1
|
Bovo S, Bolner M, Schiavo G, Galimberti G, Bertolini F, Dall'Olio S, Ribani A, Zambonelli P, Gallo M, Fontanesi L. High-throughput untargeted metabolomics reveals metabolites and metabolic pathways that differentiate two divergent pig breeds. Animal 2025; 19:101393. [PMID: 39731811 DOI: 10.1016/j.animal.2024.101393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/28/2024] [Accepted: 11/29/2024] [Indexed: 12/30/2024] Open
Abstract
Metabolomics can describe the molecular phenome and may contribute to dissecting the biological processes linked to economically relevant traits in livestock species. Comparative analyses of metabolomic profiles in purebred pigs can provide insights into the basic biological mechanisms that may explain differences in production performances. Following this concept, this study was designed to compare, on a large scale, the plasma metabolomic profiles of two Italian heavy pig breeds (Italian Duroc and Italian Large White) to indirectly evaluate the impact of their different genetic backgrounds on the breed metabolomes. We utilised a high-throughput untargeted metabolomics approach in a total of 962 pigs that allowed us to detect and relatively quantify 722 metabolites from various biological classes. The molecular data were analysed using a bioinformatics pipeline specifically designed for identifying differentially abundant metabolites between the two breeds in a robust and statistically significant manner, including the Boruta algorithm, which is a Random Forest wrapper, and sparse Partial Least Squares Discriminant Analysis (sPLS-DA) for feature selection. After thoroughly evaluating the impact of random components on missing value imputation, 100 discriminant metabolites were selected by Boruta and 17 discriminant metabolites (all included within the previous list) were identified with sPLS-DA. About half of the 100 discriminant metabolites had a higher concentration in one or the other breed (48 in Italian Large White pigs, with a prevalence of amino acids and peptides; 52 in Italian Duroc pigs, with a prevalence of lipids). These metabolites were from seven distinct super pathways and had an absolute mean value of percentage difference between the two breeds (|Δ|%) of 39.2 ± 32.4. Six of these metabolites had |Δ|%> 100. A general correlation network analysis based on Boruta-identified metabolites consisted of 31 singletons and 69 metabolites connected by 141 edges, with two large clusters (> 15 nodes), three medium clusters (3-6 nodes) and eight additional pairs, with most metabolites belonging to the same super pathway. The major cluster representing the lipids super-pathway included 24 metabolites, primarily sphingomyelins. Overall, this study identified metabolomic differences between Italian Duroc and Italian Large White pigs explained by the specific genetic background of the two breeds. These biomarkers can explain the biological differences between these two breeds and can have potential practical applications in pig breeding and husbandry.
Collapse
Affiliation(s)
- S Bovo
- Animal and Food Genomics Group, Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, 40127 Bologna, Italy
| | - M Bolner
- Animal and Food Genomics Group, Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, 40127 Bologna, Italy
| | - G Schiavo
- Animal and Food Genomics Group, Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, 40127 Bologna, Italy
| | - G Galimberti
- Department of Statistical Sciences "Paolo Fortunati", University of Bologna, 40126 Bologna, Italy
| | - F Bertolini
- Animal and Food Genomics Group, Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, 40127 Bologna, Italy
| | - S Dall'Olio
- Animal and Food Genomics Group, Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, 40127 Bologna, Italy
| | - A Ribani
- Animal and Food Genomics Group, Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, 40127 Bologna, Italy
| | - P Zambonelli
- Animal and Food Genomics Group, Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, 40127 Bologna, Italy
| | - M Gallo
- Associazione Nazionale Allevatori Suini, 00198 Roma, Italy
| | - L Fontanesi
- Animal and Food Genomics Group, Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, 40127 Bologna, Italy.
