICI) therapy that indicates whether immune cells can sufficiently recognize cancer cells as nonself. However, about 30% of all cancers from The Cancer Genome Atlas (TCGA) are classified as immune-desert tumors lacking T cell infiltration despite TMB-H. Since the underlying mechanism of these immune-desert tumors has yet to be unraveled, there is a pressing need to transform such immune-desert tumors into immune-inflamed tumors and thereby enhance their responsiveness to anti-PD1 therapy. Here, we present a systems framework for identifying immuno-oncotargets, based on analysis of gene regulatory networks, and validating the effect of these targets in transforming immune-desert into immune-inflamed tumors. In particular, we identify DEAD-box helicases 54 (DDX54) as a master regulator of immune escape in immune-desert lung cancer with TMB-H and show that knockdown of DDX54 can increase immune cell infiltration and lead to improved sensitivity to anti-PD1 therapy.
Collapse
Affiliation(s)
- Jeong-Ryeol Gong
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon34141, Republic of Korea
| | - Jungeun Lee
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon34141, Republic of Korea
| | - Younghyun Han
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon34141, Republic of Korea
| | - Kwang-Hyun Cho
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon34141, Republic of Korea
| |
Collapse
|
2
|
Yu X, Xu H, Xing Y, Sun D, Li D, Shi J, Sui G, Li G. Identifying Essential Hub Genes and circRNA-Regulated ceRNA Networks in Hepatocellular Carcinoma. Int J Mol Sci 2025; 26:1408. [PMID: 40003874 PMCID: PMC11855757 DOI: 10.3390/ijms26041408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 02/05/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025] Open
Abstract
Competitive endogenous RNAs (ceRNAs) absorb microRNAs and subsequently promote corresponding mRNA and long noncoding RNA (lncRNA) expression, which may alter cancer cell malignancy. Thus, dissecting ceRNA networks may reveal novel targets in cancer therapies. In this study, we analyzed differentially expressed genes (DEGs) of mRNAs and lncRNAs, and differentially expressed microRNAs (DE-miRNAs) and circular RNAs (DE-circRNAs) extracted from high-throughput sequencing datasets of hepatocellular carcinoma patients. Based on these data, we identified 26 gene modules using weighted gene co-expression network analysis (WGCNA), of which 5 were associated with tumor differentiation. In these modules, 269 genes were identified by GO and KEGG enrichment and patient's survival correlation analyses. Next, 40 DE-miRNAs, each of which potentially bound a pair of DE-circRNA and hub gene, were discovered. Together with 201 circRNAs and 24 hub genes potentially bound by these miRNAs, 1151 ceRNA networks were constructed. Among them, 75 ceRNA networks consisting of 24 circRNAs, 28 miRNAs and 17 hub genes showed a positive circRNA-hub gene correlation. For validation, we carried out experiments for 4 randomly selected circRNAs regulating 19 potential ceRNA networks and verified 5 of them. This study represents a powerful strategy to identify essential gene networks and provides insights into designing effective therapeutic strategies.
Collapse
Affiliation(s)
- Xiaoqian Yu
- College of Life Science, Northeast Forestry University, Harbin 150040, China; (X.Y.); (H.X.); (Y.X.); (D.S.); (D.L.); (J.S.)
| | - Hao Xu
- College of Life Science, Northeast Forestry University, Harbin 150040, China; (X.Y.); (H.X.); (Y.X.); (D.S.); (D.L.); (J.S.)
| | - Yutao Xing
- College of Life Science, Northeast Forestry University, Harbin 150040, China; (X.Y.); (H.X.); (Y.X.); (D.S.); (D.L.); (J.S.)
| | - Dehui Sun
- College of Life Science, Northeast Forestry University, Harbin 150040, China; (X.Y.); (H.X.); (Y.X.); (D.S.); (D.L.); (J.S.)
| | - Dangdang Li
- College of Life Science, Northeast Forestry University, Harbin 150040, China; (X.Y.); (H.X.); (Y.X.); (D.S.); (D.L.); (J.S.)
| | - Jinming Shi
- College of Life Science, Northeast Forestry University, Harbin 150040, China; (X.Y.); (H.X.); (Y.X.); (D.S.); (D.L.); (J.S.)
| | - Guangchao Sui
- College of Life Science, Northeast Forestry University, Harbin 150040, China; (X.Y.); (H.X.); (Y.X.); (D.S.); (D.L.); (J.S.)
| | - Guangyue Li
- College of Life Science, Northeast Forestry University, Harbin 150040, China; (X.Y.); (H.X.); (Y.X.); (D.S.); (D.L.); (J.S.)
