1
|
Jesudason CD, Mason ER, Chu S, Oblak AL, Javens-Wolfe J, Moussaif M, Durst G, Hipskind P, Beck DE, Dong J, Amarasinghe O, Zhang ZY, Hamdani AK, Singhal K, Mesecar AD, Souza S, Jacobson M, Salvo JD, Soni DM, Kandasamy M, Masters AR, Quinney SK, Doolen S, Huhe H, Rizzo SJS, Lamb BT, Palkowitz AD, Richardson TI. SHIP1 therapeutic target enablement: Identification and evaluation of inhibitors for the treatment of late-onset Alzheimer's disease. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2023; 9:e12429. [PMID: 38023622 PMCID: PMC10655782 DOI: 10.1002/trc2.12429] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/29/2023] [Accepted: 09/17/2023] [Indexed: 12/01/2023]
Abstract
INTRODUCTION The risk of developing Alzheimer's disease is associated with genes involved in microglial function. Inositol polyphosphate-5-phosphatase (INPP5D), which encodes Src homology 2 (SH2) domain-containing inositol polyphosphate 5-phosphatase 1 (SHIP1), is a risk gene expressed in microglia. Because SHIP1 binds receptor immunoreceptor tyrosine-based inhibitory motifs (ITIMs), competes with kinases, and converts PI(3,4,5)P3 to PI(3,4)P2, it is a negative regulator of microglia function. Validated inhibitors are needed to evaluate SHIP1 as a potential therapeutic target. METHODS We identified inhibitors and screened the enzymatic domain of SHIP1. A protein construct containing two domains was used to evaluate enzyme inhibitor potency and selectivity versus SHIP2. Inhibitors were tested against a construct containing all ordered domains of the human and mouse proteins. A cellular thermal shift assay (CETSA) provided evidence of target engagement in cells. Phospho-AKT levels provided further evidence of on-target pharmacology. A high-content imaging assay was used to study the pharmacology of SHIP1 inhibition while monitoring cell health. Physicochemical and absorption, distribution, metabolism, and excretion (ADME) properties were evaluated to select a compound suitable for in vivo studies. RESULTS SHIP1 inhibitors displayed a remarkable array of activities and cellular pharmacology. Inhibitory potency was dependent on the protein construct used to assess enzymatic activity. Some inhibitors failed to engage the target in cells. Inhibitors that were active in the CETSA consistently destabilized the protein and reduced pAKT levels. Many SHIP1 inhibitors were cytotoxic either at high concentration due to cell stress or they potently induced cell death depending on the compound and cell type. One compound activated microglia, inducing phagocytosis at concentrations that did not result in significant cell death. A pharmacokinetic study demonstrated brain exposures in mice upon oral administration. DISCUSSION 3-((2,4-Dichlorobenzyl)oxy)-5-(1-(piperidin-4-yl)-1H-pyrazol-4-yl) pyridine activated primary mouse microglia and demonstrated exposures in mouse brain upon oral dosing. Although this compound is our recommended chemical probe for investigating the pharmacology of SHIP1 inhibition at this time, further optimization is required for clinical studies. Highlights Cellular thermal shift assay (CETSA) and signaling (pAKT) assays were developed to provide evidence of src homology 2 (SH2) domain-contaning inositol phosphatase 1 (SHIP1) target engagement and on-target activity in cellular assays.A phenotypic high-content imaging assay with simultaneous measures of phagocytosis, cell number, and nuclear intensity was developed to explore cellular pharmacology and monitor cell health.SHIP1 inhibitors demonstrate a wide range of activity and cellular pharmacology, and many reported inhibitors are cytotoxic.The chemical probe 3-((2,4-dichlorobenzyl)oxy)-5-(1-(piperidin-4-yl)-1H-pyrazol-4-yl) pyridine is recommended to explore SHIP1 pharmacology.
