1
|
Borges GH, Lins-Candeiro CL, Henriques IV, de Brito Junior RB, Pithon MM, Paranhos LR. Exploring the genetics, mechanisms, and therapeutic innovations in non-syndromic tooth agenesis. Morphologie 2024; 109:100941. [PMID: 39657464 DOI: 10.1016/j.morpho.2024.100941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 12/12/2024]
Abstract
Tooth agenesis is the congenital absence of one or more teeth in the normal series due to failures during dental development in the odontogenesis process. Although tooth development mechanisms are more precise in the literature, the etiology of non-syndromic tooth agenesis remains partially unknown. Mutations in genes that regulate the transcription factors involved in tooth development are associated with this condition. Despite advances in genetic research, questions remain about whose understanding might enable more precise and customized treatments. This study aimed to explain the molecular mechanisms associated with non-syndromic tooth agenesis and treatment progression regarding the condition in genetics. The search was non-systematic and performed in MedLine (via PubMed). The inclusion criteria were observational and experimental studies published in English, Portuguese, and Spanish, with open access and without time restrictions. The data analysis was narrative/descriptive. Fifty-three articles were selected. The primary genes associated with non-syndromic tooth agenesis identified in the study include PAX9 and MSX1 - essential for molar and premolar formation; WNT10A and WNT10B - involved in cell signaling during odontogenesis; AXIN2 - related to the regulation of cell control and colorectal cancer risk; EDA and EDAR - crucial for ectodermal structures; and BMP4 - regulates cell differentiation and morphogenesis. These lesions directly affect tooth formation and quantity. Understanding these genetic foundations and the molecular mechanisms of tooth agenesis is essential to improve diagnosis, develop customized therapies, and enhance patients' quality of life. Continuous research is critical to establish genetic-based therapeutic innovations.
Collapse
Affiliation(s)
- Guilherme Henrique Borges
- Postgraduate Program in Dentistry, Faculty of Dentistry, Universidade Federal de Uberlândia, Uberlândia, Brazil.
| | - Caio Luiz Lins-Candeiro
- Postgraduate Program in Dentistry, Faculty of Dentistry, Universidade Federal de Uberlândia, Uberlândia, Brazil.
| | | | - Rui Barbosa de Brito Junior
- Department of Molecular Biology, Dentistry Course, Faculdade São Leopoldo Mandic, Campinas, São Paulo, Brazil.
| | - Matheus Melo Pithon
- Department of Health, Faculty of Dentistry, Universidade Estadual do Sudoeste da Bahia, Bahia, Brazil.
| | - Luiz Renato Paranhos
- Department of Preventive and Community Dentistry, Faculty of Dentistry, Universidade Federal de Uberlândia, Uberlândia, Brazil.
| |
Collapse
|
2
|
Kim YJ, Gu SY, Chae W, Kim SH, Kim JW. Critical Considerations in Calling Disease-Causing EDAR Mutations in Nonsyndromic Oligodontia. J Clin Med 2024; 13:7328. [PMID: 39685785 DOI: 10.3390/jcm13237328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/23/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
Background/Objectives: Oligodontia, the absence of six or more teeth excluding third molars, is a rare genetic condition, unlike hypodontia (missing one or more teeth), which is a relatively common human disease. Methods: To identify the genetic etiology of nonsyndromic oligodontia (NSO) families, we performed mutational analysis and investigated the functional effects of identified EDAR mutations. Whole-exome sequencing was conducted on recruited families with NSO. Bioinformatic analysis identified mutations in oligodontia-causing candidate genes, which were confirmed by Sanger sequencing and segregation within families. The impact of EDAR mutations on the EDA signaling pathway was assessed using luciferase activity analysis. Results:EDAR mutations were identified in three NSO families. A homozygous missense EDAR mutation (NM_022336.4: c.319A>G p.(Met107Val)) was found in the singleton proband of family 1. The proband of family 2 carried compound heterozygous EDAR mutations: a maternal missense mutation (c.319A>G p.(Met107Val)) and a paternal missense variant (c.1270G>A p.(Val424Met)). The proband of family 3 had heterozygous EDAR mutations: a maternal missense mutation (c.389T>A p.(Ile130Asn)) and paternal intronic variants in cis (c.[357-4G>A;440+50C>T]). Luciferase assays confirmed reduced transcriptional activity for all identified missense mutations, while splicing assays revealed altered splicing patterns. Conclusions: In conclusion, recessive EDAR mutations, including novel ones, were identified in NSO families, and their pathological mechanism was explored through transcriptional activity measurements.
