1
|
Zhao W, Modak A, Ross SR. DHX15 inhibits mouse APOBEC3 deamination. PLoS Pathog 2025; 21:e1013045. [PMID: 40168451 DOI: 10.1371/journal.ppat.1013045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 03/14/2025] [Indexed: 04/03/2025] Open
Abstract
APOBEC3 family proteins are critical host factors that counteract and prevent the replication of retroviruses and other viruses through cytidine deamination. Human APOBEC3 proteins inactivate HIV-1 through the introduction of lethal mutations to viral genomes. In contrast, mouse APOBEC3 does not induce DNA hypermutation of murine retroviruses, although it retains functional cytidine deaminase activity. Why mouse APOBEC3 does not effectively deaminate murine retroviruses is still unknown. In this study, we found that the dead box helicase DHX15 interacts with mouse APOBEC3 and inhibits its deamination activity. DHX15 was packaged into murine leukemia virus (MLV) virions independent of its binding with APOBEC3. Moreover, DHX15 knockdown inhibited MLV replication and resulted in more G-to-A mutations in proviral DNA. Finally, DHX15 knockdown induced DNA damage in murine cells, suggesting that it plays a role in preserving genome integrity in cells expressing mouse APOBEC3 protein.
Collapse
Affiliation(s)
- Wenming Zhao
- Department of Microbiology and Immunology, University of Illinois Chicago College of Medicine, Chicago, Illinois, United States of America
| | - Ayan Modak
- Department of Microbiology and Immunology, University of Illinois Chicago College of Medicine, Chicago, Illinois, United States of America
| | - Susan R Ross
- Department of Microbiology and Immunology, University of Illinois Chicago College of Medicine, Chicago, Illinois, United States of America
| |
Collapse
|
2
|
Waxman B, Salka K, Timilsina U, Umthong S, Shukla D, Stavrou S. Heparanase, a host gene that potently restricts retrovirus transcription. mBio 2025:e0325224. [PMID: 39998209 DOI: 10.1128/mbio.03252-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 02/03/2025] [Indexed: 02/26/2025] Open
Abstract
Heparanase (HPSE) is a heterodimeric β-D-glucuronidase that is critical in mammalian cells for the enzymatic cleavage of membrane-associated heparan sulfate moieties. Apart from its enzymatic function, HPSE has important non-enzymatic functions, which include transcriptional regulation, chromatin modification, and modulation of various signaling pathways. Interestingly, while HPSE is an interferon-stimulated gene, past reports have shown that it has proviral properties for many different viruses, including herpes simplex virus 1, as it assists virus release from infected cells. However, as of yet, no antiviral functions associated with HPSE have been described. Here, we show that HPSE utilizes a hitherto unknown mechanism to restrict retroviruses by targeting the step of proviral transcription. Moreover, we demonstrate that HPSE blocks transcription initiation by targeting the SP1 transcription factor. Finally, we illustrate that the antiretroviral effect of HPSE is independent of its enzymatic activity. This report describes a novel antiviral mechanism utilized by HPSE to inhibit retrovirus infection.IMPORTANCEHeparanase (HPSE) has emerged as an important factor that has proviral functions for a number of viruses, including herpes simplex virus and hepatitis C virus, by assisting in virus egress. However, HPSE is an interferon-stimulated gene and, thus, is a part of the host antiviral defense. Nothing is known about the antiviral functions of HPSE. Here, we examine in depth the role of HPSE during retrovirus infection using two retroviruses, human immunodeficiency virus type 1 (HIV-1) and murine leukemia virus. In this report, we show that mouse, but not human, HPSE blocks retrovirus infection by targeting provirus transcription. HPSE sequesters the SP1 transcription factor away from the proviral promoter, thereby inhibiting transcription initiation. In conclusion, our findings identify a novel antiviral function of HPSE and its potential role as an inhibitor of zoonotic transmission of retroviruses.
Collapse
Affiliation(s)
- Brandon Waxman
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, USA
| | - Kyle Salka
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, USA
| | - Uddhav Timilsina
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, USA
| | - Supawadee Umthong
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, USA
| | - Deepak Shukla
- Department of Ophthalmology and Visual Sciences, University of Illinois Medical Center, Chicago, USA
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, USA
| | - Spyridon Stavrou
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, USA
| |
Collapse
|
3
|
Bouteau A, Qin Z, Zurawski S, Zurawski G, Igyártó BZ. Langerhans Cells Drive Tfh and B Cell Responses Independent of Canonical Cytokine Signals. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.10.632426. [PMID: 39868337 PMCID: PMC11760737 DOI: 10.1101/2025.01.10.632426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Dendritic cells (DCs) are key regulators of adaptive immunity, guiding T helper (Th) cell differentiation through antigen presentation, co-stimulation, and cytokine production. However, in steady-state conditions, certain DC subsets, such as Langerhans cells (LCs), induce T follicular helper (Tfh) cells and B cell responses without inflammatory stimuli. Using multiple mouse models and in vitro systems, we investigated the mechanisms underlying steady-state LC-induced adaptive immune responses. We found that LCs drive germinal center Tfh and B cell differentiation and antibody production independently of interleukin-6 (IL-6), type-I interferons, and ICOS ligand (ICOS-L) signaling, which are critical in inflammatory settings. Instead, these responses relied on CD80/CD86-mediated co-stimulation. Our findings challenge the conventional three-signal paradigm by demonstrating that cytokine signaling is dispensable for LC-mediated Tfh and B cell responses in steady-state. These insights provide a framework for understanding homeostatic immunity and the immune system's role in maintaining tolerance or developing autoimmunity under non-inflammatory conditions.
Collapse
Affiliation(s)
- Aurélie Bouteau
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA 19107, United States
| | - Zhen Qin
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA 19107, United States
| | - Sandra Zurawski
- Baylor Scott & White Research Institute, Dallas, TX 75204, United States
- Vaccine Research Institute, INSERM, Unité U955, Institut Mondor de Recherche Biomédicale, Créteil, France
| | - Gerard Zurawski
- Baylor Scott & White Research Institute, Dallas, TX 75204, United States
- Vaccine Research Institute, INSERM, Unité U955, Institut Mondor de Recherche Biomédicale, Créteil, France
| | - Botond Z. Igyártó
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA 19107, United States
| |
Collapse
|
4
|
Tuor M, Stappers MHT, Desgardin A, Ruchti F, Sparber F, Orr SJ, Gow NAR, LeibundGut-Landmann S. Card9 and MyD88 differentially regulate Th17 immunity to the commensal yeast Malassezia in the murine skin. Mucosal Immunol 2025; 18:205-219. [PMID: 39579986 DOI: 10.1016/j.mucimm.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/28/2024] [Accepted: 11/17/2024] [Indexed: 11/25/2024]
Abstract
The fungal community of the skin microbiome is dominated by a single genus, Malassezia. Besides its symbiotic lifestyle at the host interface, this commensal yeast has also been associated with diverse inflammatory skin diseases in humans and pet animals. Stable colonization is maintained by antifungal type 17 immunity. The mechanisms driving Th17 responses to Malassezia remain, however, unclear. Here, we show that the C-type lectin receptors Mincle, Dectin-1, and Dectin-2 recognize conserved patterns in the cell wall of Malassezia and induce dendritic cell activation in vitro, while only Dectin-2 is required for Th17 activation during experimental skin colonization in vivo. In contrast, Toll-like receptor recognition was redundant in this context. Instead, inflammatory IL-1 family cytokines signaling via MyD88 were also implicated in Th17 activation in a T cell-intrinsic manner. Taken together, we characterized the pathways contributing to protective immunity against the most abundant member of the skin mycobiome. This knowledge contributes to the understanding of barrier immunity and its regulation by commensals and is relevant considering how aberrant immune responses are associated with severe skin pathologies.
Collapse
Affiliation(s)
- Meret Tuor
- Section of Immunology, Vetsuisse Faculty and Institute of Experimental Immunology, University of Zürich, 8057 Zurich, Switzerland
| | - Mark H T Stappers
- Medical Research Council Centre for Medical Mycology at the University of Exeter, Department of Biosciences, Faculty of Health and Life Sciences, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| | - Alice Desgardin
- Section of Immunology, Vetsuisse Faculty and Institute of Experimental Immunology, University of Zürich, 8057 Zurich, Switzerland
| | - Fiorella Ruchti
- Section of Immunology, Vetsuisse Faculty and Institute of Experimental Immunology, University of Zürich, 8057 Zurich, Switzerland
| | - Florian Sparber
- Section of Immunology, Vetsuisse Faculty and Institute of Experimental Immunology, University of Zürich, 8057 Zurich, Switzerland
| | - Selinda J Orr
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast BT9 7BL, UK
| | - Neil A R Gow
- Medical Research Council Centre for Medical Mycology at the University of Exeter, Department of Biosciences, Faculty of Health and Life Sciences, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| | - Salomé LeibundGut-Landmann
- Section of Immunology, Vetsuisse Faculty and Institute of Experimental Immunology, University of Zürich, 8057 Zurich, Switzerland; Medical Research Council Centre for Medical Mycology at the University of Exeter, Department of Biosciences, Faculty of Health and Life Sciences, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK.
| |
Collapse
|
5
|
Barandun N, Meier B, Stehli G, Gräbnitz F, Zangger N, Oxenius A. Targeted localization of the mother centrosome in CD8 + T cells undergoing asymmetric cell division promotes memory formation. Cell Rep 2025; 44:115127. [PMID: 39764850 DOI: 10.1016/j.celrep.2024.115127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 07/24/2024] [Accepted: 12/10/2024] [Indexed: 02/01/2025] Open
Abstract
How a single, naive T cell can give rise to diverse progenies of effector and memory cells is not completely understood. One way to achieve this is by asymmetric cell division (ACD), characterized by an unequal distribution of cellular cargo, resulting in divergent daughter cells already after the first division-one being more destined to an effector and the other more to a memory fate. Here, we established two methods to analyze the relative distribution of the older "mother" centrosome and the younger "daughter" centrosome during the first cell division of activated CD8+ T cells. We show that upon ACD, the mother centrosome is inherited by the effector-like daughter cell in a ninein-dependent mechanism. Ninein deletion abolished this effect and led to impaired differentiation of memory-like daughter cells. These findings suggest that directed centrosome inheritance upon ACD has functional effects on the fate diversification of CD8+ T cells.
Collapse
Affiliation(s)
- Niculò Barandun
- Institute of Microbiology, ETH Zürich, Vladimir-Prelog-Weg 4, 8093 Zürich, Switzerland
| | - Benjamin Meier
- Institute of Microbiology, ETH Zürich, Vladimir-Prelog-Weg 4, 8093 Zürich, Switzerland
| | - Gautier Stehli
- Institute of Microbiology, ETH Zürich, Vladimir-Prelog-Weg 4, 8093 Zürich, Switzerland
| | - Fabienne Gräbnitz
- Institute of Microbiology, ETH Zürich, Vladimir-Prelog-Weg 4, 8093 Zürich, Switzerland
| | - Nathan Zangger
- Institute of Microbiology, ETH Zürich, Vladimir-Prelog-Weg 4, 8093 Zürich, Switzerland
| | - Annette Oxenius
- Institute of Microbiology, ETH Zürich, Vladimir-Prelog-Weg 4, 8093 Zürich, Switzerland.
| |
Collapse
|
6
|
Dinamarca S, Croce C, Salvioni A, Garrido F, Fidalgo SE, Bigliani G, Mayorga LS, Blanchard N, Cebrian I. SNX17 Regulates Antigen Internalisation and Phagosomal Maturation by Dendritic Cells. Immunology 2025; 174:167-185. [PMID: 39559950 DOI: 10.1111/imm.13878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 09/25/2024] [Accepted: 11/04/2024] [Indexed: 11/20/2024] Open
Abstract
Antigen cross-presentation is the process whereby small peptides derived from exogenous antigens are attached to MHC-I molecules triggering CD8+ T lymphocyte activation. The endocytic route of dendritic cells (DCs) is highly specialised for cross-presentation to initiate cytotoxic immune responses against numerous intracellular pathogens and tumours. In this study, we identify the endosomal protein sorting nexin (SNX) 17 as a key regulator of antigen internalisation and cross-presentation by DCs. SNX17 expression in DCs guarantees optimal cross-presentation of soluble, particulate, and Toxoplasma gondii-associated antigens. The silencing of SNX17 expression in DCs significantly affected the internalisation of exogenous antigens by fluid-phase endocytosis, phagocytosis, and more strikingly, T. gondii invasion. We show that SNX17 controls proper integrin recycling, actin cytoskeleton organisation, and phagosomal maturation. Altogether, our findings provide compelling evidence that SNX17 plays a central role in the modulation of the DC endocytic network, which is essential for competent antigen cross-presentation.