Collapse
Affiliation(s)
| | - Emily R Mason
- Indiana University School of Medicine Indianapolis Indiana USA
| | - Shaoyou Chu
- Indiana University School of Medicine Indianapolis Indiana USA
| | - Adrian L Oblak
- Indiana University School of Medicine Indianapolis Indiana USA
- Stark Neurosciences Research Institute Indiana University School of Medicine Indianapolis Indiana USA
| | | | | | | | | | - Daniel E Beck
- Institute for Drug Discovery Purdue University West Lafayette Indiana USA
| | - Jiajun Dong
- Department of Medicinal Chemistry and Molecular Pharmacology Purdue University West Lafayette Indiana USA
| | - Ovini Amarasinghe
- Department of Medicinal Chemistry and Molecular Pharmacology Purdue University West Lafayette Indiana USA
| | - Zhong-Yin Zhang
- Institute for Drug Discovery Purdue University West Lafayette Indiana USA
- Department of Medicinal Chemistry and Molecular Pharmacology Purdue University West Lafayette Indiana USA
| | - Adam K Hamdani
- Department of Biochemistry Purdue University West Lafayette Indiana USA
| | - Kratika Singhal
- Department of Biochemistry Purdue University West Lafayette Indiana USA
| | - Andrew D Mesecar
- Department of Biochemistry Purdue University West Lafayette Indiana USA
| | | | | | | | - Disha M Soni
- Indiana University School of Medicine Indianapolis Indiana USA
| | | | | | - Sara K Quinney
- Indiana University School of Medicine Indianapolis Indiana USA
| | - Suzanne Doolen
- University of Pittsburgh School of Medicine Pittsburgh Pennsylvania USA
| | - Hasi Huhe
- University of Pittsburgh School of Medicine Pittsburgh Pennsylvania USA
| | | | - Bruce T Lamb
- Indiana University School of Medicine Indianapolis Indiana USA
- Stark Neurosciences Research Institute Indiana University School of Medicine Indianapolis Indiana USA
| | - Alan D Palkowitz
- Indiana University School of Medicine Indianapolis Indiana USA
- Indiana Biosciences Research Institute Indianapolis Indiana USA
| | - Timothy I Richardson
- Indiana University School of Medicine Indianapolis Indiana USA
- Stark Neurosciences Research Institute Indiana University School of Medicine Indianapolis Indiana USA
- Indiana Biosciences Research Institute Indianapolis Indiana USA
| |
Collapse
|
2
|
Chu YN, Akahori A, Takatori S, Tomita T. Pathological Roles of INPP5D in Alzheimer's Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1423:289-301. [PMID: 37525057 DOI: 10.1007/978-3-031-31978-5_30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Current hypothesis of Alzheimer's disease (AD) postulates that amyloid β (Aβ) deposition in the brain causes tau inclusion in neurons and leads to cognitive decline. The discovery of the genetic association between triggering receptor expressed on myeloid cells 2 (TREM2) with increased AD risk points to a causal link between microglia and AD pathogenesis, and revealed a crucial role of TREM2-dependent clustering of microglia around amyloid plaques that prevents Aβ toxicity to facilitate tau deposition near the plaques. Here we review the physiological and pathological roles of another AD risk gene expressed in microglia, inositol polyphosphate-5-polyphosphatase D (INPP5D), which encodes a phosphoinositide phosphatase. Evidence suggests that its risk polymorphisms alter the expression level and/or function of INPP5D, while concomitantly affecting tau levels in cerebrospinal fluids. In β-amyloidosis mice, INPP5D was upregulated upon Aβ deposition and negatively regulated the microglial clustering toward amyloid plaques. INPP5D seems to exert its function by acting antagonistically at downstream of the TREM2 signaling pathway, suggesting that it is a novel regulator of the protective barrier by microglia. Further studies to elucidate INPP5D's role in AD may help in developing new therapeutic targets for AD treatment.
Collapse
Affiliation(s)
- Yung Ning Chu
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Aika Akahori
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Sho Takatori
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Taisuke Tomita
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
3
|
Dungan OM, Dormann S, Fernandes S, Duffy BC, Effiong DG, Kerr WG, Chisholm JD. Synthetic studies on the indane SHIP1 agonist AQX-1125. Org Biomol Chem 2022; 20:4016-4020. [PMID: 35506893 DOI: 10.1039/d2ob00555g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
AQX-1125 is an indane based SHIP1 agonist that has been evaluated in the clinic for the treatment of bladder pain syndrome/interstitial cystitis. To support our own studies on SHIP1 agonists as potential treatments for IBD and Crohn's disease, a new synthetic route to the SHIP1 agonist AQX-1125 has been developed. This sequence utilizes a hydroxy-acid intermediate which allows for ready differentiation of the C6 and C7 positions. The role of the C17 alkene in the biological activity of the system is also investigated, and this functional group is not required for SHIP1 agonist activity. While AQX-1125 shows SHIP1 agonist activity in enzyme assays, it does not show activity in cell based assays similar to other SHIP1 agonists, which limits the utility of this molecule.
