1
|
Duneton C, Winterberg PD, Ford ML. Activation and regulation of alloreactive T cell immunity in solid organ transplantation. Nat Rev Nephrol 2022; 18:663-676. [PMID: 35902775 PMCID: PMC9968399 DOI: 10.1038/s41581-022-00600-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2022] [Indexed: 01/18/2023]
Abstract
Transplantation is the only curative treatment for patients with kidney failure but it poses unique immunological challenges that must be overcome to prevent allograft rejection and ensure long-term graft survival. Alloreactive T cells are important contributors to graft rejection, and a clearer understanding of the mechanisms by which these cells recognize donor antigens - through direct, indirect or semi-direct pathways - will facilitate their therapeutic targeting. Post-T cell priming rejection responses can also be modified by targeting pathways that regulate T cell trafficking, survival cytokines or innate immune activation. Moreover, the quantity and quality of donor-reactive memory T cells crucially shape alloimmune responses. Of note, many fundamental concepts in transplant immunology have been derived from models of infection. However, the programmed differentiation of allograft-specific T cell responses is probably distinct from that of pathogen-elicited responses, owing to the dearth of pathogen-derived innate immune activation in the transplantation setting. Understanding the fundamental (and potentially unique) immunological pathways that lead to allograft rejection is therefore a prerequisite for the rational development of therapeutics that promote transplantation tolerance.
Collapse
Affiliation(s)
- Charlotte Duneton
- Paediatric Nephrology, Robert Debré Hospital, Paris, France
- Emory Transplant Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Pamela D Winterberg
- Paediatric Nephrology, Emory University Department of Paediatrics and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Mandy L Ford
- Emory Transplant Center, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
2
|
Iglesias M, Brennan DC, Larsen CP, Raimondi G. Targeting inflammation and immune activation to improve CTLA4-Ig-based modulation of transplant rejection. Front Immunol 2022; 13:926648. [PMID: 36119093 PMCID: PMC9478663 DOI: 10.3389/fimmu.2022.926648] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022] Open
Abstract
For the last few decades, Calcineurin inhibitors (CNI)-based therapy has been the pillar of immunosuppression for prevention of organ transplant rejection. However, despite exerting effective control of acute rejection in the first year post-transplant, prolonged CNI use is associated with significant side effects and is not well suited for long term allograft survival. The implementation of Costimulation Blockade (CoB) therapies, based on the interruption of T cell costimulatory signals as strategy to control allo-responses, has proven potential for better management of transplant recipients compared to CNI-based therapies. The use of the biologic cytotoxic T-lymphocyte associated protein 4 (CTLA4)-Ig is the most successful approach to date in this arena. Following evaluation of the BENEFIT trials, Belatacept, a high-affinity version of CTLA4-Ig, has been FDA approved for use in kidney transplant recipients. Despite its benefits, the use of CTLA4-Ig as a monotherapy has proved to be insufficient to induce long-term allograft acceptance in several settings. Multiple studies have demonstrated that events that induce an acute inflammatory response with the consequent release of proinflammatory cytokines, and an abundance of allograft-reactive memory cells in the recipient, can prevent the induction of or break established immunomodulation induced with CoB regimens. This review highlights advances in our understanding of the factors and mechanisms that limit CoB regimens efficacy. We also discuss recent successes in experimentally designing complementary therapies that favor CTLA4-Ig effect, affording a better control of transplant rejection and supporting their clinical applicability.
Collapse
Affiliation(s)
- Marcos Iglesias
- Vascularized and Composite Allotransplantation (VCA) Laboratory, Department of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- *Correspondence: Giorgio Raimondi, ; Marcos Iglesias,
| | - Daniel C. Brennan
- Division of Nephrology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Christian P. Larsen
- Department of Surgery, Emory University School of Medicine, Atlanta, GA, United States
| | - Giorgio Raimondi
- Vascularized and Composite Allotransplantation (VCA) Laboratory, Department of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- *Correspondence: Giorgio Raimondi, ; Marcos Iglesias,
| |
Collapse
|
3
|
Toward Development of the Delayed Tolerance Induction Protocol for Vascularized Composite Allografts in Nonhuman Primates. Plast Reconstr Surg 2020; 145:757e-768e. [PMID: 32221215 DOI: 10.1097/prs.0000000000006676] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Transplantation of vascularized composite allografts is limited mainly by the need for life-long immunosuppression. The consequent side effects and looming specter of chronic rejection portend eventual allograft loss. Development of tolerogenic protocols is thus of utmost importance to the field of vascularized composite allograft transplantation. METHODS With a modified delayed tolerance induction protocol, 10 cynomolgus macaques received hand (n = 2) or face vascularized composite allografts across both full and haploidentical major histocompatibility complex barriers before donor bone marrow transplantation at a later date. Protocol and for-cause allograft skin biopsies were performed for immunohistochemical analysis and analysis of donor-recipient leukocyte contribution; mixed chimerism in peripheral blood and in vitro immune responses were assessed serially. RESULTS Before bone marrow transplantation, maintenance immunosuppression for 4 months led to lethal complications, including posttransplant lymphoproliferative disorder (in two of four recipients), which necessitated early study termination. Shortening the maintenance period to 2 months was clinically relevant and allowed all subsequent subjects (n = 6) to complete the delayed tolerance induction protocol. Acute rejection developed within the first 2 to 4 weeks after transplantation, with corresponding near-complete turnover of allograft leukocytes from donor to recipient origin, but donor-specific antibodies remained negative. After bone marrow transplantation, mixed chimerism failed to develop, although carboxyfluorescein succinimidyl ester mixed lymphocyte reaction demonstrated generalized unresponsiveness. However, the accrual of subsequent rejection episodes eventually culminated in graft vasculopathy and irreversible allograft loss. CONCLUSIONS Despite the various advantages of the delayed tolerance induction protocol, it failed to reliably induce mixed chimerism and thus immunologic tolerance to vascularized composite allografts, given currently available immunosuppression treatment options. Ongoing work shows promise in overcoming these limitations.