Collapse
Affiliation(s)
- Sofía Dinamarca
- Instituto de Histología y Embriología de Mendoza (IHEM), Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina
| | - Cristina Croce
- Instituto de Histología y Embriología de Mendoza (IHEM), Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina
| | - Anna Salvioni
- Institut Toulousain des Maladies Infectieuses et Inflammatoires (Infinity), Inserm/CNRS/Université Toulouse 3, Toulouse, France
| | - Facundo Garrido
- Instituto de Histología y Embriología de Mendoza (IHEM), Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina
| | - Sandra Estrada Fidalgo
- Instituto de Histología y Embriología de Mendoza (IHEM), Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina
| | - Gonzalo Bigliani
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain
| | - Luis S Mayorga
- Instituto de Histología y Embriología de Mendoza (IHEM), Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina
| | - Nicolas Blanchard
- Institut Toulousain des Maladies Infectieuses et Inflammatoires (Infinity), Inserm/CNRS/Université Toulouse 3, Toulouse, France
| | - Ignacio Cebrian
- Instituto de Histología y Embriología de Mendoza (IHEM), Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina
| |
Collapse
|
7
|
Rajwani J, Vishnevskiy D, Turk M, Naumenko V, Gafuik C, Kim DS, Mah LK, Snelling S, Gonzales GA, Xue J, Chanda A, Potts KG, Todesco HM, Lau KCK, Hildebrand KM, Chan JA, Liao S, Monument MJ, Hyrcza M, Bose P, Jenne CN, Canton J, Zemp FJ, Mahoney DJ. VSV ∆M51 drives CD8 + T cell-mediated tumour regression through infection of both cancer and non-cancer cells. Nat Commun 2024; 15:9933. [PMID: 39548070 PMCID: PMC11567966 DOI: 10.1038/s41467-024-54111-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 11/02/2024] [Indexed: 11/17/2024] Open
Abstract
Oncolytic viruses (OV) are designed to selectively infect and kill cancer cells, while simultaneously eliciting antitumour immunity. The mechanism is expected to originate from infected cancer cells. However, recent reports of tumour regression unaccompanied by cancer cell infection suggest a more complex mechanism of action. Here, we engineered vesicular stomatitis virus (VSV)ΔM51-sensitive and VSVΔM51-resistant tumour lines to elucidate the role of OV-infected cancer and non-cancer cells. We found that, while cancer cell infections elicit oncolysis and antitumour immunity as expected, infection of non-cancer cells alone can also contribute to tumour regression. This effect is partly attributed to the systemic production of cytokines that promote dendritic cell (DC) activation, migration and antigen cross-presentation, leading to magnified antitumour CD8+ T cell activation and tumour regression. Such OV-induced antitumour immunity is complementary to PD-1 blockade. Overall, our results reveal mechanistic insights into OV-induced antitumour immunity that can be leveraged to improve OV-based therapeutics.
Collapse
Affiliation(s)
- Jahanara Rajwani
- Arnie Charbonneau Cancer Institute; University of Calgary, Calgary, AB, T2N 4N1, Canada
- Alberta Children's Hospital Research Institute; University of Calgary, Calgary, AB, T2N 4N1, Canada
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine; University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Daniil Vishnevskiy
- Arnie Charbonneau Cancer Institute; University of Calgary, Calgary, AB, T2N 4N1, Canada
- The Calvin, Joan and Phoebe Snyder Institute for Chronic Disease; University of Calgary, Calgary, AB, T2N 4N1, Canada
- Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine; University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Madison Turk
- Arnie Charbonneau Cancer Institute; University of Calgary, Calgary, AB, T2N 4N1, Canada
- The Calvin, Joan and Phoebe Snyder Institute for Chronic Disease; University of Calgary, Calgary, AB, T2N 4N1, Canada
- Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine; University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Victor Naumenko
- Arnie Charbonneau Cancer Institute; University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Chris Gafuik
- Arnie Charbonneau Cancer Institute; University of Calgary, Calgary, AB, T2N 4N1, Canada
- Alberta Children's Hospital Research Institute; University of Calgary, Calgary, AB, T2N 4N1, Canada
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine; University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Dae-Sun Kim
- Arnie Charbonneau Cancer Institute; University of Calgary, Calgary, AB, T2N 4N1, Canada
- Alberta Children's Hospital Research Institute; University of Calgary, Calgary, AB, T2N 4N1, Canada
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine; University of Calgary, Calgary, AB, T2N 4N1, Canada
- Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine; University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Laura K Mah
- Arnie Charbonneau Cancer Institute; University of Calgary, Calgary, AB, T2N 4N1, Canada
- Alberta Children's Hospital Research Institute; University of Calgary, Calgary, AB, T2N 4N1, Canada
- The Calvin, Joan and Phoebe Snyder Institute for Chronic Disease; University of Calgary, Calgary, AB, T2N 4N1, Canada
- Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine; University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Shannon Snelling
- Arnie Charbonneau Cancer Institute; University of Calgary, Calgary, AB, T2N 4N1, Canada
- Alberta Children's Hospital Research Institute; University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Gerone A Gonzales
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine; University of Calgary, Calgary, AB, T2N 4N1, Canada
- Faculty of Veterinary Medicine; University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Jingna Xue
- The Calvin, Joan and Phoebe Snyder Institute for Chronic Disease; University of Calgary, Calgary, AB, T2N 4N1, Canada
- Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine; University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Ayan Chanda
- Arnie Charbonneau Cancer Institute; University of Calgary, Calgary, AB, T2N 4N1, Canada
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine; University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Kyle G Potts
- Arnie Charbonneau Cancer Institute; University of Calgary, Calgary, AB, T2N 4N1, Canada
- Alberta Children's Hospital Research Institute; University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Hayley M Todesco
- Arnie Charbonneau Cancer Institute; University of Calgary, Calgary, AB, T2N 4N1, Canada
- Alberta Children's Hospital Research Institute; University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Keith C K Lau
- Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine; University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Karys M Hildebrand
- Arnie Charbonneau Cancer Institute; University of Calgary, Calgary, AB, T2N 4N1, Canada
- Department of Surgery, Cumming School of Medicine; University of Calgary, Calgary, AB, T2N 4N1, Canada
- McCaig Bone and Joint Institute, Cumming School of Medicine; University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Jennifer A Chan
- Arnie Charbonneau Cancer Institute; University of Calgary, Calgary, AB, T2N 4N1, Canada
- Department of Pathology and Laboratory Medicine; University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Shan Liao
- The Calvin, Joan and Phoebe Snyder Institute for Chronic Disease; University of Calgary, Calgary, AB, T2N 4N1, Canada
- Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine; University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Michael J Monument
- Arnie Charbonneau Cancer Institute; University of Calgary, Calgary, AB, T2N 4N1, Canada
- Department of Surgery, Cumming School of Medicine; University of Calgary, Calgary, AB, T2N 4N1, Canada
- McCaig Bone and Joint Institute, Cumming School of Medicine; University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Martin Hyrcza
- Arnie Charbonneau Cancer Institute; University of Calgary, Calgary, AB, T2N 4N1, Canada
- Department of Pathology and Laboratory Medicine; University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Pinaki Bose
- Arnie Charbonneau Cancer Institute; University of Calgary, Calgary, AB, T2N 4N1, Canada
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine; University of Calgary, Calgary, AB, T2N 4N1, Canada
- Department of Oncology; University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Craig N Jenne
- The Calvin, Joan and Phoebe Snyder Institute for Chronic Disease; University of Calgary, Calgary, AB, T2N 4N1, Canada
- Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine; University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Johnathan Canton
- The Calvin, Joan and Phoebe Snyder Institute for Chronic Disease; University of Calgary, Calgary, AB, T2N 4N1, Canada
- Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine; University of Calgary, Calgary, AB, T2N 4N1, Canada
- Faculty of Veterinary Medicine; University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Franz J Zemp
- Arnie Charbonneau Cancer Institute; University of Calgary, Calgary, AB, T2N 4N1, Canada
- Alberta Children's Hospital Research Institute; University of Calgary, Calgary, AB, T2N 4N1, Canada
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine; University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Douglas J Mahoney
- Arnie Charbonneau Cancer Institute; University of Calgary, Calgary, AB, T2N 4N1, Canada.
- Alberta Children's Hospital Research Institute; University of Calgary, Calgary, AB, T2N 4N1, Canada.
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine; University of Calgary, Calgary, AB, T2N 4N1, Canada.
- Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine; University of Calgary, Calgary, AB, T2N 4N1, Canada.
| |
Collapse
|
8
|
Xu B, Anderson BM, Mintern JD, Edgington-Mitchell LE. TLR9-dependent dendritic cell maturation promotes IL-6-mediated upregulation of cathepsin X. Immunol Cell Biol 2024; 102:787-800. [PMID: 38979698 DOI: 10.1111/imcb.12806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/23/2024] [Accepted: 06/26/2024] [Indexed: 07/10/2024]
Abstract
Cysteine cathepsins are lysosomal proteases subject to dynamic regulation within antigen-presenting cells during the immune response and associated diseases. To investigate the regulation of cathepsin X, a carboxy-mono-exopeptidase, during maturation of dendritic cells (DCs), we exposed immortalized mouse DCs to various Toll-like receptor agonists. Using a cathepsin X-selective activity-based probe, sCy5-Nle-SY, we observed a significant increase in cathepsin X activation upon TLR-9 agonism with CpG, and to a lesser extent with Pam3 (TLR1/2), FSL-1 (TLR2/6) and LPS (TLR4). Despite clear maturation of DCs in response to Poly I:C (TLR3), cathepsin X activity was only slightly increased by this agonist, suggesting differential regulation of cathepsin X downstream of TLR activation. We demonstrated that cathepsin X was upregulated at the transcriptional level in response to CpG. This occurred at late time points and was not dampened by NF-κB inhibition. Factors secreted from CpG-treated cells were able to provoke cathepsin X upregulation when applied to naïve cells. Among these factors was IL-6, which on its own was sufficient to induce transcriptional upregulation and activation of cathepsin X. IL-6 is highly secreted by DCs in response to CpG but much less so in response to poly I:C, and inhibition of the IL-6 receptor subunit glycoprotein 130 prevented CpG-mediated cathepsin X upregulation. Collectively, these results demonstrate that cathepsin X is differentially transcribed during DC maturation in response to diverse stimuli, and that secreted IL-6 is critical for its dynamic regulation.