Collapse
Affiliation(s)
- Otto M Dungan
- Department of Chemistry, Syracuse University, 1-014 Center for Science and Technology, Syracuse, NY 13244, USA.
| | - Shawn Dormann
- Department of Chemistry, Syracuse University, 1-014 Center for Science and Technology, Syracuse, NY 13244, USA.
| | - Sandra Fernandes
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Brian C Duffy
- Department of Chemistry, Syracuse University, 1-014 Center for Science and Technology, Syracuse, NY 13244, USA.
| | - Daniel G Effiong
- Department of Chemistry, Syracuse University, 1-014 Center for Science and Technology, Syracuse, NY 13244, USA.
| | - William G Kerr
- Department of Chemistry, Syracuse University, 1-014 Center for Science and Technology, Syracuse, NY 13244, USA. .,Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, NY 13210, USA.,Department of Pediatrics, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - John D Chisholm
- Department of Chemistry, Syracuse University, 1-014 Center for Science and Technology, Syracuse, NY 13244, USA.
| |
Collapse
|
4
|
Bao X, Wang W, Yuan T, Li Y, Chen X, Liu X, Xu X, Sun G, Li B, Yang J, Feng Y, Li Z. Transcriptome profiling based on larvae at different time points after hatching provides a core set of gene resource for understanding the immune response mechanisms of the egg-protecting behavior against Vibrio anguillarum infection in Amphioctopus fangsiao. FISH & SHELLFISH IMMUNOLOGY 2022; 124:430-441. [PMID: 35472401 DOI: 10.1016/j.fsi.2022.04.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 04/17/2022] [Accepted: 04/20/2022] [Indexed: 06/14/2023]
Abstract
Mollusks have recently received increasing attention because of their unique immune systems. Mollusks such as Amphioctopus fangsiao are economically important cephalopods, and the effects of their egg-protecting behavior on the larval immune response are unclear. Meanwhile, little research has been done on the resistance response of cephalopod larvae infected with pathogenic bacteria such as Vibrio anguillarum. In this study, V. anguillarum was used to infect the primary hatching A. fangsiao larvae under different egg-protecting behaviors for 24 h, and a total of 7156 differentially expressed genes (DEGs) were identified at four time points after hatching based on transcriptome analysis. GO and KEGG enrichment analyses showed that multiple immune-related GO terms and KEGG signaling pathways were enriched. Protein-protein interaction networks (PPI networks) were used to search functional relationships between immune-related DEGs. Finally, 20 hub genes related to multiple gene functions or involved in multiple signaling pathways were identified, and their accuracy was verified using quantitative RT-PCR. PPI networks were first used to study the effects A. fangsiao larvae after infection with V. anguillarum under different egg-protecting behaviors. The results provide significant genetic resources for exploring invertebrate larval immune processes. The data lays a foundation for further study the immune response mechanisms for invertebrates after infection.
Collapse
Affiliation(s)
- Xiaokai Bao
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Weijun Wang
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Tingzhu Yuan
- Marine Economy Promotion Center of Changdao County Marine Ecological Civilization Comprehensive Experimental Zone, Yantai, 265800, China
| | - Yan Li
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Xipan Chen
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Xiumei Liu
- College of Life Sciences, Yantai University, Yantai, 264005, China
| | - Xiaohui Xu
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Guohua Sun
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Bin Li
- School of Agriculture, Ludong University, Yantai, 264025, China; Yantai Haiyu Marine Science and Technology Co. Ltd., Yantai, 264004, China
| | - Jianmin Yang
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Yanwei Feng
- School of Agriculture, Ludong University, Yantai, 264025, China.
| | - Zan Li
- School of Agriculture, Ludong University, Yantai, 264025, China.
