1
|
Boët E, Saland E, Skuli S, Griessinger E, Sarry JE. [ Mitohormesis: a key driver of the therapy resistance in cancer cells]. C R Biol 2024; 347:59-75. [PMID: 39171610 DOI: 10.5802/crbiol.154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/19/2024] [Accepted: 05/23/2024] [Indexed: 08/23/2024]
Abstract
A large body of literature highlights the importance of energy metabolism in the response of haematological malignancies to therapy. In this review, we are particularly interested in acute myeloid leukaemia, where mitochondrial metabolism plays a key role in response and resistance to treatment. We describe the new concept of mitohormesis in the response to therapy-induced stress and in the initiation of relapse in this disease.
Collapse
|
2
|
Hashem J, Alkhalaileh L, Abushukair H, Ayesh M. miRNA Profiles in Patients with Hematological Malignancy at Different Stages of the Disease: A Preliminary Study. Biomedicines 2024; 12:1924. [PMID: 39200388 PMCID: PMC11351647 DOI: 10.3390/biomedicines12081924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/13/2024] [Accepted: 08/16/2024] [Indexed: 09/02/2024] Open
Abstract
The dysregulation of miRNA expression has been shown to impact cellular physiology and tumorigenesis. Studies have reported several miRNA regulatory elements and pathways that play a significant role in the diagnosis, prognosis, and treatment of hematological malignancies. This is the first study to test the differential expression of miRNAs at crucial stages of the disease, specifically newly diagnosed, resistant to treatment, and remission. Circulating miRNAs extracted from the blood samples of 18 patients diagnosed with leukemia or lymphoma at different stages and 2 healthy controls were quantified by qPCR using a panel of 96 tumorigenic miRNAs. An enrichment analysis was performed to understand the mechanisms through which differential miRNA expression affects cellular and molecular functions. Significant upregulation of hsa-miR-1, hsa-miR-20a-5p, hsa-miR-23a-3p, hsa-miR-92b3p, and hsa-miR-196a-5p was detected among the different stages of leukemia and lymphoma. mir-1 and mir-196a-5p were upregulated in the remission stage of leukemia, while mir-20a-5p, mir-23a-3p, and mir-92b-3p were upregulated during the resistant stage of lymphoma. The enrichment analysis revealed these miRNAs' involvement in the RAS signaling pathway, TGF-β signaling, and apoptotic pathways, among others. This study highlights new biomarkers that could be used as potential targets for disease diagnosis, prognosis, and treatment, therefore enhancing personalized treatments and survival outcomes for patients.
Collapse
Affiliation(s)
- Jood Hashem
- Department of Medical Laboratory Sciences, Jordan University of Science and Technology, Irbid 22110, Jordan;
| | - Lujain Alkhalaileh
- Department of Medical Laboratory Sciences, Jordan University of Science and Technology, Irbid 22110, Jordan;
| | - Hassan Abushukair
- Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan; (H.A.); (M.A.)
| | - Mahmoud Ayesh
- Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan; (H.A.); (M.A.)
| |
Collapse
|
3
|
Zhao B, Zang Y, Gui L, Xiang Y, Zhang Z, Sun X, Fan J, Huang L. The effect of miR-223-3p on endothelial cells in coronary artery disease. In Vitro Cell Dev Biol Anim 2024; 60:151-160. [PMID: 38155264 DOI: 10.1007/s11626-023-00842-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 12/03/2023] [Indexed: 12/30/2023]
Abstract
Endothelial cell damage and dysfunction are crucial factors in the development and early stages of coronary artery disease (CAD) and apoptosis plays a significant role in this process. In this study, We aimed to simulate the CAD vascular microenvironment by treating endothelial cells with tumor necrosis factor alpha (TNF-α) to construct an endothelial cell apoptosis model. Our findings revealed that the TNF-α model resulted in increased micro-RNA 223-3p (miR-223-3p) mRNA and Bax protein expression, decreased kruppel-like factor 15 (KLF15) and Bcl-2 protein expression, and decreased cell viability. More importantly, in the TNF-α-induced endothelial cell apoptosis model, transfection with the miR-223-3p inhibitor reversed the effects of TNF-α on Bcl-2, Bax expression. We transfected miRNA-223-3p mimics or inhibitors into endothelial cells and assessed miR-223-3p levels using RT-PCR. Cell viability was detected using CCK8. Western blot technology was used to detect the expression of Bcl-2, Bax, and KLF15. In summary, this study demonstrates the role and possible mechanism of miR-223-3p in endothelial cells during CAD, suggesting that miR-223-3p may serve as a promising therapeutic target in CAD by regulating KLF15.