Collapse
Affiliation(s)
- Bangyan Xu
- Department of Biochemistry & Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Bethany M Anderson
- Department of Biochemistry & Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Justine D Mintern
- Department of Biochemistry & Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Laura E Edgington-Mitchell
- Department of Biochemistry & Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
9
|
Ma J, Bruce K, Stevenson PG, Farrell HE. Mouse cytomegalovirus lacking sgg1 shows reduced import into the salivary glands. J Gen Virol 2024; 105:002013. [PMID: 39093048 PMCID: PMC11296724 DOI: 10.1099/jgv.0.002013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024] Open
Abstract
Cytomegaloviruses (CMVs) transmit via chronic shedding from the salivary glands. How this relates to the broad cell tropism they exhibit in vitro is unclear. Human CMV (HCMV) infection presents only after salivary gland infection is established. Murine CMV (MCMV) is therefore useful to analyse early infection events. It reaches the salivary glands via infected myeloid cells. Three adjacent spliced genes designated as m131/129 (MCK-2), sgg1 and sgg1.1, positional homologues of the HCMV UL128/130/131 tropism determinants, are implicated. We show that a sgg1 null mutant is defective in infected myeloid cell entry into the salivary glands, a phenotype distinct from MCMV lacking MCK-2. These data point to a complex, multi-step process of salivary gland colonization.
Collapse
Affiliation(s)
- Jiawei Ma
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Australia
| | - Kimberley Bruce
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Australia
| | - Philip G. Stevenson
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Australia
| | - Helen E. Farrell
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Australia
| |
Collapse
|
10
|
Tuor M, Stappers MH, Ruchti F, Desgardin A, Sparber F, Orr SJ, Gow NA, LeibundGut-Landmann S. Card9 and MyD88 differentially regulate Th17 immunity to the commensal yeast Malassezia in the murine skin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.12.603211. [PMID: 39071334 PMCID: PMC11275786 DOI: 10.1101/2024.07.12.603211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
The fungal community of the skin microbiome is dominated by a single genus, Malassezia. Besides its symbiotic lifestyle at the host interface, this commensal yeast has also been associated with diverse inflammatory skin diseases in humans and pet animals. Stable colonization is maintained by antifungal type 17 immunity. The mechanisms driving Th17 responses to Malassezia remain, however, unclear. Here, we show that the C-type lectin receptors Mincle, Dectin-1, and Dectin-2 recognize conserved patterns in the cell wall of Malassezia and induce dendritic cell activation in vitro, while only Dectin-2 is required for Th17 activation during experimental skin colonization in vivo. In contrast, Toll-like receptor recognition was redundant in this context. Instead, inflammatory IL-1 family cytokines signaling via MyD88 were also implicated in Th17 activation in a T cell-intrinsic manner. Taken together, we characterized the pathways contributing to protective immunity against the most abundant member of the skin mycobiome. This knowledge contributes to the understanding of barrier immunity and its regulation by commensals and is relevant considering how aberrant immune responses are associated with severe skin pathologies.
Collapse
Affiliation(s)
- Meret Tuor
- Section of Immunology, Vetsuisse Faculty and Institute of Experimental Immunology, University of Zürich, Switzerland
| | - Mark H.T. Stappers
- Medical Research Council Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| | - Fiorella Ruchti
- Section of Immunology, Vetsuisse Faculty and Institute of Experimental Immunology, University of Zürich, Switzerland
| | - Alice Desgardin
- Section of Immunology, Vetsuisse Faculty and Institute of Experimental Immunology, University of Zürich, Switzerland
| | - Florian Sparber
- Section of Immunology, Vetsuisse Faculty and Institute of Experimental Immunology, University of Zürich, Switzerland
| | - Selinda J. Orr
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Science, Queen’s University Belfast, Belfast BT9 7BL, UK
| | - Neil A.R. Gow
- Medical Research Council Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| | - Salomé LeibundGut-Landmann
- Section of Immunology, Vetsuisse Faculty and Institute of Experimental Immunology, University of Zürich, Switzerland
- Medical Research Council Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| |
Collapse
|
11
|
El Morr Y, Fürstenheim M, Mestdagh M, Franciszkiewicz K, Salou M, Morvan C, Dupré T, Vorobev A, Jneid B, Premel V, Darbois A, Perrin L, Mondot S, Colombeau L, Bugaut H, du Halgouet A, Richon S, Procopio E, Maurin M, Philippe C, Rodriguez R, Lantz O, Legoux F. MAIT cells monitor intestinal dysbiosis and contribute to host protection during colitis. Sci Immunol 2024; 9:eadi8954. [PMID: 38905325 PMCID: PMC7616241 DOI: 10.1126/sciimmunol.adi8954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 05/29/2024] [Indexed: 06/23/2024]
Abstract
Intestinal inflammation shifts microbiota composition and metabolism. How the host monitors and responds to such changes remains unclear. Here, we describe a protective mechanism by which mucosal-associated invariant T (MAIT) cells detect microbiota metabolites produced upon intestinal inflammation and promote tissue repair. At steady state, MAIT ligands derived from the riboflavin biosynthesis pathway were produced by aerotolerant bacteria residing in the colonic mucosa. Experimental colitis triggered luminal expansion of riboflavin-producing bacteria, leading to increased production of MAIT ligands. Modulation of intestinal oxygen levels suggested a role for oxygen in inducing MAIT ligand production. MAIT ligands produced in the colon rapidly crossed the intestinal barrier and activated MAIT cells, which expressed tissue-repair genes and produced barrier-promoting mediators during colitis. Mice lacking MAIT cells were more susceptible to colitis and colitis-driven colorectal cancer. Thus, MAIT cells are sensitive to a bacterial metabolic pathway indicative of intestinal inflammation.
Collapse
Affiliation(s)
- Yara El Morr
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris, France
| | - Mariela Fürstenheim
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris, France
- Université Paris Cité, Paris, France
| | - Martin Mestdagh
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris, France
| | | | - Marion Salou
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris, France
| | - Claire Morvan
- Institut Pasteur, Université Paris Cité, UMR CNRS 6047, Laboratoire Pathogenèse des Bactéries Anaérobies, F-75015Paris, France
| | - Thierry Dupré
- Laboratoire de Biochimie, Hôpital Bichat AP-HP, Université de Paris, Paris, France
| | - Alexey Vorobev
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris, France
| | - Bakhos Jneid
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris, France
| | - Virginie Premel
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris, France
| | - Aurélie Darbois
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris, France
| | - Laetitia Perrin
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris, France
| | - Stanislas Mondot
- Institut Micalis, INRAE, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Ludovic Colombeau
- CNRS UMR 3666, INSERM U1143, Chemical Biology of Cancer Laboratory, PSL University, Institut Curie, 75005Paris, France
| | - Hélène Bugaut
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris, France
| | | | - Sophie Richon
- Institut Curie, PSL Research University, CNRS UMR144, Paris, France
| | - Emanuele Procopio
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris, France
| | - Mathieu Maurin
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris, France
| | - Catherine Philippe
- Institut Micalis, INRAE, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Raphael Rodriguez
- CNRS UMR 3666, INSERM U1143, Chemical Biology of Cancer Laboratory, PSL University, Institut Curie, 75005Paris, France
| | - Olivier Lantz
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris, France
- Laboratoire d’immunologie clinique, Institut Curie, 75005Paris, France
- Centre d’investigation Clinique en Biothérapie Gustave-Roussy Institut Curie (CIC-BT1428), Paris, France
| | - François Legoux
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris, France
- INSERM ERL1305, CNRS UMR6290, Université de Rennes, Institut de Génétique & Développement de Rennes, Rennes, France
| |
Collapse
|
12
|
Allen JC, Natta SS, Nasrin S, Toapanta FR, Tennant SM. Deletion of an immune evasion gene, steD, from a live Salmonella enterica serovar Typhimurium vaccine improves vaccine responses in aged mice. Front Immunol 2024; 15:1376734. [PMID: 38911854 PMCID: PMC11190192 DOI: 10.3389/fimmu.2024.1376734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 05/07/2024] [Indexed: 06/25/2024] Open
Abstract
Introduction Non-typhoidal Salmonella (NTS) generally causes self-limiting gastroenteritis. However, older adults (≥65 years) can experience more severe outcomes from NTS infection. We have previously shown that a live attenuated S. Typhimurium vaccine, CVD 1926 (I77 ΔguaBA ΔclpP ΔpipA ΔhtrA), was immunogenic in adult but not aged mice. Here we describe modification of CVD 1926 through deletion of steD, a Salmonella effector responsible for host immune escape, which we hypothesized would increase immunogenicity in aged mice. Methods Mel Juso and/or mutuDC cells were infected with S. Typhimurium I77, CVD 1926, and their respective steD mutants, and the MHC-II levels were evaluated. Aged (18-month-old) C57BL/6 mice received two doses of PBS, CVD 1926, or CVD 1926 ΔsteD perorally (109 CFU) and the number of FliC-specific CD4+ T cells were determined. Lastly, aged C57BL/6 mice received three doses of PBS, CVD 1926, or CVD 1926 ΔsteD perorally (109 CFU) and then were challenged perorally with wild-type S. Typhimurium SL1344 (108 CFU). These animals were also evaluated for antibody responses. Results MHC-II induction was higher in cells treated with steD mutants, compared to their respective parental strains. Compared to PBS-vaccinated mice, CVD 1926 ΔsteD elicited significantly more FliC-specific CD4+ T cells in the Peyer's Patches. There were no significant differences in FliC-specific CD4+ T cells in the Peyer's patches or spleen of CVD 1926- versus PBS-immunized mice. CVD 1926 and CVD 1926 ΔsteD induced similar serum and fecal anti-core and O polysaccharide antibody titers after three doses. After two immunizations, the proportion of seroconverters for CVD 1926 ΔsteD was 83% (10/12) compared to 42% (5/12) for CVD 1926. Compared to PBS-immunized mice, mice immunized with CVD 1926 ΔsteD had significantly lower S. Typhimurium counts in the spleen, cecum, and small intestine upon challenge. In contrast, there were no differences in bacterial loads in the tissues of PBS-vaccinated and CVD 1926-immunized animals. Conclusion These data suggest that the steD deletion enhanced the immunogenicity of our live attenuated S. Typhimurium vaccine. Deletion of immune evasion genes could be a potential strategy to improve the immunogenicity of live attenuated vaccines in older adults.
Collapse
Affiliation(s)
- Jessica C. Allen
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Shanaliz S. Natta
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Shamima Nasrin
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Franklin R. Toapanta
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Sharon M. Tennant
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
13
|
Ruchti F, Zwicky P, Becher B, Dubrac S, LeibundGut-Landmann S. Epidermal barrier impairment predisposes for excessive growth of the allergy-associated yeast Malassezia on murine skin. Allergy 2024; 79:1531-1547. [PMID: 38385963 DOI: 10.1111/all.16062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/15/2024] [Accepted: 01/20/2024] [Indexed: 02/23/2024]
Abstract
BACKGROUND The skin barrier is vital for protection against environmental threats including insults caused by skin-resident microbes. Dysregulation of this barrier is a hallmark of atopic dermatitis (AD) and ichthyosis, with variable consequences for host immune control of colonizing commensals and opportunistic pathogens. While Malassezia is the most abundant commensal fungus of the skin, little is known about the host control of this fungus in inflammatory skin diseases. METHODS In this experimental study, MC903-treated mice were colonized with Malassezia spp. to assess the host-fungal interactions in atopic dermatitis. Additional murine models of AD and ichthyosis, including tape stripping, K5-Nrf2 overexpression and flaky tail mice, were employed to confirm and expand the findings. Skin fungal counts were enumerated. High parameter flow cytometry was used to characterize the antifungal response in the AD-like skin. Structural and functional alterations in the skin barrier were determined by histology and transcriptomics of bulk skin. Finally, differential expression of metabolic genes in Malassezia in atopic and control skin was quantified. RESULTS Malassezia grows excessively in AD-like skin. Fungal overgrowth could, however, not be explained by the altered immune status of the atopic skin. Instead, we found that by upregulating key metabolic genes in the altered cutaneous niche, Malassezia acquired enhanced fitness to efficiently colonise the impaired skin barrier. CONCLUSIONS This study provides evidence that structural and metabolic changes in the dysfunctional epidermal barrier environment provide increased accessibility and an altered lipid profile, to which the lipid-dependent yeast adapts for enhanced nutrient assimilation. Our findings reveal fundamental insights into the implication of the mycobiota in the pathogenesis of common skin barrier disorders.