Collapse
|
4
|
Zeng S, Xiao Z, Wang Q, Guo Y, He Y, Zhu Q, Zou Y. Strategies to achieve immune tolerance in allogeneic solid organ transplantation. Transpl Immunol 2020; 58:101250. [DOI: 10.1016/j.trim.2019.101250] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 10/19/2019] [Accepted: 10/21/2019] [Indexed: 12/14/2022]
|
5
|
Hartigan CR, Sun H, Ford ML. Memory T‐cell exhaustion and tolerance in transplantation. Immunol Rev 2019; 292:225-242. [DOI: 10.1111/imr.12824] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 11/06/2019] [Accepted: 11/08/2019] [Indexed: 12/16/2022]
Affiliation(s)
| | - He Sun
- Emory Transplant Center and Department of Surgery Emory University Atlanta GA USA
- Department of Hepatobiliary Surgery and Transplantation The First Hospital of China Medical University Shenyang China
| | - Mandy L. Ford
- Emory Transplant Center and Department of Surgery Emory University Atlanta GA USA
| |
Collapse
|
6
|
Davenport B, Eberlein J, Nguyen TT, Victorino F, Jhun K, Abuirqeba H, van der Heide V, Heeger P, Homann D. Aging boosts antiviral CD8+T cell memory through improved engagement of diversified recall response determinants. PLoS Pathog 2019; 15:e1008144. [PMID: 31697793 PMCID: PMC6863560 DOI: 10.1371/journal.ppat.1008144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 11/19/2019] [Accepted: 10/10/2019] [Indexed: 12/13/2022] Open
Abstract
The determinants of protective CD8+ memory T cell (CD8+TM) immunity remain incompletely defined and may in fact constitute an evolving agency as aging CD8+TM progressively acquire enhanced rather than impaired recall capacities. Here, we show that old as compared to young antiviral CD8+TM more effectively harness disparate molecular processes (cytokine signaling, trafficking, effector functions, and co-stimulation/inhibition) that in concert confer greater secondary reactivity. The relative reliance on these pathways is contingent on the nature of the secondary challenge (greater for chronic than acute viral infections) and over time, aging CD8+TM re-establish a dependence on the same accessory signals required for effective priming of naïve CD8+T cells in the first place. Thus, our findings reveal a temporal regulation of complementary recall response determinants that is consistent with the recently proposed "rebound model" according to which aging CD8+TM properties are gradually aligned with those of naïve CD8+T cells; our identification of a broadly diversified collection of immunomodulatory targets may further provide a foundation for the potential therapeutic "tuning" of CD8+TM immunity.
Collapse
Affiliation(s)
- Bennett Davenport
- Department of Anesthesiology & Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, Colorado, United States of America
- Integrated Department of Immunology, University of Colorado Denver and National Jewish Health, Denver, Colorado, United States of America
- Diabetes, Obesity & Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Jens Eberlein
- Department of Anesthesiology & Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, Colorado, United States of America
| | - Tom T. Nguyen
- Department of Anesthesiology & Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, Colorado, United States of America
| | - Francisco Victorino
- Department of Anesthesiology & Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, Colorado, United States of America
- Integrated Department of Immunology, University of Colorado Denver and National Jewish Health, Denver, Colorado, United States of America
| | - Kevin Jhun
- Diabetes, Obesity & Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Haedar Abuirqeba
- Diabetes, Obesity & Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Verena van der Heide
- Diabetes, Obesity & Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Peter Heeger
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Dirk Homann
- Department of Anesthesiology & Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, Colorado, United States of America
- Integrated Department of Immunology, University of Colorado Denver and National Jewish Health, Denver, Colorado, United States of America
- Diabetes, Obesity & Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
7
|
Hundrieser J, Hein R, Pokoyski C, Brinkmann A, Düvel H, Dinkel A, Trautewig B, Siegert JF, Römermann D, Petersen B, Schwinzer R. Role of human and porcine MHC DRB1 alleles in determining the intensity of individual human anti-pig T-cell responses. Xenotransplantation 2019; 26:e12523. [PMID: 31074044 DOI: 10.1111/xen.12523] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 04/10/2019] [Accepted: 04/12/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Differences in quality and strength of immune responses between individuals are mainly due to polymorphisms in major histocompatibility complex (MHC) molecules. Focusing on MHC class-II, we asked whether the intensity of human anti-pig T-cell responses is influenced by genetic variability in the human HLA-DRB1 and/or the porcine SLA-DRB1 locus. METHODS ELISpot assays were performed using peripheral blood mononuclear cells (PBMCs) from 62 HLA-DRB1-typed blood donors as responder and the porcine B cell line L23 as stimulator cells. Based on the frequency of IFN-γ-secreting cells, groups of weak, medium, and strong responder individuals were defined. Mixed lymphocyte reaction (MLR) assays were performed to study the stimulatory capacity of porcine PBMCs expressing different SLA-DRB1 alleles. RESULTS Concerning the MHC class-II configuration of human cells, we found a significant overrepresentation of HLA-DRB1*01 alleles in the medium/strong responder group as compared to individuals showing weak responses to stimulation with L23 cells. Evaluation of the role of MHC class-II variability in porcine stimulators revealed that cells expressing SLA-DRB1*06 alleles triggered strong proliferation in approximately 70% of humans. Comparison of amino acid sequences indicated that strong human anti-pig reactivity may be associated with a high rate of similarity between human and pig HLA/SLA-DRB1 alleles. CONCLUSION Variability in human and porcine MHC determines the intensity of individual human anti-pig T-cell responses. MHC typing and cross-matching of prospective recipients of xenografts and donor pigs could be relevant to select for donor-recipient combinations with minimal anti-porcine immunity.