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou 310030, China
| |
Collapse
|
3
|
Mocan LP, Grapa C, Crăciun R, Pralea IE, Uifălean A, Soporan AM, Mureșan XM, Iacobescu M, Al Hajjar N, Mihu CM, Spârchez Z, Mocan T, Iuga CA. Unveiling novel serum biomarkers in intrahepatic cholangiocarcinoma: a pilot proteomic exploration. Front Pharmacol 2024; 15:1440985. [PMID: 39286634 PMCID: PMC11403330 DOI: 10.3389/fphar.2024.1440985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/19/2024] [Indexed: 09/19/2024] Open
Abstract
Recent advancements in proteomics have shown promise in identifying biomarkers for various cancers. Our study is the first to compare the serum proteomes of intrahepatic cholangiocarcinoma (iCCA) with cirrhosis (CIR), primary sclerosing cholangitis (PSC), and hepatocellular carcinoma (HCC), aiming to identify a proteomic signature that can effectively distinguish among these conditions. Utilizing high-throughput mass spectrometry on serum samples, we identified 845 proteins, of which 646 were suitable for further analysis. Unique clustering patterns were observed among the five groups, with significant proteomic differences. Our key findings include: S100 calcium-binding protein A9 (S100A9) and haptoglobin (HP) were more abundant in iCCA, while intercellular adhesion molecule 2 (ICAM2) was higher in HCC. Serum amyloid A1 (SAA1) and A4 (SAA4) emerged as potential biomarkers, with SAA1 significantly different in the iCCA vs healthy controls (HC) comparison, and SAA4 in the HCC vs HC comparison. Elevated levels of vascular cell adhesion molecule 1 (VCAM-1) in HCC suggested its potential as a differentiation and diagnostic marker. Angiopoietin-1 receptor (TEK) also showed discriminatory and diagnostic potential in HCC. ELISA validation corroborated mass spectrometry findings. Our study underscores the potential of proteomic profiling in distinguishing iCCA from other liver conditions and highlights the need for further validation to establish robust diagnostic biomarkers.
Collapse
Affiliation(s)
- Lavinia Patricia Mocan
- Department of Histology, "Iuliu Haţieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Cristiana Grapa
- Department of Gastroenterology, "Prof. Dr. Octavian Fodor" Regional Institute of Gastroenterology and Hepatology, Cluj-Napoca, Romania
- Department of Gastroenterology and Hepatology, "Iuliu Haţieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Rareș Crăciun
- Department of Gastroenterology, "Prof. Dr. Octavian Fodor" Regional Institute of Gastroenterology and Hepatology, Cluj-Napoca, Romania
- Department of Gastroenterology and Hepatology, "Iuliu Haţieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ioana Ecaterina Pralea
- Department of Proteomics and Metabolomics, Institute of Medical Research and Life Sciences - Medfuture, "Iuliu Haţieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Alina Uifălean
- Department of Pharmaceutical Analysis, Faculty of Pharmacy, "Iuliu Haţieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Andreea Maria Soporan
- Department of Proteomics and Metabolomics, Institute of Medical Research and Life Sciences - Medfuture, "Iuliu Haţieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Pharmaceutical Analysis, Faculty of Pharmacy, "Iuliu Haţieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ximena Maria Mureșan
- Department of Translational Medicine, Institute of Medical Research and Life Sciences - Medfuture, "Iuliu Haţieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Maria Iacobescu
- Department of Proteomics and Metabolomics, Institute of Medical Research and Life Sciences - Medfuture, "Iuliu Haţieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Nadim Al Hajjar
- Department of Gastroenterology, "Prof. Dr. Octavian Fodor" Regional Institute of Gastroenterology and Hepatology, Cluj-Napoca, Romania
- Department of Surgery, "Iuliu Haţieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Carmen Mihaela Mihu
- Department of Histology, "Iuliu Haţieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Zeno Spârchez
- Department of Gastroenterology, "Prof. Dr. Octavian Fodor" Regional Institute of Gastroenterology and Hepatology, Cluj-Napoca, Romania
- Department of Gastroenterology and Hepatology, "Iuliu Haţieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Tudor Mocan