Collapse
Affiliation(s)
- Fiorella Ruchti
- Section of Immunology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
- Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Pascale Zwicky
- Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Burkhard Becher
- Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Sandrine Dubrac
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Salomé LeibundGut-Landmann
- Section of Immunology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
- Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| |
Collapse
|
14
|
Xu B, Anderson BM, Mountford SJ, Thompson PE, Mintern JD, Edgington-Mitchell LE. Cathepsin X deficiency alters the processing and localisation of cathepsin L and impairs cleavage of a nuclear cathepsin L substrate. Biol Chem 2024; 405:351-365. [PMID: 38410910 DOI: 10.1515/hsz-2023-0355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/12/2024] [Indexed: 02/28/2024]
Abstract
Proteases function within sophisticated networks. Altering the activity of one protease can have sweeping effects on other proteases, leading to changes in their activity, structure, specificity, localisation, stability, and expression. Using a suite of chemical tools, we investigated the impact of cathepsin X, a lysosomal cysteine protease, on the activity and expression of other cysteine proteases and their inhibitors in dendritic cells. Among all proteases examined, cathepsin X gene deletion specifically altered cathepsin L levels; pro-cathepsin L and its single chain accumulated while the two-chain form was unchanged. This effect was recapitulated by chemical inhibition of cathepsin X, suggesting a dependence on its catalytic activity. We demonstrated that accumulation of pro- and single chain cathepsin L was not due to a lack of direct cleavage by cathepsin X or altered glycosylation, secretion, or mRNA expression but may result from changes in lysosomal oxidative stress or pH. In the absence of active cathepsin X, nuclear cathepsin L and cleavage of the known nuclear cathepsin L substrate, Lamin B1, were diminished. Thus, cathepsin X activity selectively regulates cathepsin L, which has the potential to impact the degree of cathepsin L proteolysis, the nature of substrates that it cleaves, and the location of cleavage.
Collapse
Affiliation(s)
- Bangyan Xu
- Department of Biochemistry & Pharmacology, 2281 Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne , Parkville, VIC 3052, Australia
| | - Bethany M Anderson
- Department of Biochemistry & Pharmacology, 2281 Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne , Parkville, VIC 3052, Australia
| | - Simon J Mountford
- Medicinal Chemistry, 2541 Monash Institute of Pharmaceutical Sciences, Monash University , Parkville, VIC 3052, Australia
| | - Philip E Thompson
- Medicinal Chemistry, 2541 Monash Institute of Pharmaceutical Sciences, Monash University , Parkville, VIC 3052, Australia
| | - Justine D Mintern
- Department of Biochemistry & Pharmacology, 2281 Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne , Parkville, VIC 3052, Australia
| | - Laura E Edgington-Mitchell
- Department of Biochemistry & Pharmacology, 2281 Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne , Parkville, VIC 3052, Australia
| |
Collapse
|
15
|
Zachová K, Bartheldyová E, Hubatka F, Křupka M, Odehnalová N, Turánek Knötigová P, Vaškovicová N, Sloupenská K, Hromádka R, Paulovičová E, Effenberg R, Ledvina M, Raška M, Turánek J. The immunogenicity of p24 protein from HIV-1 virus is strongly supported and modulated by coupling with liposomes and mannan. Carbohydr Polym 2024; 332:121844. [PMID: 38431385 DOI: 10.1016/j.carbpol.2024.121844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/31/2023] [Accepted: 01/18/2024] [Indexed: 03/05/2024]
Abstract
Anti-viral and anti-tumor vaccines aim to induce cytotoxic CD8+ T cells (CTL) and antibodies. Conserved protein antigens, such as p24 from human immunodeficiency virus, represent promising component for elicitation CTLs, nevertheless with suboptimal immunogenicity, if formulated as recombinant protein. To enhance immunogenicity and CTL response, recombinant proteins may be targeted to dendritic cells (DC) for cross presentation on MHCI, where mannose receptor and/or other lectin receptors could play an important role. Here, we constructed liposomal carrier-based vaccine composed of recombinant p24 antigen bound by metallochelating linkage onto surface of nanoliposomes with surface mannans coupled by aminooxy ligation. Generated mannosylated proteonanoliposomes were analyzed by dynamic light scattering, isothermal titration, and electron microscopy. Using murine DC line MutuDC and murine bone marrow derived DC (BMDC) we evaluated their immunogenicity and immunomodulatory activity. We show that p24 mannosylated proteonanoliposomes activate DC for enhanced MHCI, MHCII and CD40, CD80, and CD86 surface expression both on MutuDC and BMDC. p24 mannosylated liposomes were internalized by MutuDC with p24 intracellular localization within 1 to 3 h. The combination of metallochelating and aminooxy ligation could be used simultaneously to generate nanoliposomal adjuvanted recombinant protein-based vaccines versatile for combination of recombinant antigens relevant for antibody and CTL elicitation.
Collapse
Affiliation(s)
- K Zachová
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc and University Hospital Olomouc, Hněvotínská 3, Olomouc, Czech Republic
| | - E Bartheldyová
- C2P NEXARS, The Campus Science Park, Palachovo náměstí 2, Brno, Czech Republic
| | - F Hubatka
- C2P NEXARS, The Campus Science Park, Palachovo náměstí 2, Brno, Czech Republic
| | - M Křupka
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc and University Hospital Olomouc, Hněvotínská 3, Olomouc, Czech Republic
| | - N Odehnalová
- C2P NEXARS, The Campus Science Park, Palachovo náměstí 2, Brno, Czech Republic
| | - P Turánek Knötigová
- C2P NEXARS, The Campus Science Park, Palachovo náměstí 2, Brno, Czech Republic
| | - N Vaškovicová
- Faculty of Medicine, Masaryk University, Kamenice 5, Brno, Czech Republic
| | - K Sloupenská
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc and University Hospital Olomouc, Hněvotínská 3, Olomouc, Czech Republic
| | - R Hromádka
- C2P NEXARS, The Campus Science Park, Palachovo náměstí 2, Brno, Czech Republic
| | - E Paulovičová
- Center for Glycomics, Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava, Slovakia
| | - R Effenberg
- Department of Chemistry of Natural Compounds, University of Chemistry and Technology, Technická 5, Prague, Czech Republic
| | - M Ledvina
- Department of Chemistry of Natural Compounds, University of Chemistry and Technology, Technická 5, Prague, Czech Republic
| | - M Raška
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc and University Hospital Olomouc, Hněvotínská 3, Olomouc, Czech Republic.
| | - J Turánek
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc and University Hospital Olomouc, Hněvotínská 3, Olomouc, Czech Republic; C2P NEXARS, The Campus Science Park, Palachovo náměstí 2, Brno, Czech Republic; Institute of Clinical Immunology & Allergology, Charles University Prague and University Hospital, Hradec Kralove, Sokolská 581, Hradec Kralove, Czech Republic.
| |
Collapse
|
16
|
Sohrabi S, Masoumi J, Naseri B, Ghorbaninezhad F, Alipour S, Kazemi T, Ahmadian Heris J, Aghebati Maleki L, Basirjafar P, Zandvakili R, Doustvandi MA, Baradaran B. STATs signaling pathways in dendritic cells: As potential therapeutic targets? Int Rev Immunol 2024; 43:138-159. [PMID: 37886903 DOI: 10.1080/08830185.2023.2274576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/16/2023] [Indexed: 10/28/2023]
Abstract
Dendritic cells (DCs) are professional antigen-presenting cells (APCs), including heterogenous populations with phenotypic and functional diversity that coordinate bridging innate and adaptive immunity. Signal transducer and activator of transcriptions (STAT) factors as key proteins in cytokine signaling were shown to play distinct roles in the maturation and antigen presentation of DCs and play a pivotal role in modulating immune responses mediated by DCs such as differentiation of T cells to T helper (Th) 1, Th2 or regulatory T (Treg) cells. This review sheds light on the importance of STAT transcription factors' signaling pathways in different subtypes of DCs and highlights their targeting potential usages for improving DC-based immunotherapies for patients who suffer from cancer or diverse autoimmune conditions according to the type of the STAT transcription factor and its specific activating or inhibitory agent.
Collapse
Affiliation(s)
- Sepideh Sohrabi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javad Masoumi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahar Naseri
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Shiva Alipour
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tohid Kazemi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | - Pedram Basirjafar
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Raziyeh Zandvakili
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | | | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
17
|
Macri C, Paxman M, Jenika D, Lin XP, Elahi Z, Gleeson PA, Caminschi I, Lahoud MH, Villadangos JA, Mintern JD. FcRn regulates antigen presentation in dendritic cells downstream of DEC205-targeted vaccines. NPJ Vaccines 2024; 9:76. [PMID: 38594284 PMCID: PMC11003989 DOI: 10.1038/s41541-024-00854-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 02/29/2024] [Indexed: 04/11/2024] Open
Abstract
Dendritic cell (DC)-targeted vaccination is a new mode of antigen delivery that relies on the use of monoclonal antibodies (mAb) to target antigen to specific DC subsets. The neonatal Fc receptor (FcRn) is a non-classical Fc receptor that binds to immunoglobulin G (IgG) in acidified endosomes and controls its intracellular transport and recycling. FcRn is known to participate in the antigen presentation of immune complexes, however its contribution to DC-targeted vaccination has not previously been examined. Here we have investigated the role of FcRn in antigen presentation using antigen conjugated to IgG mAb which target specific DC receptors, including DEC205 and Clec9A expressed by the conventional DC 1 (cDC1) subset. We show that FcRn is expressed at high levels by cDC1, both at steady-state and following activation and plays a significant role in MHC I cross-presentation and MHC II presentation of antigens that are targeted to cDC1 via mAb specific for DEC205. This effect of FcRn is intrinsic to cDC1 and FcRn impacts the efficacy of anti-DEC205-mediated vaccination against B cell lymphoma. In contrast, FcRn does not impact presentation of antigens targeted to Clec9A and does not regulate presentation of cell-associated antigen. These data highlight a new and unique role of FcRn in controlling the immunogenicity of anti-DEC205-based vaccination, with consequences for exploiting this pathway to improve DC-targeted vaccine outcomes.
Collapse
Affiliation(s)
- Christophe Macri
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Rd, Parkville, The University of Melbourne, Victoria, 3010, Australia
| | - Matthew Paxman
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Rd, Parkville, The University of Melbourne, Victoria, 3010, Australia
| | - Devi Jenika
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Rd, Parkville, The University of Melbourne, Victoria, 3010, Australia
| | - Xiao Peng Lin
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Rd, Parkville, The University of Melbourne, Victoria, 3010, Australia
| | - Zahra Elahi
- Department of Anatomy and Physiology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Paul A Gleeson
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Rd, Parkville, The University of Melbourne, Victoria, 3010, Australia
| | - Irina Caminschi
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria, 3010, Australia
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, 3800, Australia
| | - Mireille H Lahoud
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, 3800, Australia
| | - Jose A Villadangos
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Rd, Parkville, The University of Melbourne, Victoria, 3010, Australia
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Justine D Mintern
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Rd, Parkville, The University of Melbourne, Victoria, 3010, Australia.
| |
Collapse
|
18
|
Herbst CH, Bouteau A, Menykő EJ, Qin Z, Gyenge E, Su Q, Cooper V, Mabbott NA, Igyártó BZ. Dendritic cells overcome Cre/Lox induced gene deficiency by siphoning cytosolic material from surrounding cells. iScience 2024; 27:109119. [PMID: 38384841 PMCID: PMC10879714 DOI: 10.1016/j.isci.2024.109119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 01/10/2024] [Accepted: 01/31/2024] [Indexed: 02/23/2024] Open
Abstract
In a previous report, keratinocytes were shown to share their gene expression profile with surrounding Langerhans cells (LCs), influencing LC biology. Here, we investigated whether transferred material could substitute for lost gene products in cells subjected to Cre/Lox conditional gene deletion. We found that in human Langerin-Cre mice, epidermal LCs and CD11b+CD103+ mesenteric DCs overcome gene deletion if the deleted gene was expressed by neighboring cells. The mechanism of material transfer differed from traditional antigen uptake routes, relying on calcium and PI3K, being susceptible to polyguanylic acid inhibition, and remaining unaffected by inflammation. Termed intracellular monitoring, this process was specific to DCs, occurring in all murine DC subsets tested and human monocyte-derived DCs. The transferred material was presented on MHC-I and MHC-II, suggesting a role in regulating immune responses.