| |
Collapse
|
5
|
Targeting SHIP1 and SHIP2 in Cancer. Cancers (Basel) 2021; 13:cancers13040890. [PMID: 33672717 PMCID: PMC7924360 DOI: 10.3390/cancers13040890] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 02/12/2021] [Accepted: 02/13/2021] [Indexed: 12/31/2022] Open
Abstract
Simple Summary Phosphoinositol signaling pathways and their dysregulation have been shown to have a fundamental role in health and disease, respectively. The SH2-containing 5′ inositol phosphatases, SHIP1 and SHIP2, are regulators of the PI3K/AKT pathway that have crucial roles in cancer progression. This review aims to summarize the role of SHIP1 and SHIP2 in cancer signaling and the immune response to cancer, the discovery and use of SHIP inhibitors and agonists as possible cancer therapeutics. Abstract Membrane-anchored and soluble inositol phospholipid species are critical mediators of intracellular cell signaling cascades. Alterations in their normal production or degradation are implicated in the pathology of a number of disorders including cancer and pro-inflammatory conditions. The SH2-containing 5′ inositol phosphatases, SHIP1 and SHIP2, play a fundamental role in these processes by depleting PI(3,4,5)P3, but also by producing PI(3,4)P2 at the inner leaflet of the plasma membrane. With the intent of targeting SHIP1 or SHIP2 selectively, or both paralogs simultaneously, small molecule inhibitors and agonists have been developed and tested in vitro and in vivo over the last decade in various disease models. These studies have shown promising results in various pre-clinical models of disease including cancer and tumor immunotherapy. In this review the potential use of SHIP inhibitors in cancer is discussed with particular attention to the molecular structure, binding site and efficacy of these SHIP inhibitors.
Collapse
|
6
|
Elich M, Sauer K. Regulation of Hematopoietic Cell Development and Function Through Phosphoinositides. Front Immunol 2018; 9:931. [PMID: 29780388 PMCID: PMC5945867 DOI: 10.3389/fimmu.2018.00931] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 04/16/2018] [Indexed: 01/01/2023] Open
Abstract
One of the most paramount receptor-induced signal transduction mechanisms in hematopoietic cells is production of the lipid second messenger phosphatidylinositol(3,4,5)trisphosphate (PIP3) by class I phosphoinositide 3 kinases (PI3K). Defective PIP3 signaling impairs almost every aspect of hematopoiesis, including T cell development and function. Limiting PIP3 signaling is particularly important, because excessive PIP3 function in lymphocytes can transform them and cause blood cancers. Here, we review the key functions of PIP3 and related phosphoinositides in hematopoietic cells, with a special focus on those mechanisms dampening PIP3 production, turnover, or function. Recent studies have shown that beyond “canonical” turnover by the PIP3 phosphatases and tumor suppressors phosphatase and tensin homolog (PTEN) and SH2 domain-containing inositol-5-phosphatase-1 (SHIP-1/2), PIP3 function in hematopoietic cells can also be dampened through antagonism with the soluble PIP3 analogs inositol(1,3,4,5)tetrakisphosphate (IP4) and inositol-heptakisphosphate (IP7). Other evidence suggests that IP4 can promote PIP3 function in thymocytes. Moreover, IP4 or the kinases producing it limit store-operated Ca2+ entry through Orai channels in B cells, T cells, and neutrophils to control cell survival and function. We discuss current models for how soluble inositol phosphates can have such diverse functions and can govern as distinct processes as hematopoietic stem cell homeostasis, neutrophil macrophage and NK cell function, and development and function of B cells and T cells. Finally, we will review the pathological consequences of dysregulated IP4 activity in immune cells and highlight contributions of impaired inositol phosphate functions in disorders such as Kawasaki disease, common variable immunodeficiency, or blood cancer.
Collapse
Affiliation(s)
- Mila Elich
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, CA, United States
| | - Karsten Sauer
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States.,Oncology R&D, Pfizer Worldwide R&D, San Diego, CA, United States
| |
Collapse
|
7
|
Expression, Purification, Crystallisation and X-ray Crystallographic Analysis of a Truncated Form of Human Src Homology 2 Containing Inositol 5-Phosphatase 2. Protein J 2016; 35:225-30. [DOI: 10.1007/s10930-016-9665-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
8
|
Taylor EB, Nayak DK, Quiniou SMA, Bengten E, Wilson M. Identification of SHIP-1 and SHIP-2 homologs in channel catfish, Ictalurus punctatus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 51:79-87. [PMID: 25743379 DOI: 10.1016/j.dci.2015.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 02/23/2015] [Accepted: 02/24/2015] [Indexed: 06/04/2023]
Abstract
Src homology domain 2 (SH2) domain-containing inositol 5'-phosphatases (SHIP) proteins have diverse roles in signal transduction. SHIP-1 and SHIP-2 homologs were identified in channel catfish, Ictalurus punctatus, based on sequence homology to murine and human SHIP sequences. Full-length cDNAs for catfish SHIP-1 and SHIP-2 (IpSHIP-1 and IpSHIP-2) were obtained using 5' and 3' RACE protocols. Catfish SHIP molecules share a high degree of sequence identity to their respective SHIP sequences from diverse taxa and both are encoded by single copy genes. IpSHIP-1 and IpSHIP-2 transcripts were expressed in all catfish tissues analyzed except for skin, and IpSHIP-1 message was more abundant than IpSHIP-2 message in lymphoid tissues. Catfish clonal B, cytotoxic T, and macrophage cell lines also expressed message for both molecules. IpSHIP-1 and IpSHIP-2 SH2 domains were expressed as recombinant proteins and were both found to be bound by cross-reacting rabbit anti-mouse SHIP-1 pAb. The anti-mouse SHIP-1 pAb also reacted with cell lysates from the cytotoxic T cell lines, macrophages and stimulated PBL. SHIP-1 is also phosphorylated at a conserved tyrosine residue, as shown by immunoprecipitation studies.