Collapse
Affiliation(s)
- Boxin Zhao
- Department of Clinical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Yunhui Zang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Lin Gui
- Department of Clinical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Yingyu Xiang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Zhiyong Zhang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Xueyuan Sun
- Department of Clinical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Jingyao Fan
- Department of Clinical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Lijuan Huang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China.
| |
Collapse
|
4
|
Jimbu L, Mesaros O, Joldes C, Neaga A, Zaharie L, Zdrenghea M. MicroRNAs Associated with a Bad Prognosis in Acute Myeloid Leukemia and Their Impact on Macrophage Polarization. Biomedicines 2024; 12:121. [PMID: 38255226 PMCID: PMC10813737 DOI: 10.3390/biomedicines12010121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/24/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
MicroRNAs (miRNAs) are short, non-coding ribonucleic acids (RNAs) associated with gene expression regulation. Since the discovery of the first miRNA in 1993, thousands of miRNAs have been studied and they have been associated not only with physiological processes, but also with various diseases such as cancer and inflammatory conditions. MiRNAs have proven to be not only significant biomarkers but also an interesting therapeutic target in various diseases, including cancer. In acute myeloid leukemia (AML), miRNAs have been regarded as a welcome addition to the limited therapeutic armamentarium, and there is a vast amount of data on miRNAs and their dysregulation. Macrophages are innate immune cells, present in various tissues involved in both tissue repair and phagocytosis. Based on their polarization, macrophages can be classified into two groups: M1 macrophages with pro-inflammatory functions and M2 macrophages with an anti-inflammatory action. In cancer, M2 macrophages are associated with tumor evasion, metastasis, and a poor outcome. Several miRNAs have been associated with a poor prognosis in AML and with either the M1 or M2 macrophage phenotype. In the present paper, we review miRNAs with a reported negative prognostic significance in cancer with a focus on AML and analyze their potential impact on macrophage polarization.
Collapse
Affiliation(s)
- Laura Jimbu
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Babes Str., 400012 Cluj-Napoca, Romania; (O.M.); (C.J.); (A.N.); (L.Z.); (M.Z.)
- Department of Hematology, Ion Chiricuta Oncology Institute, 34-36 Republicii Str., 400015 Cluj-Napoca, Romania
| | - Oana Mesaros
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Babes Str., 400012 Cluj-Napoca, Romania; (O.M.); (C.J.); (A.N.); (L.Z.); (M.Z.)
- Department of Hematology, Ion Chiricuta Oncology Institute, 34-36 Republicii Str., 400015 Cluj-Napoca, Romania
| | - Corina Joldes
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Babes Str., 400012 Cluj-Napoca, Romania; (O.M.); (C.J.); (A.N.); (L.Z.); (M.Z.)
| | - Alexandra Neaga
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Babes Str., 400012 Cluj-Napoca, Romania; (O.M.); (C.J.); (A.N.); (L.Z.); (M.Z.)
| | - Laura Zaharie
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Babes Str., 400012 Cluj-Napoca, Romania; (O.M.); (C.J.); (A.N.); (L.Z.); (M.Z.)
- Department of Hematology, Ion Chiricuta Oncology Institute, 34-36 Republicii Str., 400015 Cluj-Napoca, Romania
| | - Mihnea Zdrenghea
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Babes Str., 400012 Cluj-Napoca, Romania; (O.M.); (C.J.); (A.N.); (L.Z.); (M.Z.)
- Department of Hematology, Ion Chiricuta Oncology Institute, 34-36 Republicii Str., 400015 Cluj-Napoca, Romania
| |
Collapse
|