- Department of Gastroenterology, "Prof. Dr. Octavian Fodor" Regional Institute of Gastroenterology and Hepatology, Cluj-Napoca, Romania
- UBBMed Department, Babeş-Bolyai University, Cluj-Napoca, Romania
| | - Cristina Adela Iuga
- Department of Proteomics and Metabolomics, Institute of Medical Research and Life Sciences - Medfuture, "Iuliu Haţieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Pharmaceutical Analysis, Faculty of Pharmacy, "Iuliu Haţieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
4
|
Ying L, Hu Z, Lu Y, Tao Q, Xiong F, Shu Y, Yang Y, Qiao X, Peng C, Jiang Y, Han M, Xu M, Li X, Wang D. An oncogene regulating chromatin favors response to immunotherapy: Oncogene CHAF1A and immunotherapy outcomes. Oncoimmunology 2024; 13:2303195. [PMID: 38235318 PMCID: PMC10793680 DOI: 10.1080/2162402x.2024.2303195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 01/02/2024] [Indexed: 01/19/2024] Open
Abstract
Many biological processes related to cell function and fate begin with chromatin alterations, and many factors associated with the efficacy of immune checkpoint inhibitors (ICIs) are actually downstream events of chromatin alterations, such as genome changes, neoantigen production, and immune checkpoint expression. However, the influence of genes as chromatin regulators on the efficacy of ICIs remains elusive, especially in gastric cancer (GC). In this study, thirty out of 1593 genes regulating chromatin associated with a favorable prognosis were selected for GC. CHAF1A, a well-defined oncogene, was identified as the highest linkage hub gene. High CHAF1A expression were associated with microsatellite instability (MSI), high tumor mutation burden (TMB), high tumor neoantigen burden (TNB), high expressions of PD-L1 and immune effector genes, and live infiltration of immune cells. High CHAF1A expression indicated a favorable response and prognosis in immunotherapy of several cohorts, which was independent of MSI, TMB, TNB, PD-L1 expression, immune phenotype and transcriptome scoring, and improved patient selection based on these classic biomarkers. In vivo, CHAF1A knockdown alone inhibited tumor growth but it impaired the effect of an anti-PD-1 antibody by increasing the relative tumor proliferation rate and decreasing the survival benefit, potentially through the activation of TGF-β signaling. In conclusion, CHAF1A may be a novel biomarker for improving patient selection in immunotherapy.
Collapse
Affiliation(s)
- Leqian Ying
- Department of Oncology, Digestive Disease Institute&Cancer Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, China
- Department of Oncology, Zhong-Da Hospital, Medicine School, Southeast University, Nanjing, China
| | - Zhangmin Hu
- Department of Oncology, Digestive Disease Institute&Cancer Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yi Lu
- Department of Oncology, Wujin Hospital Affiliated with Jiangsu University, Changzhou, China
| | - Qing Tao
- Department of Oncology, Digestive Disease Institute&Cancer Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Fen Xiong
- Department of Oncology, Digestive Disease Institute&Cancer Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yongqian Shu
- Department of Oncology, Jiangsu Province Hospital & The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yufei Yang
- Department of Oncology, Digestive Disease Institute&Cancer Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xuehan Qiao
- Department of Oncology, Digestive Disease Institute&Cancer Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Chen Peng
- Department of Oncology, Digestive Disease Institute&Cancer Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yuchun Jiang
- Department of Oncology, Digestive Disease Institute&Cancer Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Miao Han
- Department of Oncology, Digestive Disease Institute&Cancer Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Min Xu
- Department of Gastroenterology, Digestive Disease Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xiaoqin Li
- Department of Oncology, Digestive Disease Institute&Cancer Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Deqiang Wang
- Department of Oncology, Digestive Disease Institute&Cancer Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|