Collapse
Affiliation(s)
- Erin B Taylor
- Department of Microbiology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Deepak K Nayak
- Department of Microbiology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Sylvie M A Quiniou
- Warmwater Aquaculture Research Unit, USDA-ARS, Stoneville, MS 38776, USA
| | - Eva Bengten
- Department of Microbiology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Melanie Wilson
- Department of Microbiology, University of Mississippi Medical Center, Jackson, MS 39216, USA.
| |
Collapse
|
9
|
Draber P, Halova I, Polakovicova I, Kawakami T. Signal transduction and chemotaxis in mast cells. Eur J Pharmacol 2015; 778:11-23. [PMID: 25941081 DOI: 10.1016/j.ejphar.2015.02.057] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 02/09/2015] [Accepted: 02/17/2015] [Indexed: 01/08/2023]
Abstract
Mast cells play crucial roles in both innate and adaptive arms of the immune system. Along with basophils, mast cells are essential effector cells for allergic inflammation that causes asthma, allergic rhinitis, food allergy and atopic dermatitis. Mast cells are usually increased in inflammatory sites of allergy and, upon activation, release various chemical, lipid, peptide and protein mediators of allergic reactions. Since antigen/immunoglobulin E (IgE)-mediated activation of these cells is a central event to trigger allergic reactions, innumerable studies have been conducted on how these cells are activated through cross-linking of the high-affinity IgE receptor (FcεRI). Development of mature mast cells from their progenitor cells is under the influence of several growth factors, of which the stem cell factor (SCF) seems to be the most important. Therefore, how SCF induces mast cell development and activation via its receptor, KIT, has been studied extensively, including a cross-talk between KIT and FcεRI signaling pathways. Although our understanding of the signaling mechanisms of the FcεRI and KIT pathways is far from complete, pharmaceutical applications of the knowledge about these pathways are underway. This review will focus on recent progresses in FcεRI and KIT signaling and chemotaxis.
Collapse
Affiliation(s)
- Petr Draber
- Department of Signal Transduction, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, CZ 14220 Prague, Czech Republic.