Collapse
Affiliation(s)
- Joachim Hundrieser
- Transplant Laboratory, Department of General-, Visceral-, and Transplantation Surgery, Hannover Medical School, Hannover, Germany
| | - Rabea Hein
- Transplant Laboratory, Department of General-, Visceral-, and Transplantation Surgery, Hannover Medical School, Hannover, Germany
| | - Claudia Pokoyski
- Transplant Laboratory, Department of General-, Visceral-, and Transplantation Surgery, Hannover Medical School, Hannover, Germany
| | - Antje Brinkmann
- Transplant Laboratory, Department of General-, Visceral-, and Transplantation Surgery, Hannover Medical School, Hannover, Germany
| | - Heike Düvel
- Transplant Laboratory, Department of General-, Visceral-, and Transplantation Surgery, Hannover Medical School, Hannover, Germany
| | - Astrid Dinkel
- Transplant Laboratory, Department of General-, Visceral-, and Transplantation Surgery, Hannover Medical School, Hannover, Germany
| | - Britta Trautewig
- Transplant Laboratory, Department of General-, Visceral-, and Transplantation Surgery, Hannover Medical School, Hannover, Germany
| | - Janina-Franziska Siegert
- Transplant Laboratory, Department of General-, Visceral-, and Transplantation Surgery, Hannover Medical School, Hannover, Germany
| | - Dorothee Römermann
- Transplant Laboratory, Department of General-, Visceral-, and Transplantation Surgery, Hannover Medical School, Hannover, Germany
| | - Björn Petersen
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Mariensee, Germany
| | - Reinhard Schwinzer
- Transplant Laboratory, Department of General-, Visceral-, and Transplantation Surgery, Hannover Medical School, Hannover, Germany
| |
Collapse
|
8
|
Włodarczyk M, Ograczyk E, Kowalewicz-Kulbat M, Druszczyńska M, Rudnicka W, Fol M. Effect of Cyclophosphamide Treatment on Central and Effector Memory T Cells in Mice. Int J Toxicol 2018; 37:373-382. [PMID: 29923437 DOI: 10.1177/1091581818780128] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Immunological memory is a key feature of adaptive immunity. It provides the organism with long-lived and robust protection against infection. The important question is whether cyclophosphamide (CP), as immunosuppressive agent used in cancer therapy and in some autoimmune diseases, may act on the memory T-cell population. We investigated the effect of CP on the percentage of central memory T cells (TCM) and effector memory T cells (TEM) in the mouse model of CP-induced immunosuppression (8-10-week-old male C57BL/6 mice CP treated for 7 days at the daily dose of 50 μg/g body weight [bw], manifested the best immunosuppression status, as compared to lower doses of CP: 10 or 20 μg/g bw). The CP induced a significant decrease in the percentage of CD8+ (TCM), compared to nonimmunosuppressed mice. This effect was not observed in the case of CD4+ TCM population. The percentage of gated TEM with CD4 and CD8 phenotype was significantly decreased in CP-treated mice, as compared to the control ones. Taken together, the above data indicate that CP-induced immunosuppression in mice leads to a reduction in the abundance of central memory cells possessing preferentially CD8+ phenotype as well as to a reduction in the percentage of effector memory cells (splenocytes both CD4+ and CD8+), compared to the cells from nonimmunosuppressed mice. These findings in mice described in this article may contribute to the understanding of the complexity of the immunological responses in humans and extend research on the impact of the CP model of immunosuppression in mice and memory T-cell populations.