Collapse
Affiliation(s)
- Youn Jung Kim
- Department of Pediatric Dentistry, School of Dentistry & Dental Research Institute, Seoul National University, Seoul 03080, Republic of Korea
| | - Se-Young Gu
- Department of Pediatric Dentistry, School of Dentistry & Dental Research Institute, Seoul National University, Seoul 03080, Republic of Korea
| | - Wonseon Chae
- Department of Pediatric Dentistry, School of Dentistry & Dental Research Institute, Seoul National University, Seoul 03080, Republic of Korea
| | - Seon Hee Kim
- Department of Pediatric Dentistry, School of Dentistry & Dental Research Institute, Seoul National University, Seoul 03080, Republic of Korea
| | - Jung-Wook Kim
- Department of Pediatric Dentistry, School of Dentistry & Dental Research Institute, Seoul National University, Seoul 03080, Republic of Korea
- Department of Molecular Genetics, School of Dentistry & Dental Research Institute, Seoul National University, Seoul 03080, Republic of Korea
| |
Collapse
|
3
|
Yu K, Sheng Y, Wang F, Yang S, Wan F, Lei M, Wu Y. Eight EDA mutations in Chinese patients with tooth agenesis and genotype-phenotype analysis. Oral Dis 2024; 30:4598-4607. [PMID: 38287639 DOI: 10.1111/odi.14878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/15/2023] [Accepted: 01/15/2024] [Indexed: 01/31/2024]
Abstract
OBJECTIVE Tooth agenesis is a common craniofacial malformation, which is often associated with gene mutations. The purpose of this research was to investigate and uncover ectodysplasin A (EDA) gene variants in eight Chinese families affected with tooth agenesis. METHODS Genomic DNA was extracted from tooth agenesis families and sequenced using whole-exome sequencing. The expression of ectodysplasin A1 (EDA1) protein was studied by western blot, binding activity with receptor was tested by pull-down and the NF-κB transcriptional activity was analyzed by Dual luciferase assay. RESULTS Eight EDA missense variants were discovered, of which two (c.T812C, c.A1073G) were novel. The bioinformatics analysis indicated that these variants might be pathogenic. The tertiary structure analysis revealed that these eight variants could cause structural damage to EDA proteins. In vitro functional studies demonstrated that the variants greatly affect protein stability or impair the EDA-EDAR interaction; thereby significantly affecting the downstream NF-κb transcriptional activity. In addition, we summarized the genotype-phenotype correlation caused by EDA variants and found that EDA mutations leading to NSTA are mostly missense mutations located in the TNF domain. CONCLUSION Our results broaden the variant spectrum of the EDA gene associated with tooth agenesis and provide valuable information for future genetic counseling.