| |
Collapse
|
2
|
Wang X, Li E, Li C, Zhang C, Liang Z, Xu R, Liu Y, Chen M, Li Y, Wu HD, Yuan R, Xiong Y, Chen Y, Liu X, Mo D. Fibin is a crucial mitochondrial regulatory gene in skeletal muscle development. Int J Biol Macromol 2024; 283:137568. [PMID: 39547619 DOI: 10.1016/j.ijbiomac.2024.137568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/28/2024] [Accepted: 11/10/2024] [Indexed: 11/17/2024]
Abstract
Fin bud initiation factor homolog (Fibin) is a secreted protein that is relatively conserved among species. It is closely related to fin bud development and can regulate a variety of cellular processes. In our previous high-throughput chromosome conformation capture (Hi-C) study of pig embryonic muscle development, it was found that Fibin has high expression and activity during the development of pig primary muscle fibers. Therefore, we speculated Fibin participated in myogenesis severely. Specific deletion of Fibin in mouse skeletal muscle resulted in abnormal primary muscle fiber development during the embryonic period and a substantial decrease in skeletal muscle mass in adulthood. In vitro, knocking out Fibin in C2C12 cells promoted cell proliferation; however, after myogenic induction, cells lacking Fibin had almost no ability to differentiate into myotubes. During myogenic differentiation, loss of Fibin disrupts the normal function of mitochondria and impairs oxidative phosphorylation, resulting in decrease of NADH and FADH in the electron transport chain. Transmission electron microscopy also showed that mitochondrial morphology of Fibin-deficient C2C12 was impaired. In conclusion, our research has unveiled a novel mechanism of myogenesis regulation in mitochondrial function and potential target Fibin, and improved understanding of a broad range of mitochondrial muscle diseases.
Collapse
Affiliation(s)
- Xiaoyu Wang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510006, Guangdong, China
| | - Enru Li
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510006, Guangdong, China
| | - Chenggan Li
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510006, Guangdong, China
| | - Chong Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510006, Guangdong, China
| | - Ziyun Liang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510006, Guangdong, China
| | - Rong Xu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510006, Guangdong, China
| | - Yihao Liu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510006, Guangdong, China
| | - Meilin Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510006, Guangdong, China
| | - Yongpeng Li
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510006, Guangdong, China
| | - Hoika David Wu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510006, Guangdong, China
| | - Renqiang Yuan
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510006, Guangdong, China
| | - Yanyun Xiong
- College of Animal Science and Technology, Guangxi Agricultural Engineering Vocational Technical College, Chongzuo 532199, China
| | - Yaosheng Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510006, Guangdong, China
| | - Xiaohong Liu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510006, Guangdong, China
| | - Delin Mo
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510006, Guangdong, China.
| |
Collapse
|
3
|
Liu L, Wang W, Liu W, Li X, Yi G, Adetula AA, Huang H, Tang Z. Comprehensive Atlas of Alternative Splicing Reveals NSRP1 Promoting Adipogenesis through CCDC18. Int J Mol Sci 2024; 25:2874. [PMID: 38474122 DOI: 10.3390/ijms25052874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
Alternative splicing (AS) plays a crucial role in regulating gene expression, function, and diversity. However, limited reports exist on the identification and comparison of AS in Eastern and Western pigs. Here, we analyzed 243 transcriptome data from eight tissues, integrating information on transcription factors (TFs), selection signals, splicing factors (SFs), and quantitative trait loci (QTL) to comprehensively study alternative splicing events (ASEs) in pigs. Five ASE types were identified, with Mutually Exclusive Exon (MXE) and Skipped Exon (SE) ASEs being the most prevalent. A significant portion of genes with ASEs (ASGs) showed conservation across all eight tissues (63.21-76.13% per tissue). Differentially alternative splicing genes (DASGs) and differentially expressed genes (DEGs) exhibited tissue specificity, with blood and adipose tissues having more DASGs. Functional enrichment analysis revealed coDASG_DEGs in adipose were enriched in pathways associated with adipose deposition and immune inflammation, while coDASG_DEGs in blood were enriched in pathways related to immune inflammation and metabolism. Adipose deposition in Eastern pigs might be linked to the down-regulation of immune-inflammation-related pathways and reduced insulin resistance. The TFs, selection signals, and SFs appeared to regulate ASEs. Notably, ARID4A (TF), NSRP1 (SF), ANKRD12, IFT74, KIAA2026, CCDC18, NEXN, PPIG, and ROCK1 genes in adipose tissue showed potential regulatory effects on adipose-deposition traits. NSRP1 could promote adipogenesis by regulating alternative splicing and expression of CCDC18. Conducting an in-depth investigation into AS, this study has successfully identified key marker genes essential for pig genetic breeding and the enhancement of meat quality, which will play important roles in promoting the diversity of pork quality and meeting market demand.