Collapse
Affiliation(s)
- Marcin Włodarczyk
- 1 Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Lodz, Łódź, Poland
| | - Elżbieta Ograczyk
- 1 Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Lodz, Łódź, Poland
| | - Magdalena Kowalewicz-Kulbat
- 1 Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Lodz, Łódź, Poland
| | - Magdalena Druszczyńska
- 1 Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Lodz, Łódź, Poland
| | - Wiesława Rudnicka
- 1 Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Lodz, Łódź, Poland
| | - Marek Fol
- 1 Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Lodz, Łódź, Poland
| |
Collapse
|
9
|
Litjens NHR, van der Wagen L, Kuball J, Kwekkeboom J. Potential Beneficial Effects of Cytomegalovirus Infection after Transplantation. Front Immunol 2018; 9:389. [PMID: 29545802 PMCID: PMC5838002 DOI: 10.3389/fimmu.2018.00389] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 02/12/2018] [Indexed: 01/03/2023] Open
Abstract
Cytomegalovirus (CMV) infection can cause significant complications after transplantation, but recent emerging data suggest that CMV may paradoxically also exert beneficial effects in two specific allogeneic transplant settings. These potential benefits have been underappreciated and are therefore highlighted in this review. First, after allogeneic hematopoietic stem cell transplantation (HSCT) for acute myeloid leukemia (AML) using T-cell and natural killer (NK) cell-replete grafts, CMV reactivation is associated with protection from leukemic relapse. This association was not observed for other hematologic malignancies. This anti-leukemic effect might be mediated by CMV-driven expansion of donor-derived memory-like NKG2C+ NK and Vδ2negγδ T-cells. Donor-derived NK cells probably recognize recipient leukemic blasts by engagement of NKG2C with HLA-E and/or by the lack of donor (self) HLA molecules. Vδ2negγδ T cells probably recognize as yet unidentified antigens on leukemic blasts via their TCR. Second, immunological imprints of CMV infection, such as expanded numbers of Vδ2negγδ T cells and terminally differentiated TCRαβ+ T cells, as well as enhanced NKG2C gene expression in peripheral blood of operationally tolerant liver transplant patients, suggest that CMV infection or reactivation may be associated with liver graft acceptance. Mechanistically, poor alloreactivity of CMV-induced terminally differentiated TCRαβ+ T cells and CMV-induced IFN-driven adaptive immune resistance mechanisms in liver grafts may be involved. In conclusion, direct associations indicate that CMV reactivation may protect against AML relapse after allogeneic HSCT, and indirect associations suggest that CMV infection may promote allograft acceptance after liver transplantation. The causative mechanisms need further investigations, but are probably related to the profound and sustained imprint of CMV infection on the immune system.
Collapse
Affiliation(s)
- Nicolle H R Litjens
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus MC, University Medical Center, Erasmus University Rotterdam, Rotterdam, Netherlands
| | - Lotte van der Wagen
- Laboratory of Translational Immunology, Department of Hematology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Jurgen Kuball
- Laboratory of Translational Immunology, Department of Hematology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Jaap Kwekkeboom
- Department of Gastroenterology and Hepatology, Erasmus MC, University Medical Center, Erasmus University Rotterdam, Rotterdam, Netherlands
| |
Collapse
|
10
|
Liu D, Badell IR, Ford ML. Selective CD28 blockade attenuates CTLA-4-dependent CD8+ memory T cell effector function and prolongs graft survival. JCI Insight 2018; 3:96378. [PMID: 29321374 DOI: 10.1172/jci.insight.96378] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 11/28/2017] [Indexed: 12/21/2022] Open
Abstract
Memory T cells pose a significant problem to successful therapeutic control of unwanted immune responses during autoimmunity and transplantation, as they are differentially controlled by cosignaling receptors such as CD28 and CTLA-4. Treatment with abatacept and belatacept impede CD28 signaling by binding to CD80 and CD86, but they also have the unintended consequence of blocking the ligands for CTLA-4, a process that may inadvertently boost effector responses. Here, we show that a potentially novel anti-CD28 domain antibody (dAb) that selectively blocks CD28 but preserves CTLA-4 coinhibition confers improved allograft survival in sensitized recipients as compared with CTLA-4 Ig. However, both CTLA-4 Ig and anti-CD28 dAb similarly and significantly reduced the accumulation of donor-reactive CD8+ memory T cells, demonstrating that regulation of the expansion of CD8+ memory T cell populations is controlled in part by CD28 signals and is not significantly impacted by CTLA-4. In contrast, selective CD28 blockade was superior to CTLA-4 Ig in inhibiting IFN-γ, TNF, and IL-2 production by CD8+ memory T cells, which in turn resulted in reduced recruitment of innate CD11b+ monocytes into allografts. Importantly, this superiority was CTLA-4 dependent, demonstrating that effector function of CD8+ memory T cells is regulated by the balance of CD28 and CTLA-4 signaling.
