1
|
Lai Y, Lin Y. Biological functions and therapeutic potential of CKS2 in human cancer. Front Oncol 2024; 14:1424569. [PMID: 39188686 PMCID: PMC11345170 DOI: 10.3389/fonc.2024.1424569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 07/23/2024] [Indexed: 08/28/2024] Open
Abstract
The incidence of cancer is increasing worldwide and is the most common cause of death. Identification of novel cancer diagnostic and prognostic biomarkers is important for developing cancer treatment strategies and reducing mortality. Cyclin-dependent kinase subunit 2 (CKS2) is involved in cell cycle and proliferation processes, and based on these processes, CKS2 was identified as a cancer gene. CKS2 is expressed in a variety of tissues in the human body, but its abnormal expression is associated with cancer in a variety of systems. CKS2 is generally elevated in cancer, plays a role in almost all aspects of cancer biology (such as cell proliferation, invasion, metastasis, and drug resistance) through multiple mechanisms regulating certain important genes, and is associated with clinicopathological features of patients. In addition, CKS2 expression patterns are closely related to cancer type, stage and other clinical variables. Therefore, CKS2 is considered as a tool for cancer diagnosis and prognosis and may be a promising tumor biomarker and therapeutic target. This article reviews the biological function, mechanism of action and potential clinical significance of CKS2 in cancer, in order to provide a new theoretical basis for clinical molecular diagnosis, molecular targeted therapy and scientific research of cancer.
Collapse
Affiliation(s)
- Yueliang Lai
- Department of Gastroenterology, Ganzhou People’s Hospital, Ganzhou, Jiangxi, China
- The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou, Jiangxi, China
| | - Ye Lin
- Department of Gastroenterology, Ganzhou People’s Hospital, Ganzhou, Jiangxi, China
- The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou, Jiangxi, China
| |
Collapse
|
2
|
Chen K, Zhang Y, Li C, Liu Y, Cao Q, Zhang X. Clinical value of molecular subtypes identification based on anoikis-related lncRNAs in castration-resistant prostate cancer. Cell Signal 2024; 117:111104. [PMID: 38373667 DOI: 10.1016/j.cellsig.2024.111104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/07/2023] [Accepted: 02/15/2024] [Indexed: 02/21/2024]
Abstract
BACKGROUND Anoikis is a distinctive type of apoptosis. It is involved in tumor progression and metastasis. But its function in castration-resistant prostate cancer (CRPC) remains veiled. We aimed to develop a prognostic indicator based on anoikis-related long non-coding RNAs (arlncRNAs) and to investigate their biological function in CRPC. MATERIAL AND METHOD Differentially expressed anoikis-related genes were extracted from two CRPC datasets, GSE51873, and GSE78201. Four lncRNAs associated with the anoikis-related genes were selected. A risk model based on these lncRNAs was developed and validated in The Cancer Genome Atlas (TCGA) and the Memorial Sloan-Kettering Cancer Center (MSKCC) prostate cancer cohorts. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, immune infiltration, immune checkpoints expression, and drug susceptibility were performed based on the model. To identify the biofunction of anoikis-related lncRNA, CCK-8 assays, colony formation assays, and flow cytometry were used. RESULT Twenty-nine anoikis-related genes were differentially expressed in the CRPC datasets. And 36 prognostic arlncRNAs were selected for the LASSO Cox analysis. Patients were subsequently classified into two subtypes by constructing an anoikis-related lncRNA based prognostic index (ARPI). The accuracy of this index was validated. KEGG enrichment analysis revealed that the high-ARPI group was enriched in cancer-related and immune-related pathways. Immune infiltration analysis has indicated a positive association between high-ARPI groups and increased immune infiltration. Fulvestrant, OSI-027, Lapatinib, Dabrafenib, and Palbociclib were identified as potential sensitive drugs for high-ARPI patients. In vitro experiments exhibited that silencing LINC01138 dampened the proliferation, migration and enzalutamide resistance in CRPC. Furthermore, it stimulated apoptosis and inhibited the eithelial-mesenchymal transition process. CONCLUSION Four arlncRNAs were identified and a risk model was established to predict the prognosis of patients with prostate cancer. Immune infiltration and drug susceptibility analysis revealed a potential therapeutic strategy for patients with castration-resistant prostate cancer.
Collapse
Affiliation(s)
- Kailei Chen
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Urology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yunxuan Zhang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Urology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chengyong Li
- Department of Urology, the Second Hospital of Shanxi Medical University, Taiyuan 030000, China
| | - Yuenan Liu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Urology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qi Cao
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Urology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Xiaoping Zhang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Urology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen 518000, China..
| |
Collapse
|