Collapse
Affiliation(s)
- Lei Liu
- Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Wei Wang
- Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Weiwei Liu
- Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Xingzheng Li
- Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Guoqiang Yi
- Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
- Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute, Chinese Academy of Agricultural Sciences, Foshan 528226, China
| | - Adeyinka Abiola Adetula
- Reproductive Biotechnology, Department of Molecular Life Sciences, TUM School of Life Sciences, Technical University Munich, 85354 Freising, Germany
| | - Haibo Huang
- Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Zhonglin Tang
- Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
- Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute, Chinese Academy of Agricultural Sciences, Foshan 528226, China
| |
Collapse
|
4
|
Lin Z, Xie F, He X, Wang J, Luo J, Chen T, Jiang Q, Xi Q, Zhang Y, Sun J. A novel protein encoded by circKANSL1L regulates skeletal myogenesis via the Akt-FoxO3 signaling axis. Int J Biol Macromol 2024; 257:128609. [PMID: 38056741 DOI: 10.1016/j.ijbiomac.2023.128609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/01/2023] [Accepted: 12/01/2023] [Indexed: 12/08/2023]
Abstract
Skeletal muscle is one the largest organs of the body and is involved in animal production and human health. Circular RNAs (circRNAs) have been implicated in skeletal myogenesis through largely unknown mechanisms. Herein, we report the phenotypic and metabolomic analysis of porcine longissimus dorsi muscles in Lantang and Landrace piglets, revealing a high-content of slow-oxidative fibers responsible for high-quality meat product in Lantang piglets. Using single-cell transcriptomics, we identified four myogenesis-related cell types, and the Akt-FoxO3 signaling axis was the most significantly enriched pathway in each subpopulation in the different pig breeds, as well as in fast-twitch glycolytic fibers. Using the multi-dimensional bioinformatic tools of circRNAome-seq and Ribo-seq, we identified a novel circRNA, circKANSL1L, with a protein-coding ability in porcine muscles, whose expression level correlated with myoblast proliferation and differentiation in vitro, as well as the transformation between distinct mature myofibers in vivo. The protein product of circKANSL1L could interact with Akt to decrease the phosphorylation level of FoxO3, which subsequently promoted FoxO3 transcriptional activity to regulate skeletal myogenesis. Our results established the existence of a protein encoded by circKANSL1L and demonstrated its potential functions in myogenesis.
Collapse
Affiliation(s)
- Zekun Lin
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Fang Xie
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Xiao He
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Jing Wang
- Institute of Animal Husbandry and Veterinary Medicine, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Junyi Luo
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Ting Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Qingyan Jiang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Qianyun Xi
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Yongliang Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Jiajie Sun
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China.
| |
Collapse
|
5
|
Qi K, Dou Y, Zhang Z, Wei Y, Song C, Qiao R, Li X, Yang F, Wang K, Li X, Han X. Expression Profile and Regulatory Properties of m6A-Modified circRNAs in the Longissimus Dorsi of Queshan Black and Large White Pigs. Animals (Basel) 2023; 13:2190. [PMID: 37443988 DOI: 10.3390/ani13132190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/21/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
It is well known that N6-methyladenosine (m6A) is the most abundant modification in linear RNA molecules, but many circRNA molecules have now been found to have a wide range of m6A modification sites as well. However, there are few relevant studies and information on the expression profile and functional regulatory properties of m6A-modified circRNAs (m6A-circRNAs) in longissimus dorsi. In this study, a total of 12 putative m6A-circRNAs were identified and characterized in the longissimus dorsi of Queshan Black and Large White pigs-8 of them were significantly more expressed in the longissimus dorsi of Queshan Black than in Large White pigs, while the other 4 were the opposite. These 12 putative m6A-circRNAs were also found to act as miRNA sponge molecules to regulate fat deposition by constructing the ceRNA regulatory network. Enrichment analysis also revealed that the 12 m6A-circRNAs parent genes and their adsorbed miRNA target genes were widely involved in fat deposition and cell proliferation and differentiation-related pathways, such as the HIF-1 signaling pathway, the pentose phosphate pathway, the MAPK signaling pathway, the glycosphingolipid biosynthesis-lacto and neolacto series, and the TNF signaling pathway, suggesting that the analyzed m6A-circRNAs may be largely involved in the formation of pork quality. These results provide new information to study the regulatory properties of m6A-circRNAs in the formation of pork quality.
Collapse
Affiliation(s)
- Kunlong Qi
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Yaqing Dou
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Zhe Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Yilin Wei
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Chenglei Song
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Ruimin Qiao
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Xiuling Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Feng Yang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Kejun Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Xinjian Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Xuelei Han
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| |
Collapse
|