Collapse
Affiliation(s)
- Kang Yu
- Department of Second Dental Center, Ninth People's Hospital Affiliated with Shanghai Jiao Tong University, School of Medicine, Shanghai Key Laboratory of Stomatology, National Clinical Research Center of Stomatology, Shanghai, China
- Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Precision Medicine, Shanghai, China
| | - Yihan Sheng
- Department of Second Dental Center, Ninth People's Hospital Affiliated with Shanghai Jiao Tong University, School of Medicine, Shanghai Key Laboratory of Stomatology, National Clinical Research Center of Stomatology, Shanghai, China
- Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feng Wang
- Department of Second Dental Center, Ninth People's Hospital Affiliated with Shanghai Jiao Tong University, School of Medicine, Shanghai Key Laboratory of Stomatology, National Clinical Research Center of Stomatology, Shanghai, China
- Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuwen Yang
- Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Precision Medicine, Shanghai, China
| | - Futang Wan
- Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Precision Medicine, Shanghai, China
| | - Ming Lei
- Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Precision Medicine, Shanghai, China
| | - Yiqun Wu
- Department of Second Dental Center, Ninth People's Hospital Affiliated with Shanghai Jiao Tong University, School of Medicine, Shanghai Key Laboratory of Stomatology, National Clinical Research Center of Stomatology, Shanghai, China
- Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
4
|
Ouyang T, Chen D, Ma Z, Li X, Cao G, Lin L, Zeng M, Chen T. Treatment strategy for patient with non-syndromic tooth agenesis: a case report and literature review. BMC Oral Health 2024; 24:840. [PMID: 39048976 PMCID: PMC11270777 DOI: 10.1186/s12903-024-04613-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 07/16/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND Non-syndromic tooth agenesis (NSTA) is a type of ectodermal dysplasia (ED) in which patients with non-syndromic oligodontia may only affect teeth. No pathological findings were found in other tissues of the ectodermal. Herein, we report a case of a NSTA patient with severe dental anxiety and poor oral health. CASE PRESENTATION A 5-year-old boy without systemic diseases presented as a patient with oligodontia, extensive caries, and periapical periodontitis. Molecular genetic analysis found a mutation in the Ectodysplasin A (EDA) gene, confirming the diagnosis of NSTA. CONCLUSION Tooth agenesis (TA) is the most common ectodermal developmental abnormality in humans. Non-syndromic oligodontia patients often seek treatment in the department of stomatology. Because of their complex oral conditions, these patients should be provided with a systematic and personalized treatment plan.
Collapse
Affiliation(s)
- Tianfeng Ouyang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, 1838 N Guangzhou RD, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Dong Chen
- Department of Stomatology, Nanfang Hospital, Southern Medical University, 1838 N Guangzhou RD, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Zeli Ma
- Department of Stomatology, Nanfang Hospital, Southern Medical University, 1838 N Guangzhou RD, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Xin Li
- Department of Stomatology, Nanfang Hospital, Southern Medical University, 1838 N Guangzhou RD, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Ge Cao
- Department of Stomatology, Nanfang Hospital, Southern Medical University, 1838 N Guangzhou RD, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Lin Lin
- Department of Stomatology, Nanfang Hospital, Southern Medical University, 1838 N Guangzhou RD, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Ming Zeng
- Department of Stomatology, Nanfang Hospital, Southern Medical University, 1838 N Guangzhou RD, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Ting Chen
- Department of Stomatology, Nanfang Hospital, Southern Medical University, 1838 N Guangzhou RD, Guangzhou, 510080, Guangdong, People's Republic of China.
| |
Collapse
|
5
|
Grün P, Pfaffeneder-Mantai F, Leunig N, Bytyqi D, Maier C, Gencik M, Bandura P, Turhani D. Bimaxillary fixed implant-supported zirconium oxide prosthesis therapy of an adolescent patient with non-syndromic oligodontia and two WNT10 variants: a case report. Ann Med Surg (Lond) 2024; 86:3072-3081. [PMID: 38694351 PMCID: PMC11060206 DOI: 10.1097/ms9.0000000000001936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 02/29/2024] [Indexed: 05/04/2024] Open
Abstract
Introduction and importance Oligodontia is a rare genetic condition characterized by more than six congenitally missing teeth, either as an isolated non-syndromic condition or in association with other genetic syndromes. The impact of WNT10A variants on dental development increases with the presence of the c.321C>A variant and the number of missing teeth. Case presentation A 21-year-old man with non-syndromic oligodontia was diagnosed at 15 years of age with misaligned teeth, speech problems, and the absence of 24 permanent teeth. Interdisciplinary collaboration between specialists was initiated to enable comprehensive treatment. DNA analysis confirmed that the patient was a carrier of the known pathogenic WNT10A variant c321C>A and WNT10A variant c.113G>T of unknown clinical significance. Clinical discussion Dental implants are a common treatment; however, bone development challenges in adolescent patients with non-syndromic oligodontia necessitate careful planning to ensure implant success. Many WNT variants play crucial roles in tooth development and are directly involved in non-syndromic oligodontia, especially the WNT10 variant c.321C>A. Conclusion A full-arch implant-supported monolithic zirconia screw-retained fixed prosthesis is a viable treatment option for young adults with non-syndromic oligodontia. Further studies are needed to clarify the possible amplifying effect of the WNT10A variants c321C>A and c.113G>T on the pathogenic phenotype of non-syndromic oligodontia.