Collapse
|
11
|
Mahr B, Wekerle T. Murine models of transplantation tolerance through mixed chimerism: advances and roadblocks. Clin Exp Immunol 2017; 189:181-189. [PMID: 28395110 PMCID: PMC5508343 DOI: 10.1111/cei.12976] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2017] [Indexed: 02/06/2023] Open
Abstract
Organ transplantation is the treatment of choice for patients with end-stage organ failure, but chronic immunosuppression is taking its toll in terms of morbidity and poor efficacy in preventing late graft loss. Therefore, a drug-free state would be desirable where the recipient permanently accepts a donor organ while remaining otherwise fully immunologically competent. Mouse studies unveiled mixed chimerism as an effective approach to induce such donor-specific tolerance deliberately and laid the foundation for a series of clinical pilot trials. Nevertheless, its widespread clinical implementation is currently prevented by cytotoxic conditioning and limited efficacy. Therefore, the use of mouse studies remains an indispensable tool for the development of novel concepts with potential for translation and for the delineation of underlying tolerance mechanisms. Recent innovations developed in mice include the use of pro-apoptotic drugs or regulatory T cell (Treg ) transfer for promoting bone marrow engraftment in the absence of myelosuppression and new insight gained in the role of innate immunity and the interplay between deletion and regulation in maintaining tolerance in chimeras. Here, we review these and other recent advances in murine studies inducing transplantation tolerance through mixed chimerism and discuss both the advances and roadblocks of this approach.
Collapse
Affiliation(s)
- B. Mahr
- Section of Transplantation Immunology, Department of SurgeryMedical University of ViennaViennaAustria
| | - T. Wekerle
- Section of Transplantation Immunology, Department of SurgeryMedical University of ViennaViennaAustria
| |
Collapse
|
12
|
da Silva MB, da Cunha FF, Terra FF, Camara NOS. Old game, new players: Linking classical theories to new trends in transplant immunology. World J Transplant 2017; 7:1-25. [PMID: 28280691 PMCID: PMC5324024 DOI: 10.5500/wjt.v7.i1.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 11/16/2016] [Accepted: 12/07/2016] [Indexed: 02/05/2023] Open
Abstract
The evolutionary emergence of an efficient immune system has a fundamental role in our survival against pathogenic attacks. Nevertheless, this same protective mechanism may also establish a negative consequence in the setting of disorders such as autoimmunity and transplant rejection. In light of the latter, although research has long uncovered main concepts of allogeneic recognition, immune rejection is still the main obstacle to long-term graft survival. Therefore, in order to define effective therapies that prolong graft viability, it is essential that we understand the underlying mediators and mechanisms that participate in transplant rejection. This multifaceted process is characterized by diverse cellular and humoral participants with innate and adaptive functions that can determine the type of rejection or promote graft acceptance. Although a number of mediators of graft recognition have been described in traditional immunology, recent studies indicate that defining rigid roles for certain immune cells and factors may be more complicated than originally conceived. Current research has also targeted specific cells and drugs that regulate immune activation and induce tolerance. This review will give a broad view of the most recent understanding of the allogeneic inflammatory/tolerogenic response and current insights into cellular and drug therapies that modulate immune activation that may prove to be useful in the induction of tolerance in the clinical setting.
Collapse
|
13
|
Ng ZY, Read C, Kurtz JM, Cetrulo CL. Memory T Cells in Vascularized Composite Allotransplantation. ACTA ACUST UNITED AC 2016. [DOI: 10.1080/23723505.2016.1229649] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
14
|
Mfarrej BG, Battaglia M. The “Unusual Suspects” in Allograft Rejection: Will T Regulatory Cell Therapy Arrest Them? CURRENT TRANSPLANTATION REPORTS 2016. [DOI: 10.1007/s40472-016-0108-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
15
|
Abstract
Diverse effects of the microbiome on solid organ transplantation are beginning to be recognized. In allograft recipients, microbial networks are disrupted by immunosuppression, nosocomial and community-based infectious exposures, antimicrobial therapies, surgery, and immune processes. Shifting microbial patterns, including acute infectious exposures, have dynamic and reciprocal interactions with local and systemic immune systems. Both individual microbial species and microbial networks have central roles in the induction and control of innate and adaptive immune responses, in graft rejection, and in ischemia-reperfusion injury. Understanding the diverse interactions between the microbiome and the immune system of allograft recipients may facilitate clinical management in the future.
Collapse
|
16
|
Abstract
The ultimate outcome of alloreactivity versus tolerance following transplantation is potently influenced by the constellation of cosignaling molecules expressed by immune cells during priming with alloantigen, and the net sum of costimulatory and coinhibitory signals transmitted via ligation of these molecules. Intense investigation over the last two decades has yielded a detailed understanding of the kinetics, cellular distribution, and intracellular signaling networks of cosignaling molecules such as the CD28, TNF, and TIM families of receptors in alloimmunity. More recent work has better defined the cellular and molecular mechanisms by which engagement of cosignaling networks serve to either dampen or augment alloimmunity. These findings will likely aid in the rational development of novel immunomodulatory strategies to prolong graft survival and improve outcomes following transplantation.