| | - Ivana Halova
- Department of Signal Transduction, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, CZ 14220 Prague, Czech Republic
| | - Iva Polakovicova
- Department of Signal Transduction, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, CZ 14220 Prague, Czech Republic
| | - Toshiaki Kawakami
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle La Jolla, CA 92037, USA; Laboratory for Allergic Disease, RIKEN Center for Integrative Medical Sciences (IMS-RCAI), Yokohama 230-0045, Japan
| |
Collapse
|
10
|
IP3 3-kinase B controls hematopoietic stem cell homeostasis and prevents lethal hematopoietic failure in mice. Blood 2015; 125:2786-97. [PMID: 25788703 DOI: 10.1182/blood-2014-06-583187] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 03/11/2015] [Indexed: 01/05/2023] Open
Abstract
Tight regulation of hematopoietic stem cell (HSC) homeostasis ensures lifelong hematopoiesis and prevents blood cancers. The mechanisms balancing HSC quiescence with expansion and differentiation into hematopoietic progenitors are incompletely understood. Here, we identify Inositol-trisphosphate 3-kinase B (Itpkb) as an essential regulator of HSC homeostasis. Young Itpkb(-/-) mice accumulated phenotypic HSC, which were less quiescent and proliferated more than wild-type (WT) controls. Itpkb(-/-) HSC downregulated quiescence and stemness associated, but upregulated activation, oxidative metabolism, protein synthesis, and lineage associated messenger RNAs. Although they had normal-to-elevated viability and no significant homing defects, Itpkb(-/-) HSC had a severely reduced competitive long-term repopulating potential. Aging Itpkb(-/-) mice lost hematopoietic stem and progenitor cells and died with severe anemia. WT HSC normally repopulated Itpkb(-/-) hosts, indicating an HSC-intrinsic Itpkb requirement. Itpkb(-/-) HSC showed reduced colony-forming activity and increased stem-cell-factor activation of the phosphoinositide-3-kinase (PI3K) effectors Akt/mammalian/mechanistic target of rapamycin (mTOR). This was reversed by treatment with the Itpkb product and PI3K/Akt antagonist IP4. Transcriptome changes and biochemistry support mTOR hyperactivity in Itpkb(-/-) HSC. Treatment with the mTOR-inhibitor rapamycin reversed the excessive mTOR signaling and hyperproliferation of Itpkb(-/-) HSC without rescuing colony forming activity. Thus, we propose that Itpkb ensures HSC quiescence and function through limiting cytokine-induced PI3K/mTOR signaling and other mechanisms.
Collapse
|
11
|
Manna P, Jain SK. Phosphatidylinositol-3,4,5-triphosphate and cellular signaling: implications for obesity and diabetes. Cell Physiol Biochem 2015; 35:1253-75. [PMID: 25721445 DOI: 10.1159/000373949] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2015] [Indexed: 12/26/2022] Open
Abstract
Phosphatidylinositol-3,4,5-triphosphate (PtdIns(3,4,5)P₃) is one of the most important phosphoinositides and is capable of activating a wide range of proteins through its interaction with their specific binding domains. Localization and activation of these effector proteins regulate a number of cellular functions, including cell survival, proliferation, cytoskeletal rearrangement, intracellular vesicle trafficking, and cell metabolism. Phosphoinositides have been investigated as an important agonist-dependent second messenger in the regulation of diverse physiological events depending upon the phosphorylation status of their inositol group. Dysregulation in formation as well as metabolism of phosphoinositides is associated with various pathophysiological disorders such as inflammation, allergy, cardiovascular diseases, cancer, and metabolic diseases. Recent studies have demonstrated that the impaired metabolism of PtdIns(3,4,5)P₃ is a prime mediator of insulin resistance associated with various metabolic diseases including obesity and diabetes. This review examines the current status of the role of PtdIns(3,4,5)P₃ signaling in the regulation of various cellular functions and the implications of dysregulated PtdIns(3,4,5)P₃ signaling in obesity, diabetes, and their associated complications.
Collapse
Affiliation(s)
- Prasenjit Manna
- Department of Pediatrics, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | | |
Collapse
|
12
|
Lupia E, Pigozzi L, Goffi A, Hirsch E, Montrucchio G. Role of phosphoinositide 3-kinase in the pathogenesis of acute pancreatitis. World J Gastroenterol 2014; 20:15190-15199. [PMID: 25386068 PMCID: PMC4223253 DOI: 10.3748/wjg.v20.i41.15190] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Revised: 06/12/2014] [Accepted: 07/22/2014] [Indexed: 02/06/2023] Open
Abstract
A large body of experimental and clinical data supports the notion that inflammation in acute pancreatitis has a crucial role in the pathogenesis of local and systemic damage and is a major determinant of clinical severity. Thus, research has recently focused on molecules that can regulate the inflammatory processes, such as phosphoinositide 3-kinases (PI3Ks), a family of lipid and protein kinases involved in intracellular signal transduction. Studies using genetic ablation or pharmacologic inhibitors of different PI3K isoforms, in particular the class I PI3Kδ and PI3Kγ, have contributed to a greater understanding of the roles of these kinases in the modulation of inflammatory and immune responses. Recent data suggest that PI3Ks are also involved in the pathogenesis of acute pancreatitis. Activation of the PI3K signaling pathway, and in particular of the class IB PI3Kγ isoform, has a significant role in those events which are necessary for the initiation of acute pancreatic injury, namely calcium signaling alteration, trypsinogen activation, and nuclear factor-κB transcription. Moreover, PI3Kγ is instrumental in modulating acinar cell apoptosis, and regulating local neutrophil infiltration and systemic inflammatory responses during the course of experimental acute pancreatitis. The availability of PI3K inhibitors selective for specific isoforms may provide new valuable therapeutic strategies to improve the clinical course of this disease. This article presents a brief summary of PI3K structure and function, and highlights recent advances that implicate PI3Ks in the pathogenesis of acute pancreatitis.