Collapse
Affiliation(s)
- Pascal Grün
- Center for Oral and Maxillofacial Surgery, Department of Dentistry
| | - Florian Pfaffeneder-Mantai
- Center for Oral and Maxillofacial Surgery, Department of Dentistry
- Division for Chemistry and Physics of Materials, Department of Medicine, Faculty of Medicine and Dentistry, Danube Private University, Krems, Austria
| | - Nikolai Leunig
- Center for Oral and Maxillofacial Surgery, Department of Dentistry
| | - Ditjon Bytyqi
- Center for Oral and Maxillofacial Surgery, Department of Dentistry
| | - Cornelia Maier
- Practice for Orthodontics, Hohenauerstraße, Mühldorf am Inn, Germany
| | - Martin Gencik
- Practice for Human Genetics, Brünnlbadgasse, Vienna, Austria
| | - Patrick Bandura
- Center for Oral and Maxillofacial Surgery, Department of Dentistry
| | - Dritan Turhani
- Center for Oral and Maxillofacial Surgery, Department of Dentistry
| |
Collapse
|
6
|
Liu Y, Yang J, Li X, Chen S, Zhu C, Shi Y, Dang S, Zhang W, Li W. Pan-cancer analysis reveals the characteristics and roles of tooth agenesis mutant genes. Medicine (Baltimore) 2023; 102:e36001. [PMID: 38115305 PMCID: PMC10727548 DOI: 10.1097/md.0000000000036001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/13/2023] [Accepted: 10/17/2023] [Indexed: 12/21/2023] Open
Abstract
Tooth development is regulated by numerous genes and signaling pathways. Some studies suggest that mutations in these genes may be associated with several cancer types. However, the tooth agenesis mutated genes role in the prognosis and their clinical therapeutic potentials in pan-cancer have not been elaborately explored. Moreover, the intrinsic correlation between tooth agenesis and cancers also needs to be further verified. We preliminarily analyzed expression levels and prognostic values of causative genes of tooth agenesis, and explored the correlation between the expression of tooth agenesis mutated genes and TME, Stemness score, clinical characteristic, immune subtype, and drug sensitivity in pan-cancer, which based on updated public databases and integrated some bioinformatics analysis methods. In addition, we conducted the enrichment analysis of tooth agenesis mutant genes from KOBAS database. We observed that TA mutant genes had significant gene expression differences in multiple cancer types compared with normal tissues. The expression of causative genes of TA is associated with the prognosis in several cancers from different databases. For example, AXIN2 and MSX1 were correlated to the overall survival (OS) of uterine corpus endometrial carcinoma. PAX9 and TP63 were related to OS of lung squamous cell carcinoma. And TP63 was associated with OS in breast invasive carcinoma and pancreatic adenocarcinoma. Furthermore, the expression of TA mutant genes also has a significant correlation with stromal and immune scores, and RNA stemness score and DNA stemness score in pan-cancer. Besides, we observed that all causative genes of TA were significantly correlated with immune subtypes. Moreover, KEGG pathway analysis showed that causative genes of TA were associated with the development and progression of breast cancer, basal cell carcinoma, gastric cancer, and hepatocellular carcinoma. Finally, AXIN2 expression has a significantly positive or negative correlation with drug sensitivity. Our study indicates the great potential of TA mutant genes as biomarkers for prognosis and provides valuable strategies for further investigation of TA mutant genes as potential therapeutic targets in cancers. Our study can further verify that there may be an intrinsic correlation between tooth agenesis and the occurrence of multiple cancers.