Collapse
Affiliation(s)
- Mandy L Ford
- Emory Transplant Center and Department of Surgery, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
17
|
Heutinck KM, Yong SL, Tonneijck L, van den Heuvel H, van der Weerd NC, van der Pant KAMI, Bemelman FJ, Claas FHJ, Ten Berge IJM. Virus-Specific CD8(+) T Cells Cross-Reactive to Donor-Alloantigen Are Transiently Present in the Circulation of Kidney Transplant Recipients Infected With CMV and/or EBV. Am J Transplant 2016; 16:1480-91. [PMID: 26603974 DOI: 10.1111/ajt.13618] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 10/05/2015] [Accepted: 10/24/2015] [Indexed: 01/25/2023]
Abstract
T cells play a dual role in transplantation: They mediate transplant rejection and are crucial for virus control. Memory T cells generated in response to pathogens can cross-react to alloantigen, a phenomenon called heterologous immunity. Virus-specific CD8(+) T cells cross-reacting to donor-alloantigen might affect alloimmune responses and hamper tolerance induction following transplantation. Here, we longitudinally studied these cross-reactive cells in peripheral blood of 25 kidney transplant recipients with a cytomegalovirus and/or Epstein-Barr virus infection. Cross-reactive T cells were identified by flow cytometry as virus-specific T cells that proliferate in response to donor cells in a mixed-lymphocyte reaction. In 13 of 25 patients, we found cross-reactivity to donor cells for at least 1 viral epitope before (n = 7) and/or after transplantation (n = 8). Cross-reactive T cells were transiently present in the circulation, and their precursor frequency did not increase following transplantation or viral infection. Cross-reactive T cells expressed interferon-γ and CD107a in response to both alloantigen and viral peptide and resembled virus-specific T cells in phenotype and function. Their presence was not associated with impaired renal function, proteinuria, or rejection. In conclusion, virus-specific T cells that cross-react to donor-alloantigen are transiently detectable in the circulation of kidney transplant recipients.
Collapse
Affiliation(s)
- K M Heutinck
- Department of Experimental Immunology, Academic Medical Center, Amsterdam, The Netherlands.,Renal Transplant Unit, Department of Nephrology, Division of Internal Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | - S L Yong
- Department of Experimental Immunology, Academic Medical Center, Amsterdam, The Netherlands.,Renal Transplant Unit, Department of Nephrology, Division of Internal Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | - L Tonneijck
- Department of Experimental Immunology, Academic Medical Center, Amsterdam, The Netherlands
| | - H van den Heuvel
- Department of Immunohaematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - N C van der Weerd
- Renal Transplant Unit, Department of Nephrology, Division of Internal Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | - K A M I van der Pant
- Renal Transplant Unit, Department of Nephrology, Division of Internal Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | - F J Bemelman
- Renal Transplant Unit, Department of Nephrology, Division of Internal Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | - F H J Claas
- Department of Immunohaematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - I J M Ten Berge
- Renal Transplant Unit, Department of Nephrology, Division of Internal Medicine, Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
18
|
Abstract
Antigen-experienced T cells, also known as memory T cells, are functionally and phenotypically distinct from naive T cells. Their enhanced expression of adhesion molecules and reduced requirement for co-stimulation enables them to mount potent and rapid recall responses to subsequent antigen encounters. Memory T cells generated in response to prior antigen exposures can cross-react with other nonidentical, but similar, antigens. This heterologous cross-reactivity not only enhances protective immune responses, but also engenders de novo alloimmunity. This latter characteristic is increasingly recognized as a potential barrier to allograft acceptance that is worthy of immunotherapeutic intervention, and several approaches have been investigated. Calcineurin inhibition effectively controls memory T-cell responses to allografts, but this benefit comes at the expense of increased infectious morbidity. Lymphocyte depletion eliminates allospecific T cells but spares memory T cells to some extent, such that patients do not completely lose protective immunity. Co-stimulation blockade is associated with reduced adverse-effect profiles and improved graft function relative to calcineurin inhibition, but lacks efficacy in controlling memory T-cell responses. Targeting the adhesion molecules that are upregulated on memory T cells might offer additional means to control co-stimulation-blockade-resistant memory T-cell responses.
Collapse
|
19
|
Abstract
Memory cells are the products of immune responses but also exert significant impact on subsequent immunity and immune tolerance, thus placing them in a unique position in transplant research. Memory cells are heterogeneous, including not only memory T cells but also memory B cells and innate memory cells. Memory cells are a critical component of protective immunity against invading pathogens, especially in immunosuppressed patients, but they also mediate graft loss and tolerance resistance. Recent studies suggest that some memory cells unexpectedly act as regulatory cells, promoting rather than hindering transplant survival. This functional diversity makes therapeutic targeting of memory cells a challenging task in transplantation. In this article, we highlight recent advances in our understanding of memory cells, focusing on diversity of memory cells and mechanisms involved in their induction and functions. We also provide a broad overview on the challenges and opportunities in targeting memory cells in the induction of transplant tolerance.