Collapse
|
13
|
Okkenhaug K, Turner M, Gold MR. PI3K Signaling in B Cell and T Cell Biology. Front Immunol 2014; 5:557. [PMID: 25404931 PMCID: PMC4217509 DOI: 10.3389/fimmu.2014.00557] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 10/20/2014] [Indexed: 12/15/2022] Open
Affiliation(s)
- Klaus Okkenhaug
- Laboratory of Lymphocyte Signalling and Development, Babraham Institute , Cambridge , UK
| | - Martin Turner
- Laboratory of Lymphocyte Signalling and Development, Babraham Institute , Cambridge , UK
| | - Michael R Gold
- Department of Microbiology and Immunology, University of British Columbia , Vancouver, BC , Canada
| |
Collapse
|
14
|
Molecular targets on mast cells and basophils for novel therapies. J Allergy Clin Immunol 2014; 134:530-44. [DOI: 10.1016/j.jaci.2014.03.007] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 02/24/2014] [Accepted: 03/07/2014] [Indexed: 01/14/2023]
|
15
|
Viernes DR, Choi LB, Kerr WG, Chisholm JD. Discovery and development of small molecule SHIP phosphatase modulators. Med Res Rev 2013; 34:795-824. [PMID: 24302498 DOI: 10.1002/med.21305] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Inositol phospholipids play an important role in the transfer of signaling information across the cell membrane in eukaryotes. These signals are often governed by the phosphorylation patterns on the inositols, which are mediated by a number of inositol kinases and phosphatases. The src homology 2 (SH2) containing inositol 5-phosphatase (SHIP) plays a central role in these processes, influencing signals delivered through the PI3K/Akt/mTOR pathway. SHIP modulation by small molecules has been implicated as a treatment in a number of human disease states, including cancer, inflammatory diseases, diabetes, atherosclerosis, and Alzheimer's disease. In addition, alteration of SHIP phosphatase activity may provide a means to facilitate bone marrow transplantation and increase blood cell production. This review discusses the cellular signaling pathways and protein-protein interactions that provide the molecular basis for targeting the SHIP enzyme in these disease states. In addition, a comprehensive survey of small molecule modulators of SHIP1 and SHIP2 is provided, with a focus on the structure, potency, selectivity, and solubility properties of these compounds.
Collapse
Affiliation(s)
- Dennis R Viernes
- Department of Chemistry, Syracuse University, Syracuse, NY, USA 13244
| | - Lydia B Choi
- Department of Chemistry, Syracuse University, Syracuse, NY, USA 13244
| | - William G Kerr
- Department of Chemistry, Syracuse University, Syracuse, NY, USA 13244.,Department of Microbiology & Immunology, SUNY Upstate Medical University, Syracuse, NY, USA 13210.,Department of Pediatrics, SUNY Upstate Medical University, Syracuse, NY, USA 13210
| | - John D Chisholm
- Department of Chemistry, Syracuse University, Syracuse, NY, USA 13244
| |
Collapse
|
16
|
Abstract
Phosphoinositide 3-kinases (PI3Ks) control many important aspects of immune cell development, differentiation, and function. Mammals have eight PI3K catalytic subunits that are divided into three classes based on similarities in structure and function. Specific roles for the class I PI3Ks have been broadly investigated and are relatively well understood, as is the function of their corresponding phosphatases. More recently, specific roles for the class II and class III PI3Ks have emerged. Through vertebrate evolution and in parallel with the evolution of adaptive immunity, there has been a dramatic increase not only in the genes for PI3K subunits but also in genes for phosphatases that act on 3-phosphoinositides and in 3-phosphoinositide-binding proteins. Our understanding of the PI3Ks in immunity is guided by fundamental discoveries made in simpler model organisms as well as by appreciating new adaptations of this signaling module in mammals in general and in immune cells in particular.
Collapse
Affiliation(s)
- Klaus Okkenhaug
- Laboratory of Lymphocyte Signaling and Development, The Babraham Institute, Cambridge, CB22 3AT, United Kingdom.
| |
Collapse
|