Collapse
Affiliation(s)
- Yating Liu
- Cancer Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Jie Yang
- Department of Pediatric Dentistry, Peking University School of Stomatology, Beijing, China
| | - Xinyu Li
- Cancer Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Shanshan Chen
- Cancer Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Changyu Zhu
- Cancer Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Yijun Shi
- Cancer Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Shoutao Dang
- Cancer Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Weitao Zhang
- Cancer Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Wei Li
- Cancer Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
7
|
Yang J, Liao Y, Wang B, Cui L, Yu X, Wu F, Zhang Y, Liu R, Yao Y. EDARADD promotes colon cancer progression by suppressing E3 ligase Trim21-mediated ubiquitination and degradation of Snail. Cancer Lett 2023; 577:216427. [PMID: 37838280 DOI: 10.1016/j.canlet.2023.216427] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 10/16/2023]
Abstract
Tumor cell migration, specifically epithelial-mesenchymal transition (EMT), serves as a key contributor to treatment failure in colon cancer patients. However, the limited comprehension of its genetic and biological aspects presents challenges for its investigation. EDAR-associated death domain (EDARADD), an important TNFR superfamily member, is elevated in colon cancer. However, it remains unclear about the exact role of EDARADD in the progression of colon cancer metastasis. In this study, we initially demonstrated that both protein and mRNA levels of EDDARADD are elevated in colon cancer tissues and cells, associated with reduced overall survival. Furthermore, functional experiments demonstrated that EDARADD promotes colon cancer cell proliferation and participates in EMT both in vitro and vivo. Mechanistically, Co-IP verified EDARADD could stabilize Snail1 by interacting with E3 ubiquitin ligase Trim21 to inhibit ubiquitination of Snail1. Interestingly, RNA-seq and ubiquitination assay revealed EDARADD's dual downregulation of Trim21 expression at the translational level via Cul1-mediated ubiquitin degradation, and at the transcriptional level through PPARa regulation. Moreover, EDARADD activates NF-κB signaling and experiences feedback transcriptional regulation by p65. In conclusion, this study highlights the signal pathway of EDARADD-PPARa-Trim21-Snail1-EMT and a feedback regulation of NF-κB signaling on EDARADD, which indicated EDARADD as an emerging therapeutic target for colon cancer.
Collapse
Affiliation(s)
- Jiani Yang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province, China
| | - Yuanyu Liao
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province, China
| | - Bojun Wang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province, China; Clinical Research Center for Colorectal Cancer in Heilongjiang, Harbin Medical University Cancer Hospital, Harbin, 150080, China
| | - Luying Cui
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province, China
| | - Xuefan Yu
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province, China
| | - Feng Wu
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, 150080, China; Department of Gastroenterology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150000, China
| | - Yanqiao Zhang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province, China; Clinical Research Center for Colorectal Cancer in Heilongjiang, Harbin Medical University Cancer Hospital, Harbin, 150080, China; Key Laboratory of Tumor Immunology in Heilongjiang, Harbin Medical University Cancer Hospital, Harbin, 150080, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, 150080, China.
| | - Ruiqi Liu
- Department of Radiation Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China.
| | - Yuanfei Yao
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province, China; Key Laboratory of Tumor Immunology in Heilongjiang, Harbin Medical University Cancer Hospital, Harbin, 150080, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, 150080, China.
| |
Collapse
|
8
|
Fang Z, Atukorallaya D. Count Me in, Count Me out: Regulation of the Tooth Number via Three Directional Developmental Patterns. Int J Mol Sci 2023; 24:15061. [PMID: 37894742 PMCID: PMC10606784 DOI: 10.3390/ijms242015061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/05/2023] [Accepted: 10/08/2023] [Indexed: 10/29/2023] Open
Abstract
Tooth number anomalies, including hyperdontia and hypodontia, are common congenital dental problems in the dental clinic. The precise number of teeth in a dentition is essential for proper speech, mastication, and aesthetics. Teeth are ectodermal organs that develop from the interaction of a thickened epithelium (dental placode) with the neural-crest-derived ectomesenchyme. There is extensive histological, molecular, and genetic evidence regarding how the tooth number is regulated in this serial process, but there is currently no universal classification for tooth number abnormalities. In this review, we propose a novel regulatory network for the tooth number based on the inherent dentition formation process. This network includes three intuitive directions: the development of a single tooth, the formation of a single dentition with elongation of the continual lamina, and tooth replacement with the development of the successional lamina. This article summarizes recent reports on early tooth development and provides an analytical framework to classify future relevant experiments.
Collapse
Affiliation(s)
| | - Devi Atukorallaya
- Department of Oral Biology, Dr. Gerald Niznick College of Dentistry, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E0W2, Canada;
| |
Collapse
|