Collapse
|
20
|
Abstract
Immunological memory is a key feature of adaptive immunity. It provides the organism with long-lived and robust protection against infection. In organ transplantation, memory T cells pose a significant threat by causing allograft rejection that is generally resistant to immunosuppressive therapy. Therefore, a more thorough understanding of memory T cell biology is needed to improve the survival of transplanted organs without compromising the host’s ability to fight infections. This review will focus on the mechanisms by which memory T cells migrate to the site where their target antigen is present, with particular emphasis on their migration to transplanted organs. First, we will define the known subsets of memory T cells (central, effector, and tissue resident) and their circulation patterns. Second, we will review the cellular and molecular mechanisms by which memory T cells migrate to inflamed and non-inflamed tissues and highlight the emerging paradigm of antigen-driven, trans-endothelial migration. Third, we will discuss the relevance of this knowledge to organ transplantation and the prevention or treatment of allograft rejection.
Collapse
Affiliation(s)
- Qianqian Zhang
- Tsinghua University School of Medicine , Beijing , China ; University of Pittsburgh School of Medicine , Pittsburgh, PA , USA
| | - Fadi G Lakkis
- University of Pittsburgh School of Medicine , Pittsburgh, PA , USA
| |
Collapse
|
21
|
de Mare-Bredemeijer ELD, Shi XL, Mancham S, van Gent R, van der Heide-Mulder M, de Boer R, Heemskerk MHM, de Jonge J, van der Laan LJW, Metselaar HJ, Kwekkeboom J. Cytomegalovirus-Induced Expression of CD244 after Liver Transplantation Is Associated with CD8+ T Cell Hyporesponsiveness to Alloantigen. THE JOURNAL OF IMMUNOLOGY 2015; 195:1838-48. [DOI: 10.4049/jimmunol.1500440] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 06/02/2015] [Indexed: 12/31/2022]
|
22
|
Mesenchymal stromal cells to control donor-specific memory T cells in solid organ transplantation. Curr Opin Organ Transplant 2015; 20:79-85. [PMID: 25563995 DOI: 10.1097/mot.0000000000000145] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Mesenchymal stromal cells (MSCs) represent a promising cell therapy to promote transplant tolerance, as they influence many cells involved in immune response. Herein, we review recent evidence on the ability of MSCs to inhibit antigen-induced memory T cell response in vitro and in preclinical studies as well as immunological studies in kidney transplant recipients highlighting the effects of MSC therapy on memory CD8 T-cell proliferation and function. RECENT FINDINGS MSCs are able to inhibit in-vitro proliferation and effector functions of memory T cells in response to auto-antigen and allo-antigen stimulation. MSC infusion in animal transplant models resulted in a skew of the balance between regulatory T cells and effector/memory T cells towards a pro-tolerogenic profile. MSC in clinical transplantation is in its infancy and limited numbers of clinical studies have performed immunomonitoring of MSC-treated patients. However, available data support the capability of MSCs to control effector/memory CD8 T-cell proliferation and donor-specific CD8 T-cell function long lasting in kidney transplant setting. SUMMARY Recent studies of MSCs in kidney transplantation highlight the anticipated add-on value of the immunomodulatory properties of bone marrow derived MSCs in persistently inhibiting donor-specific effector/memory CD8 T cells, an effect not shared by the current immunosuppressive drugs.
Collapse
|
23
|
Abstract
PURPOSE OF REVIEW Memory T cells present a different set of challenges to transplant patients; they are needed for protection against invading pathogens, especially under conditions of immunosuppression. But their presence also threatens transplant survival, as some of them are alloreactive. Efforts to resolve this paradox will be critical in the induction of transplant tolerance. RECENT FINDINGS There has been significant progress made in the past few years in the areas of population diversity of memory T cells, metabolic control of their induction, and mechanisms and pathways involved in memory cell exhaustion. Multiple targets on memory T cells have been identified, some of which are under vigorous testing in various transplant models. SUMMARY Memory T cells are both friends and foes to transplant patients, and tolerance strategies should selectively target alloreactive memory T cells and leave other memory cells unaltered. This situation remains a major challenge in the clinic.
Collapse
|
24
|
Setoguchi K, Hattori Y, Iida S, Baldwin WM, Fairchild RL. Endogenous memory CD8 T cells are activated within cardiac allografts without mediating rejection. Am J Transplant 2013; 13:2293-307. [PMID: 23914930 PMCID: PMC3776013 DOI: 10.1111/ajt.12372] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 05/14/2013] [Accepted: 06/03/2013] [Indexed: 01/25/2023]
Abstract
Endogenous memory CD8 T cells infiltrate MHC-mismatched cardiac allografts within 12-24 h posttransplant in mice and are activated to proliferate and produce IFN-γ. To more accurately assess the graft injury directly imposed by these endogenous memory CD8 T cells, we took advantage of the ability of anti-LFA-1 mAb given to allograft recipients on days 3 and 4 posttransplant to inhibit the generation of primary effector T cells. When compared to grafts from IgG-treated recipients on day 7 posttransplant, allografts from anti-LFA-1 mAb-treated recipients had increased numbers of CD8 T cells but these grafts had marked decreases in expression levels of mRNA encoding effector mediators associated with graft injury and decreases in donor-reactive CD8 T cells producing IFN-γ. Despite this decreased activity within the allograft, CD8 T cells in allografts from recipients treated with anti-LFA-1 mAb continued to proliferate up to day 7 posttransplant and did not upregulate expression of the exhaustion marker LAG-3 but did have decreased expression of ICOS. These results indicate that endogenous memory CD8 T cells infiltrate and proliferate in cardiac allografts in mice but do not express sufficient levels of functions to mediate overt graft injury and acute rejection.