Collapse
Affiliation(s)
- Christopher H Herbst
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Aurélie Bouteau
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Evelin J Menykő
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Zhen Qin
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Ervin Gyenge
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Qingtai Su
- OncoNano Medicine, Inc, Southlake, TX 76092, USA
| | - Vincent Cooper
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Neil A Mabbott
- The Roslin Institute & Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - Botond Z Igyártó
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
19
|
Jenika D, Pounraj S, Wibowo D, Flaxl LM, Rehm BHA, Mintern JD. In vivo assembly of epitope-coated biopolymer particles that induce anti-tumor responses. NPJ Vaccines 2024; 9:18. [PMID: 38263169 PMCID: PMC10805745 DOI: 10.1038/s41541-023-00787-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 10/02/2023] [Indexed: 01/25/2024] Open
Abstract
There is an unmet need for antigen delivery systems that elicit efficient T cell priming to prevent infectious diseases or for treatment of cancers. Here, we explored the immunogenic potential of biologically assembled biopolymer particles (BPs) that have been bioengineered to display the antigenic MHC I and MHC II epitopes of model antigen ovalbumin (OVA). Purified dendritic cells (DCs) captured BP-OVA and presented the associated antigenic epitopes to CD4+ T cells and CD8+ T cells. Vaccination with BP-OVA in the absence of adjuvant elicited antigen presentation to OVA-specific CD8+ and CD4+ T cells and cross-primed effective cytotoxic T lymphocyte (CTL) killers. BP-OVA induction of CTL killing did not require CD4+ T cell help, with active CTLs generated in BP-OVA vaccinated I-Ab-/- and CD40-/- mice. In contrast, IL-15 and type I IFN were required, with abrogated CTL activity in vaccinated IL-15-/- and IFNAR1-/- mice. cDC1 and/or CD103+ DCs were not essential for BP-OVA specific CTL with immunization eliciting responses in Batf3-/- mice. Poly I:C, but not LPS or CpG, co-administered as an adjuvant with BP-OVA boosted CTL responses. Finally, vaccination with BP-OVA protected against B16-OVA melanoma and Eμ-myc-GFP-OVA lymphoma inoculation. In summary, we have demonstrated that epitope-displaying BPs represent an antigen delivery platform exhibiting a unique mechanism to effectively engage T cell immune responses.
Collapse
Affiliation(s)
- Devi Jenika
- Department of Biochemistry and Pharmacology, The University of Melbourne, Bio21 Molecular Science and Biotechnology Institute, Parkville, VIC, 3010, Australia
| | - Saranya Pounraj
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, 4111, Australia
| | - David Wibowo
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, 4111, Australia
| | - Leonhard M Flaxl
- Department of Biochemistry and Pharmacology, The University of Melbourne, Bio21 Molecular Science and Biotechnology Institute, Parkville, VIC, 3010, Australia
| | - Bernd H A Rehm
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, 4111, Australia.
- Menzies Health Institute Queensland, Griffith University, Southport, QLD, 4215, Australia.
| | - Justine D Mintern
- Department of Biochemistry and Pharmacology, The University of Melbourne, Bio21 Molecular Science and Biotechnology Institute, Parkville, VIC, 3010, Australia.
| |
Collapse
|
20
|
Pinjusic K, Ambrosini G, Lourenco J, Fournier N, Iseli C, Guex N, Egorova O, Nassiri S, Constam DB. Inhibition of anti-tumor immunity by melanoma cell-derived Activin-A depends on STING. Front Immunol 2024; 14:1335207. [PMID: 38304252 PMCID: PMC10830842 DOI: 10.3389/fimmu.2023.1335207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 12/22/2023] [Indexed: 02/03/2024] Open
Abstract
The transforming growth factor-β (TGF-β) family member activin A (hereafter Activin-A) is overexpressed in many cancer types, often correlating with cancer-associated cachexia and poor prognosis. Activin-A secretion by melanoma cells indirectly impedes CD8+ T cell-mediated anti-tumor immunity and promotes resistance to immunotherapies, even though Activin-A can be proinflammatory in other contexts. To identify underlying mechanisms, we here analyzed the effect of Activin-A on syngeneic grafts of Braf mutant YUMM3.3 mouse melanoma cells and on their microenvironment using single-cell RNA sequencing. We found that the Activin-A-induced immune evasion was accompanied by a proinflammatory interferon signature across multiple cell types, and that the associated increase in tumor growth depended at least in part on pernicious STING activity within the melanoma cells. Besides corroborating a role for proinflammatory signals in facilitating immune evasion, our results suggest that STING holds considerable potential as a therapeutic target to mitigate tumor-promoting Activin-A signaling at least in melanoma.
Collapse
Affiliation(s)
- Katarina Pinjusic
- Ecole Polytechnique Fédérale de Lausanne (EPFL), SV ISREC, Lausanne, Switzerland
| | - Giovanna Ambrosini
- Bioinformatics Competence Center, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Bioinformatics Competence Center, Université de Lausanne, Lausanne, Switzerland
| | - Joao Lourenco
- Translational Data Science Facility, Swiss Institute of Bioinformatics, AGORA Cancer Research Center, Lausanne, Switzerland
| | - Nadine Fournier
- Translational Data Science Facility, Swiss Institute of Bioinformatics, AGORA Cancer Research Center, Lausanne, Switzerland
| | - Christian Iseli
- Bioinformatics Competence Center, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Bioinformatics Competence Center, Université de Lausanne, Lausanne, Switzerland
| | - Nicolas Guex
- Bioinformatics Competence Center, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Bioinformatics Competence Center, Université de Lausanne, Lausanne, Switzerland
| | - Olga Egorova
- Ecole Polytechnique Fédérale de Lausanne (EPFL), SV ISREC, Lausanne, Switzerland
| | - Sina Nassiri
- Translational Data Science Facility, Swiss Institute of Bioinformatics, AGORA Cancer Research Center, Lausanne, Switzerland
| | - Daniel B. Constam
- Ecole Polytechnique Fédérale de Lausanne (EPFL), SV ISREC, Lausanne, Switzerland
| |
Collapse
|
21
|
Ruchti F, Tuor M, Mathew L, McCarthy NE, LeibundGut-Landmann S. γδ T cells respond directly and selectively to the skin commensal yeast Malassezia for IL-17-dependent fungal control. PLoS Pathog 2024; 20:e1011668. [PMID: 38215167 PMCID: PMC10810444 DOI: 10.1371/journal.ppat.1011668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/25/2024] [Accepted: 12/16/2023] [Indexed: 01/14/2024] Open
Abstract
Stable microbial colonization of the skin depends on tight control by the host immune system. The lipid-dependent yeast Malassezia typically colonizes skin as a harmless commensal and is subject to host type 17 immunosurveillance, but this fungus has also been associated with diverse skin pathologies in both humans and animals. Using a murine model of Malassezia exposure, we show that Vγ4+ dermal γδ T cells expand rapidly and are the major source of IL-17A mediating fungal control in colonized skin. A pool of memory-like Malassezia-responsive Vγ4+ T cells persisted in the skin, were enriched in draining lymph nodes even after fungal clearance, and were protective upon fungal re-exposure up to several weeks later. Induction of γδT17 immunity depended on IL-23 and IL-1 family cytokine signalling, whereas Toll-like and C-type lectin receptors were dispensable. Furthermore, Vγ4+ T cells from Malassezia-exposed hosts were able to respond directly and selectively to Malassezia-derived ligands, independently of antigen-presenting host cells. The fungal moieties detected were shared across diverse species of the Malassezia genus, but not conserved in other Basidiomycota or Ascomycota. These data provide novel mechanistic insight into the induction and maintenance of type 17 immunosurveillance of skin commensal colonization that has significant implications for cutaneous health.
Collapse
Affiliation(s)
- Fiorella Ruchti
- Section of Immunology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
- Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Meret Tuor
- Section of Immunology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
- Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Liya Mathew
- Centre for Immunobiology, Bart’s and The London School of Medicine and Dentistry, The Blizard Institute, Queen Mary University of London, London, United Kingdom
| | - Neil E McCarthy
- Centre for Immunobiology, Bart’s and The London School of Medicine and Dentistry, The Blizard Institute, Queen Mary University of London, London, United Kingdom
| | - Salomé LeibundGut-Landmann
- Section of Immunology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
- Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| |
Collapse
|
22
|
Henry CM, Castellanos CA, Buck MD, Giampazolias E, Frederico B, Cardoso A, Rogers NC, Schulz O, Lee S, Canton J, Faull P, Snijders AP, Mohapatra B, Band H, Reis E Sousa C. SYK ubiquitination by CBL E3 ligases restrains cross-presentation of dead cell-associated antigens by type 1 dendritic cells. Cell Rep 2023; 42:113506. [PMID: 38019655 DOI: 10.1016/j.celrep.2023.113506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/27/2023] [Accepted: 11/10/2023] [Indexed: 12/01/2023] Open
Abstract
Cross-presentation of dead cell-associated antigens by conventional dendritic cells type 1 (cDC1s) is critical for CD8+ T cells response against many tumors and viral infections. It is facilitated by DNGR-1 (CLEC9A), an SYK-coupled cDC1 receptor that detects dead cell debris. Here, we report that DNGR-1 engagement leads to rapid activation of CBL and CBL-B E3 ligases to cause K63-linked ubiquitination of SYK and terminate signaling. Genetic deletion of CBL E3 ligases or charge-conserved mutation of target lysines within SYK abolishes SYK ubiquitination and results in enhanced DNGR-1-dependent antigen cross-presentation. We also find that cDC1 deficient in CBL E3 ligases are more efficient at cross-priming CD8+ T cells to dead cell-associated antigens and promoting host resistance to tumors. Our findings reveal a role for CBL-dependent ubiquitination in limiting cross-presentation of dead cell-associated antigens and highlight an axis of negative regulation of cDC1 activity that could be exploited to increase anti-tumor immunity.
Collapse
Affiliation(s)
- Conor M Henry
- Immunobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Carlos A Castellanos
- Immunobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Michael D Buck
- Immunobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Evangelos Giampazolias
- Immunobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Bruno Frederico
- Immunobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Ana Cardoso
- Immunobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Neil C Rogers
- Immunobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Oliver Schulz
- Immunobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Sonia Lee
- Immunobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Johnathan Canton
- Immunobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Peter Faull
- Protein Analysis and Proteomics Labaratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Ambrosius P Snijders
- Protein Analysis and Proteomics Labaratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Bhopal Mohapatra
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Hamid Band
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Caetano Reis E Sousa
- Immunobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| |
Collapse
|
23
|
Cocozza F, Martin‐Jaular L, Lippens L, Di Cicco A, Arribas YA, Ansart N, Dingli F, Richard M, Merle L, Jouve San Roman M, Poullet P, Loew D, Lévy D, Hendrix A, Kassiotis G, Joliot A, Tkach M, Théry C. Extracellular vesicles and co-isolated endogenous retroviruses from murine cancer cells differentially affect dendritic cells. EMBO J 2023; 42:e113590. [PMID: 38073509 PMCID: PMC10711651 DOI: 10.15252/embj.2023113590] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 10/31/2023] [Accepted: 11/02/2023] [Indexed: 12/18/2023] Open
Abstract
Cells secrete extracellular vesicles (EVs) and non-vesicular extracellular (nano)particles (NVEPs or ENPs) that may play a role in intercellular communication. Tumor-derived EVs have been proposed to induce immune priming of antigen presenting cells or to be immuno-suppressive agents. We suspect that such disparate functions are due to variable compositions in EV subtypes and ENPs. We aimed to characterize the array of secreted EVs and ENPs of murine tumor cell lines. Unexpectedly, we identified virus-like particles (VLPs) from endogenous murine leukemia virus in preparations of EVs produced by many tumor cells. We established a protocol to separate small EVs from VLPs and ENPs. We compared their protein composition and analyzed their functional interaction with target dendritic cells. ENPs were poorly captured and did not affect dendritic cells. Small EVs specifically induced dendritic cell death. A mixed large/dense EV/VLP preparation was most efficient to induce dendritic cell maturation and antigen presentation. Our results call for systematic re-evaluation of the respective proportions and functions of non-viral EVs and VLPs produced by murine tumors and their contribution to tumor progression.