Collapse
Affiliation(s)
- Kiyoshi Setoguchi
- Glickman Urological and Kidney Institute, Cleveland Clinic Foundation, Cleveland, OH 44195,Department of Immunology, Cleveland Clinic Foundation, Cleveland, OH 44195,Department of Urology, Tokyo Women’s Medical University, Tokyo, Japan
| | - Yusuke Hattori
- Glickman Urological and Kidney Institute, Cleveland Clinic Foundation, Cleveland, OH 44195,Department of Immunology, Cleveland Clinic Foundation, Cleveland, OH 44195,Department of Urology, Yokohama City University, Kanagawa, Japan
| | - Shoichi Iida
- Glickman Urological and Kidney Institute, Cleveland Clinic Foundation, Cleveland, OH 44195,Department of Immunology, Cleveland Clinic Foundation, Cleveland, OH 44195,Department of Urology, Tokyo Women’s Medical University, Tokyo, Japan
| | - William M. Baldwin
- Glickman Urological and Kidney Institute, Cleveland Clinic Foundation, Cleveland, OH 44195,Department of Immunology, Cleveland Clinic Foundation, Cleveland, OH 44195,Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | - Robert L. Fairchild
- Glickman Urological and Kidney Institute, Cleveland Clinic Foundation, Cleveland, OH 44195,Department of Immunology, Cleveland Clinic Foundation, Cleveland, OH 44195,Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| |
Collapse
|
25
|
Abstract
T cells must be activated before they can elicit damage to allografts, through interaction of their T cell receptor (TCR) with peptide-MHC complex and through accessory molecules. Signaling through accessory molecules or costimulatory molecules is a critical way for the immune system to fine tune T cell activation. An emerging therapeutic strategy is to target selective molecules involved in the process of T cell activation using biologic agents, which do not impact TCR signaling, thus only manipulating the T cells, which recognize alloantigen. Costimulatory receptors and their ligands are attractive targets for this strategy and could be used both to prevent acute graft rejection as well as for maintenance immunosuppression. Therapeutic agents targeting costimulatory molecules, notably belatacept, have made the progression from the bench, through nonhuman primate studies and into the clinic. This overview describes some of the most common costimulatory molecules, their role in T cell activation, and the development of reagents, which target these pathways and their efficacy in transplantation.
Collapse
Affiliation(s)
| | | | - Kathryn J Wood
- Transplantation Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU UK
| |
Collapse
|
26
|
Lo DJ, Anderson DJ, Weaver TA, Leopardi F, Song M, Farris AB, Strobert EA, Jenkins J, Turgeon NA, Mehta AK, Larsen CP, Kirk AD. Belatacept and sirolimus prolong nonhuman primate renal allograft survival without a requirement for memory T cell depletion. Am J Transplant 2013; 13:320-8. [PMID: 23311611 PMCID: PMC3558532 DOI: 10.1111/j.1600-6143.2012.04342.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 10/02/2012] [Accepted: 10/15/2012] [Indexed: 01/25/2023]
Abstract
Belatacept is an inhibitor of CD28/B7 costimulation that is clinically indicated as a calcineurin inhibitor (CNI) alternative in combination with mycophenolate mofetil and steroids after renal transplantation. We sought to develop a clinically translatable, nonlymphocyte depleting, belatacept-based regimen that could obviate the need for both CNIs and steroids. Thus, based on murine data showing synergy between costimulation blockade and mTOR inhibition, we studied rhesus monkeys undergoing MHC-mismatched renal allotransplants treated with belatacept and the mTOR inhibitor, sirolimus. To extend prior work on costimulation blockade-resistant rejection, some animals also received CD2 blockade with alefacept (LFA3-Ig). Belatacept and sirolimus therapy successfully prevented rejection in all animals. Tolerance was not induced, as animals rejected after withdrawal of therapy. The regimen did not deplete T cells. Alefecept did not add a survival benefit to the optimized belatacept and sirolimus regimen, despite causing an intended depletion of memory T cells, and caused a marked reduction in regulatory T cells. Furthermore, alefacept-treated animals had a significantly increased incidence of CMV reactivation, suggesting that this combination overly compromised protective immunity. These data support belatacept and sirolimus as a clinically translatable, nondepleting, CNI-free, steroid-sparing immunomodulatory regimen that promotes sustained rejection-free allograft survival after renal transplantation.
Collapse
Affiliation(s)
- D J Lo
- Emory Transplant Center, Emory University, Atlanta, GA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Cobbold SP, Li XC. Translating Tolerogenic Therapies to the Clinic - Where Do We Stand and What are the Barriers? Front Immunol 2012; 3:317. [PMID: 23091475 PMCID: PMC3469784 DOI: 10.3389/fimmu.2012.00317] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 09/25/2012] [Indexed: 01/28/2023] Open
Affiliation(s)
- Stephen P Cobbold
- Sir William Dunn School of Pathology, University of Oxford Oxford, UK
| | | |
Collapse
|