Collapse
Affiliation(s)
- Federico Cocozza
- INSERM U932, Institut Curie Centre de Recherche, PSL Research UniversityParisFrance
- Université de ParisParisFrance
| | - Lorena Martin‐Jaular
- INSERM U932, Institut Curie Centre de Recherche, PSL Research UniversityParisFrance
- Institut Curie Centre de RechercheCurieCoreTech Extracellular VesiclesParisFrance
| | - Lien Lippens
- Laboratory of Experimental Cancer Research, Department of Human Structure and RepairGhent University, and Cancer Research Institute GhentGhentBelgium
| | - Aurelie Di Cicco
- Institut Curie, PSL Research University, Sorbonne Université, CNRS UMR168, Laboratoire Physico‐chimie CurieParisFrance
- Institut Curie, PSL Research University, CNRS UMR144, Cell and Tissue Imaging Facility (PICT‐IBiSA)ParisFrance
| | - Yago A Arribas
- INSERM U932, Institut Curie Centre de Recherche, PSL Research UniversityParisFrance
| | - Nicolas Ansart
- INSERM U932, Institut Curie Centre de Recherche, PSL Research UniversityParisFrance
| | - Florent Dingli
- Institut Curie, PSL Research University, Centre de Recherche, CurieCoreTech Spectrométrie de Masse ProtéomiqueParisFrance
| | - Michael Richard
- Institut Curie, PSL Research University, Centre de Recherche, CurieCoreTech Spectrométrie de Masse ProtéomiqueParisFrance
| | - Louise Merle
- INSERM U932, Institut Curie Centre de Recherche, PSL Research UniversityParisFrance
| | | | - Patrick Poullet
- Institut Curie, Bioinformatics core facility (CUBIC), INSERM U900, PSL Research University, Mines Paris TechParisFrance
| | - Damarys Loew
- Institut Curie, PSL Research University, Centre de Recherche, CurieCoreTech Spectrométrie de Masse ProtéomiqueParisFrance
| | - Daniel Lévy
- Institut Curie, PSL Research University, Sorbonne Université, CNRS UMR168, Laboratoire Physico‐chimie CurieParisFrance
- Institut Curie, PSL Research University, CNRS UMR144, Cell and Tissue Imaging Facility (PICT‐IBiSA)ParisFrance
| | - An Hendrix
- Laboratory of Experimental Cancer Research, Department of Human Structure and RepairGhent University, and Cancer Research Institute GhentGhentBelgium
| | - George Kassiotis
- Retroviral Immunology, The Francis Crick Institute and Department of Medicine, Faculty of MedicineImperial CollegeLondonUK
| | - Alain Joliot
- INSERM U932, Institut Curie Centre de Recherche, PSL Research UniversityParisFrance
| | - Mercedes Tkach
- INSERM U932, Institut Curie Centre de Recherche, PSL Research UniversityParisFrance
| | - Clotilde Théry
- INSERM U932, Institut Curie Centre de Recherche, PSL Research UniversityParisFrance
- Institut Curie Centre de RechercheCurieCoreTech Extracellular VesiclesParisFrance
| |
Collapse
|
24
|
Lázaro-Gorines R, Pérez P, Heras-Murillo I, Adán-Barrientos I, Albericio G, Astorgano D, Flores S, Luczkowiak J, Labiod N, Harwood SL, Segura-Tudela A, Rubio-Pérez L, Nugraha Y, Shang X, Li Y, Alfonso C, Adipietro KA, Abeyawardhane DL, Navarro R, Compte M, Yu W, MacKerell AD, Sanz L, Weber DJ, Blanco FJ, Esteban M, Pozharski E, Godoy-Ruiz R, Muñoz IG, Delgado R, Sancho D, García-Arriaza J, Álvarez-Vallina L. Dendritic Cell-Mediated Cross-Priming by a Bispecific Neutralizing Antibody Boosts Cytotoxic T Cell Responses and Protects Mice against SARS-CoV-2. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304818. [PMID: 37863812 PMCID: PMC10700188 DOI: 10.1002/advs.202304818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/24/2023] [Indexed: 10/22/2023]
Abstract
Administration of neutralizing antibodies (nAbs) has proved to be effective by providing immediate protection against SARS-CoV-2. However, dual strategies combining virus neutralization and immune response stimulation to enhance specific cytotoxic T cell responses, such as dendritic cell (DC) cross-priming, represent a promising field but have not yet been explored. Here, a broadly nAb, TNT , are first generated by grafting an anti-RBD biparatopic tandem nanobody onto a trimerbody scaffold. Cryo-EM data show that the TNT structure allows simultaneous binding to all six RBD epitopes, demonstrating a high-avidity neutralizing interaction. Then, by C-terminal fusion of an anti-DNGR-1 scFv to TNT , the bispecific trimerbody TNT DNGR-1 is generated to target neutralized virions to type 1 conventional DCs (cDC1s) and promote T cell cross-priming. Therapeutic administration of TNT DNGR-1, but not TNT , protects K18-hACE2 mice from a lethal SARS-CoV-2 infection, boosting virus-specific humoral responses and CD8+ T cell responses. These results further strengthen the central role of interactions with immune cells in the virus-neutralizing antibody activity and demonstrate the therapeutic potential of the Fc-free strategy that can be used advantageously to provide both immediate and long-term protection against SARS-CoV-2 and other viral infections.
Collapse
Affiliation(s)
- Rodrigo Lázaro-Gorines
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, 28041, Spain
- Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, 28041, Spain
- H12O-CNIO Cancer Immunotherapy Clinical Research Unit, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, 28029, Spain
| | - Patricia Pérez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, 28049, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Madrid, 28029, Spain
| | - Ignacio Heras-Murillo
- Immunobiology lab, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, 28029, Spain
| | - Irene Adán-Barrientos
- Immunobiology lab, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, 28029, Spain
| | - Guillermo Albericio
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, 28049, Spain
| | - David Astorgano
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, 28049, Spain
| | - Sara Flores
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, 28049, Spain
| | - Joanna Luczkowiak
- Virology and HIV/AIDS Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, 28041, Spain
| | - Nuria Labiod
- Virology and HIV/AIDS Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, 28041, Spain
| | - Seandean L Harwood
- Department of Molecular Biology and Genetics - Protein Science, Aarhus University, Aarhus, 80000, Denmark
| | - Alejandro Segura-Tudela
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, 28041, Spain
- Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, 28041, Spain
- H12O-CNIO Cancer Immunotherapy Clinical Research Unit, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, 28029, Spain
| | - Laura Rubio-Pérez
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, 28041, Spain
- Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, 28041, Spain
- H12O-CNIO Cancer Immunotherapy Clinical Research Unit, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, 28029, Spain
- Chair for Immunology UFV/Merck, Universidad Francisco de Vitoria (UFV), Pozuelo de Alarcón, Madrid, 28223, Spain
| | - Yudhi Nugraha
- Protein Crystallography Unit, Structural Biology Programme, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, 28029, Spain
| | - Xiaoran Shang
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, 20850, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Yuxing Li
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, 20850, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- The Center for Biomolecular Therapeutics, Rockville, MD, 20850, USA
| | - Carlos Alfonso
- Centro de Investigaciones Biológicas Margarita Salas (CIB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, 28040, Spain
| | - Kaylin A Adipietro
- The Center for Biomolecular Therapeutics, Rockville, MD, 20850, USA
- Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Dinendra L Abeyawardhane
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, 20850, USA
- The Center for Biomolecular Therapeutics, Rockville, MD, 20850, USA
- Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Rocío Navarro
- Department of Antibody Engineering, Leadartis SL, Tres Cantos, Madrid, 28002, Spain
| | - Marta Compte
- Department of Antibody Engineering, Leadartis SL, Tres Cantos, Madrid, 28002, Spain
| | - Wenbo Yu
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, 20850, USA
| | - Alexander D MacKerell
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, 20850, USA
- Computer Aided Drug Design Center, Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, 21201, USA
- Center for Biomolecular Therapeutics (CBT), University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Laura Sanz
- Molecular Immunology Unit, Hospital Universitario Puerta de Hierro Majadahonda, Majadahonda, Madrid, 28220, Spain
| | - David J Weber
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, 20850, USA
- The Center for Biomolecular Therapeutics, Rockville, MD, 20850, USA
| | - Francisco J Blanco
- Centro de Investigaciones Biológicas Margarita Salas (CIB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, 28040, Spain
| | - Mariano Esteban
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, 28049, Spain
| | - Edwin Pozharski
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, 20850, USA
- The Center for Biomolecular Therapeutics, Rockville, MD, 20850, USA
| | - Raquel Godoy-Ruiz
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, 20850, USA
- The Center for Biomolecular Therapeutics, Rockville, MD, 20850, USA
| | - Inés G Muñoz
- Protein Crystallography Unit, Structural Biology Programme, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, 28029, Spain
| | - Rafael Delgado
- Virology and HIV/AIDS Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, 28041, Spain
- Department of Microbiology, Hospital Universitario 12 de Octubre, Madrid, 28041, Spain
- Department of Medicine, Universidad Complutense de Madrid, Madrid, 28040, Spain
| | - David Sancho
- Immunobiology lab, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, 28029, Spain
| | - Juan García-Arriaza
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, 28049, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Madrid, 28029, Spain
| | - Luis Álvarez-Vallina
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, 28041, Spain
- Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, 28041, Spain
- H12O-CNIO Cancer Immunotherapy Clinical Research Unit, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, 28029, Spain
- Chair for Immunology UFV/Merck, Universidad Francisco de Vitoria (UFV), Pozuelo de Alarcón, Madrid, 28223, Spain
| |
Collapse
|
25
|
Tondeur EG, Voerman JS, Geleijnse MA, van Hofwegen LS, van Krimpen A, Koerner J, Mishra G, Song Z, Schliehe C. Sec22b and Stx4 Depletion Has No Major Effect on Cross-Presentation of PLGA Microsphere-Encapsulated Antigen and a Synthetic Long Peptide In Vitro. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1203-1215. [PMID: 37638825 PMCID: PMC10592162 DOI: 10.4049/jimmunol.2200473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/08/2023] [Indexed: 08/29/2023]
Abstract
The induction of CTL responses by vaccines is important to combat infectious diseases and cancer. Biodegradable poly(lactic-co-glycolic acid) (PLGA) microspheres and synthetic long peptides are efficiently internalized by professional APCs and prime CTL responses after cross-presentation of Ags on MHC class I molecules. Specifically, they mainly use the cytosolic pathway of cross-presentation that requires endosomal escape, proteasomal processing, and subsequent MHC class I loading of Ags in the endoplasmic reticulum (ER) and/or the endosome. The vesicle SNARE protein Sec22b has been described as important for this pathway by mediating vesical trafficking for the delivery of ER-derived proteins to the endosome. As this function has also been challenged, we investigated the role of Sec22b in cross-presentation of the PLGA microsphere-encapsulated model Ag OVA and a related synthetic long peptide. Using CRISPR/Cas9-mediated genome editing, we generated Sec22b knockouts in two murine C57BL/6-derived APC lines and found no evidence for an essential role of Sec22b. Although pending experimental evidence, the target SNARE protein syntaxin 4 (Stx4) has been suggested to promote cross-presentation by interacting with Sec22b for the fusion of ER-derived vesicles with the endosome. In the current study, we show that, similar to Sec22b, Stx4 knockout in murine APCs had very limited effects on cross-presentation under the conditions tested. This study contributes to characterizing cross-presentation of two promising Ag delivery systems and adds to the discussion about the role of Sec22b/Stx4 in related pathways. Our data point toward SNARE protein redundancy in the cytosolic pathway of cross-presentation.
Collapse
Affiliation(s)
- Emma G.M. Tondeur
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Jane S.A. Voerman
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Mitchell A.A. Geleijnse
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Laure S. van Hofwegen
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Anneloes van Krimpen
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Julia Koerner
- Division of Immunology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Gunja Mishra
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Ziye Song
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Christopher Schliehe
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
26
|
Sanchez SG, Bassot E, Cerutti A, Mai Nguyen H, Aïda A, Blanchard N, Besteiro S. The apicoplast is important for the viability and persistence of Toxoplasma gondii bradyzoites. Proc Natl Acad Sci U S A 2023; 120:e2309043120. [PMID: 37590416 PMCID: PMC10450435 DOI: 10.1073/pnas.2309043120] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 06/27/2023] [Indexed: 08/19/2023] Open
Abstract
Toxoplasma gondii is responsible for toxoplasmosis, a disease that can be serious when contracted during pregnancy, but can also be a threat for immunocompromised individuals. Acute infection is associated with the tachyzoite form that spreads rapidly within the host. However, under stress conditions, some parasites can differentiate into cyst-forming bradyzoites, residing mainly in the central nervous system, retina and muscle. Because this latent form of the parasite is resistant to all currently available treatments, and is central to persistence and transmission of the parasite, specific therapeutic strategies targeting this developmental stage need to be found. T. gondii contains a plastid of endosymbiotic origin called the apicoplast, which is an appealing drug target because it is essential for tachyzoite viability and contains several key metabolic pathways that are largely absent from the mammalian host. Its function in bradyzoites, however, is unknown. Our objective was thus to study the contribution of the apicoplast to the viability and persistence of bradyzoites during chronic toxoplasmosis. We have used complementary strategies based on stage-specific promoters to generate conditional bradyzoite mutants of essential apicoplast genes. Our results show that specifically targeting the apicoplast in both in vitro or in vivo-differentiated bradyzoites leads to a loss of long-term bradyzoite viability, highlighting the importance of this organelle for this developmental stage. This validates the apicoplast as a potential area to look for therapeutic targets in bradyzoites, with the aim to interfere with this currently incurable parasite stage.
Collapse
Affiliation(s)
- Syrian G. Sanchez
- Laboratory of Pathogens and Host Immunity, CNRS, University of Montpellier, 34095Montpellier, France
| | - Emilie Bassot
- Toulouse Institute for Infectious and Inflammatory Diseases, Infinity, University of Toulouse, CNRS, Inserm, Université Paul Sabatier, 31059Toulouse, France
| | - Aude Cerutti
- Laboratory of Pathogens and Host Immunity, CNRS, University of Montpellier, 34095Montpellier, France
| | - Hoa Mai Nguyen
- Laboratory of Pathogens and Host Immunity, CNRS, University of Montpellier, 34095Montpellier, France
| | - Amel Aïda
- Toulouse Institute for Infectious and Inflammatory Diseases, Infinity, University of Toulouse, CNRS, Inserm, Université Paul Sabatier, 31059Toulouse, France
| | - Nicolas Blanchard
- Toulouse Institute for Infectious and Inflammatory Diseases, Infinity, University of Toulouse, CNRS, Inserm, Université Paul Sabatier, 31059Toulouse, France
| | - Sébastien Besteiro
- Laboratory of Pathogens and Host Immunity, CNRS, University of Montpellier, 34095Montpellier, France
| |
Collapse
|
27
|
Biswas VK, Sen K, Ahad A, Ghosh A, Verma S, Pati R, Prusty S, Nayak SP, Podder S, Kumar D, Gupta B, Raghav SK. NCoR1 controls Mycobacterium tuberculosis growth in myeloid cells by regulating the AMPK-mTOR-TFEB axis. PLoS Biol 2023; 21:e3002231. [PMID: 37590294 PMCID: PMC10465006 DOI: 10.1371/journal.pbio.3002231] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 08/29/2023] [Accepted: 07/04/2023] [Indexed: 08/19/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) defends host-mediated killing by repressing the autophagolysosome machinery. For the first time, we report NCoR1 co-repressor as a crucial host factor, controlling Mtb growth in myeloid cells by regulating both autophagosome maturation and lysosome biogenesis. We found that the dynamic expression of NCoR1 is compromised in human peripheral blood mononuclear cells (PBMCs) during active Mtb infection, which is rescued upon prolonged anti-mycobacterial therapy. In addition, a loss of function in myeloid-specific NCoR1 considerably exacerbates the growth of M. tuberculosis in vitro in THP1 differentiated macrophages, ex vivo in bone marrow-derived macrophages (BMDMs), and in vivo in NCoR1MyeKO mice. We showed that NCoR1 depletion controls the AMPK-mTOR-TFEB signalling axis by fine-tuning cellular adenosine triphosphate (ATP) homeostasis, which in turn changes the expression of proteins involved in autophagy and lysosomal biogenesis. Moreover, we also showed that the treatment of NCoR1 depleted cells by Rapamycin, Antimycin-A, or Metformin rescued the TFEB activity and LC3 levels, resulting in enhanced Mtb clearance. Similarly, expressing NCoR1 exogenously rescued the AMPK-mTOR-TFEB signalling axis and Mtb killing. Overall, our data revealed a central role of NCoR1 in Mtb pathogenesis in myeloid cells.
Collapse
Affiliation(s)
- Viplov Kumar Biswas
- Immuno-genomics & Systems Biology Laboratory, Institute of Life Sciences (ILS), Bhubaneswar, India
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, India
| | - Kaushik Sen
- Immuno-genomics & Systems Biology Laboratory, Institute of Life Sciences (ILS), Bhubaneswar, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Abdul Ahad
- Immuno-genomics & Systems Biology Laboratory, Institute of Life Sciences (ILS), Bhubaneswar, India
| | - Arup Ghosh
- Immuno-genomics & Systems Biology Laboratory, Institute of Life Sciences (ILS), Bhubaneswar, India
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, India
| | - Surbhi Verma
- Molecular Medicine: Cellular Immunology, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Rashmirekha Pati
- Immuno-genomics & Systems Biology Laboratory, Institute of Life Sciences (ILS), Bhubaneswar, India
| | - Subhasish Prusty
- Immuno-genomics & Systems Biology Laboratory, Institute of Life Sciences (ILS), Bhubaneswar, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Sourya Prakash Nayak
- Immuno-genomics & Systems Biology Laboratory, Institute of Life Sciences (ILS), Bhubaneswar, India
| | - Sreeparna Podder
- Immuno-genomics & Systems Biology Laboratory, Institute of Life Sciences (ILS), Bhubaneswar, India
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, India
| | - Dhiraj Kumar
- Molecular Medicine: Cellular Immunology, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Bhawna Gupta
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, India
| | - Sunil Kumar Raghav
- Immuno-genomics & Systems Biology Laboratory, Institute of Life Sciences (ILS), Bhubaneswar, India
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, India
| |
Collapse
|
28
|
Ohara RA, Murphy KM. Recent progress in type 1 classical dendritic cell cross-presentation - cytosolic, vacuolar, or both? Curr Opin Immunol 2023; 83:102350. [PMID: 37276818 DOI: 10.1016/j.coi.2023.102350] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 06/07/2023]
Abstract
Type 1 classical dendritic cells (cDC1s) have emerged as the major antigen-presenting cell performing cross-presentation (XP) in vivo, but the antigen-processing pathway in this cell remains obscure. Two competing models for in vivo XP of cell-associated antigens by cDC1 include a vacuolar pathway and cytosolic pathway. A vacuolar pathway relies on directing antigens captured in vesicles toward a class I major histocompatibility complex loading compartment independently of cytosolic entry. Alternate proposals invoke phagosomal rupture, either constitutive or triggered by spleen tyrosine kinase (SYK) signaling in response to C-type lectin domain family 9 member A (CLEC9A) engagement, that releases antigens into the cytosol for proteasomal degradation. The Beige and Chediak-Higashi (BEACH) protein WD repeat- and FYVE domain-containing protein 4 (WDFY4) is strictly required for XP of cell-associated antigens in vivo. However, the cellular mechanism for WDFY4 activity remains unknown and its requirement in XP in vivo is currently indifferent regarding the vacuolar versus cytosolic pathways. Here, we review the current status of these models and discuss the need for future investigation.
Collapse
Affiliation(s)
- Ray A Ohara
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA
| | - Kenneth M Murphy
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
29
|
Herbst CH, Bouteau A, Menykő EJ, Qin Z, Su Q, Buelvas DM, Gyenge E, Mabbott NA, Igyártó BZ. Dendritic Cells Overcome Cre/Lox Induced Gene Deficiency by Siphoning Material From Neighboring Cells Using Intracellular Monitoring-a Novel Mechanism of Antigen Acquisition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.22.550169. [PMID: 37546718 PMCID: PMC10401943 DOI: 10.1101/2023.07.22.550169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Macrophages and dendritic cells (DCs) in peripheral tissue interact closely with their local microenvironment by scavenging protein and nucleic acids released by neighboring cells. Material transfer between cell types is necessary for pathogen detection and antigen presentation, but thought to be relatively limited in scale. Recent reports, however, demonstrate that the quantity of transferred material can be quite large when DCs are in direct contact with live cells. This observation may be problematic for conditional gene deletion models that assume gene products will remain in the cell they are produced in. Here, we investigate whether conditional gene deletions induced by the widely used Cre/Lox system can be overcome at the protein level in DCs. Of concern, using the human Langerin Cre mouse model, we find that epidermal Langerhans cells and CD11b+CD103+ mesenteric DCs can overcome gene deletion if the deleted gene is expressed by neighboring cells. Surprisingly, we also find that the mechanism of material transfer does not resemble known mechanisms of antigen uptake, is dependent on extra- and intracellular calcium, PI3K, and scavenger receptors, and mediates a majority of material transfer to DCs. We term this novel process intracellular monitoring, and find that it is specific to DCs, but occurs in all murine DC subsets tested, as well as in human DCs. Transferred material is successfully presented and cross presented on MHC-II and MHC-I, and occurs between allogeneic donor and acceptors cells-implicating this widespread and unique process in immunosurveillance and organ transplantation.
Collapse
Affiliation(s)
- Christopher H. Herbst
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA 19107, U.S
| | - Aurélie Bouteau
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA 19107, U.S
| | - Evelin J. Menykő
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA 19107, U.S
| | - Zhen Qin
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA 19107, U.S
| | - Qingtai Su
- OncoNano Medicine, Inc., Southlake, TX 76092, U.S
| | - Dunia M. Buelvas
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA 19107, U.S
| | - Ervin Gyenge
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA 19107, U.S
| | - Neil A. Mabbott
- The Roslin Institute & Royal (Dick) School of Veterinary Studies, University of Edinburgh, UK
| | - Botond Z. Igyártó
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA 19107, U.S
| |
Collapse
|
30
|
Char R, Liu Z, Jacqueline C, Davieau M, Delgado MG, Soufflet C, Fallet M, Chasson L, Chapuy R, Camosseto V, Strock E, Rua R, Almeida CR, Su B, Lennon-Duménil AM, Nal B, Roquilly A, Liang Y, Méresse S, Gatti E, Pierre P. RUFY3 regulates endolysosomes perinuclear positioning, antigen presentation and migration in activated phagocytes. Nat Commun 2023; 14:4290. [PMID: 37463962 PMCID: PMC10354229 DOI: 10.1038/s41467-023-40062-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 07/10/2023] [Indexed: 07/20/2023] Open
Abstract
Endo-lysosomes transport along microtubules and clustering in the perinuclear area are two necessary steps for microbes to activate specialized phagocyte functions. We report that RUN and FYVE domain-containing protein 3 (RUFY3) exists as two alternative isoforms distinguishable by the presence of a C-terminal FYVE domain and by their affinity for phosphatidylinositol 3-phosphate on endosomal membranes. The FYVE domain-bearing isoform (iRUFY3) is preferentially expressed in primary immune cells and up-regulated upon activation by microbes and Interferons. iRUFY3 is necessary for ARL8b + /LAMP1+ endo-lysosomes positioning in the pericentriolar organelles cloud of LPS-activated macrophages. We show that iRUFY3 controls macrophages migration, MHC II presentation and responses to Interferon-γ, while being important for intracellular Salmonella replication. Specific inactivation of rufy3 in phagocytes leads to aggravated pathologies in mouse upon LPS injection or bacterial pneumonia. This study highlights the role of iRUFY3 in controlling endo-lysosomal dynamics, which contributes to phagocyte activation and immune response regulation.
Collapse
Affiliation(s)
- Rémy Char
- Aix Marseille Université, CNRS, INSERM, CIML, 13288, Marseille, cedex 9, France
| | - Zhuangzhuang Liu
- School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, PR China
| | - Cédric Jacqueline
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR1064, F-44000, Nantes, France
| | - Marion Davieau
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR1064, F-44000, Nantes, France
| | - Maria-Graciela Delgado
- INSERM U932, Institut Curie, ANR-10-IDEX-0001-02 PSL* and ANR-11-LABX-0043, Paris, France
| | - Clara Soufflet
- Aix Marseille Université, CNRS, INSERM, CIML, 13288, Marseille, cedex 9, France
| | - Mathieu Fallet
- Aix Marseille Université, CNRS, INSERM, CIML, 13288, Marseille, cedex 9, France
| | - Lionel Chasson
- Aix Marseille Université, CNRS, INSERM, CIML, 13288, Marseille, cedex 9, France
| | - Raphael Chapuy
- Aix Marseille Université, CNRS, INSERM, CIML, 13288, Marseille, cedex 9, France
| | - Voahirana Camosseto
- Aix Marseille Université, CNRS, INSERM, CIML, 13288, Marseille, cedex 9, France
| | - Eva Strock
- Aix Marseille Université, CNRS, INSERM, CIML, 13288, Marseille, cedex 9, France
| | - Rejane Rua
- Aix Marseille Université, CNRS, INSERM, CIML, 13288, Marseille, cedex 9, France
| | - Catarina R Almeida
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Bing Su
- Shanghai Institute of Immunology, Department of Microbiology and Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China
| | | | - Beatrice Nal
- Aix Marseille Université, CNRS, INSERM, CIML, 13288, Marseille, cedex 9, France
| | - Antoine Roquilly
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR1064, F-44000, Nantes, France
| | - Yinming Liang
- School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, PR China
| | - Stéphane Méresse
- Aix Marseille Université, CNRS, INSERM, CIML, 13288, Marseille, cedex 9, France
| | - Evelina Gatti
- Aix Marseille Université, CNRS, INSERM, CIML, 13288, Marseille, cedex 9, France.
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Philippe Pierre
- Aix Marseille Université, CNRS, INSERM, CIML, 13288, Marseille, cedex 9, France.
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193, Aveiro, Portugal.
- Shanghai Institute of Immunology, Department of Microbiology and Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China.
| |
Collapse
|
31
|
Rodríguez-Silvestre P, Laub M, Krawczyk PA, Davies AK, Schessner JP, Parveen R, Tuck BJ, McEwan WA, Borner GH, Kozik P. Perforin-2 is a pore-forming effector of endocytic escape in cross-presenting dendritic cells. Science 2023; 380:1258-1265. [PMID: 37347855 PMCID: PMC7614779 DOI: 10.1126/science.adg8802] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 05/03/2023] [Indexed: 06/24/2023]
Abstract
During initiation of antiviral and antitumor T cell-mediated immune responses, dendritic cells (DCs) cross-present exogenous antigens on major histocompatibility complex (MHC) class I molecules. Cross-presentation relies on the unusual "leakiness" of endocytic compartments in DCs, whereby internalized proteins escape into the cytosol for proteasome-mediated generation of MHC I-binding peptides. Given that type 1 conventional DCs excel at cross-presentation, we searched for cell type-specific effectors of endocytic escape. We devised an assay suitable for genetic screening and identified a pore-forming protein, perforin-2 (Mpeg1), as a dedicated effector exclusive to cross-presenting cells. Perforin-2 was recruited to antigen-containing compartments, where it underwent maturation, releasing its pore-forming domain. Mpeg1-/- mice failed to efficiently prime CD8+ T cells to cell-associated antigens, revealing an important role for perforin-2 in cytosolic entry of antigens during cross-presentation.
Collapse
Affiliation(s)
| | - Marco Laub
- MRC Laboratory of Molecular Biology; Cambridge, UK
| | | | - Alexandra K. Davies
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry; Martinsried, Germany
- Current: School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Julia P. Schessner
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry; Martinsried, Germany
| | | | - Benjamin J. Tuck
- MRC Laboratory of Molecular Biology; Cambridge, UK
- UK Dementia Research Institute at the University of Cambridge, Department of Clinical Neurosciences; Cambridge, UK
| | - William A. McEwan
- UK Dementia Research Institute at the University of Cambridge, Department of Clinical Neurosciences; Cambridge, UK
| | - Georg H.H. Borner
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry; Martinsried, Germany
| | | |
Collapse
|
32
|
Siegl D, Kruchem M, Jansky S, Eichler E, Thies D, Hartwig U, Schuppan D, Bockamp E. A PCR protocol to establish standards for routine mycoplasma testing that by design detects over ninety percent of all known mycoplasma species. iScience 2023; 26:106724. [PMID: 37216121 PMCID: PMC10192841 DOI: 10.1016/j.isci.2023.106724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/07/2023] [Accepted: 04/19/2023] [Indexed: 05/24/2023] Open
Abstract
Mycoplasma infection leads to false and non-reproducible scientific data and poses a risk to human health. Despite strict guidelines calling for regular mycoplasma screening, there is no universal and widely established standard procedure. Here, we describe a reliable and cost-effective PCR method that establishes a universal protocol for mycoplasma testing. The applied strategy utilizes ultra-conserved eukaryotic and mycoplasma sequence primers covering by design 92% of all species in the six orders of the class Mollicutes within the phylum Mycoplasmatota and is applicable to mammalian and many non-mammalian cell types. This method can stratify mycoplasma screening and is suitable as a common standard for routine mycoplasma testing.
Collapse
Affiliation(s)
- Dominik Siegl
- Institute of Translational Immunology (TIM), University Medical Center of the Johannes Gutenberg-University, Mainz 55131, Germany
| | - Marie Kruchem
- Institute of Translational Immunology (TIM), University Medical Center of the Johannes Gutenberg-University, Mainz 55131, Germany
| | - Sandrine Jansky
- Institute of Translational Immunology (TIM), University Medical Center of the Johannes Gutenberg-University, Mainz 55131, Germany
| | - Emma Eichler
- Institute of Translational Immunology (TIM), University Medical Center of the Johannes Gutenberg-University, Mainz 55131, Germany
| | - Dorothe Thies
- Institute of Translational Immunology (TIM), University Medical Center of the Johannes Gutenberg-University, Mainz 55131, Germany
| | - Udo Hartwig
- Department of Medicine III Hematology & Medical Oncology, University Medical Center of the Johannes Gutenberg-University, Mainz 55131, Germany
- Research Center for Immunotherapy, University Medical Center of the Johannes Gutenberg-University, Mainz 55131, Germany
| | - Detlef Schuppan
- Institute of Translational Immunology (TIM), University Medical Center of the Johannes Gutenberg-University, Mainz 55131, Germany
- ImmuneNTech GmbH, Wendelsheim 55234, Germany
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Research Center for Immunotherapy, University Medical Center of the Johannes Gutenberg-University, Mainz 55131, Germany
| | - Ernesto Bockamp
- Institute of Translational Immunology (TIM), University Medical Center of the Johannes Gutenberg-University, Mainz 55131, Germany
- ImmuneNTech GmbH, Wendelsheim 55234, Germany
- Research Center for Immunotherapy, University Medical Center of the Johannes Gutenberg-University, Mainz 55131, Germany
| |
Collapse
|
33
|
Amaya L, Grigoryan L, Li Z, Lee A, Wender PA, Pulendran B, Chang HY. Circular RNA vaccine induces potent T cell responses. Proc Natl Acad Sci U S A 2023; 120:e2302191120. [PMID: 37155869 PMCID: PMC10193964 DOI: 10.1073/pnas.2302191120] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/14/2023] [Indexed: 05/10/2023] Open
Abstract
Circular RNAs (circRNAs) are a class of RNAs commonly found across eukaryotes and viruses, characterized by their resistance to exonuclease-mediated degradation. Their superior stability compared to linear RNAs, combined with previous work showing that engineered circRNAs serve as efficient protein translation templates, make circRNA a promising candidate for RNA medicine. Here, we systematically examine the adjuvant activity, route of administration, and antigen-specific immunity of circRNA vaccination in mice. Potent circRNA adjuvant activity is associated with RNA uptake and activation of myeloid cells in the draining lymph nodes and transient cytokine release. Immunization of mice with engineered circRNA encoding a protein antigen delivered by a charge-altering releasable transporter induced innate activation of dendritic cells, robust antigen-specific CD8 T cell responses in lymph nodes and tissues, and strong antitumor efficacy as a therapeutic cancer vaccine. These results highlight the potential utility of circRNA vaccines for stimulating potent innate and T cell responses in tissues.
Collapse
Affiliation(s)
- Laura Amaya
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA94305
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA94305
| | - Lilit Grigoryan
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA94305
| | - Zhijian Li
- Department of Chemistry, Stanford University, Stanford, CA94305
| | - Audrey Lee
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA94305
| | - Paul A. Wender
- Department of Chemistry, Stanford University, Stanford, CA94305
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA94305
| | - Bali Pulendran
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA94305
| | - Howard Y. Chang
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA94305
- HHMI, Stanford University, Stanford, CA94305
| |
Collapse
|
34
|
Gräbnitz F, Stark D, Shlesinger D, Petkidis A, Borsa M, Yermanos A, Carr A, Barandun N, Wehling A, Balaz M, Schroeder T, Oxenius A. Asymmetric cell division safeguards memory CD8 T cell development. Cell Rep 2023; 42:112468. [PMID: 37178119 DOI: 10.1016/j.celrep.2023.112468] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/20/2023] [Accepted: 04/18/2023] [Indexed: 05/15/2023] Open
Abstract
The strength of T cell receptor (TCR) stimulation and asymmetric distribution of fate determinants are both implied to affect T cell differentiation. Here, we uncover asymmetric cell division (ACD) as a safeguard mechanism for memory CD8 T cell generation specifically upon strong TCR stimulation. Using live imaging approaches, we find that strong TCR stimulation induces elevated ACD rates, and subsequent single-cell-derived colonies comprise both effector and memory precursor cells. The abundance of memory precursor cells emerging from a single activated T cell positively correlates with first mitosis ACD. Accordingly, preventing ACD by inhibition of protein kinase Cζ (PKCζ) during the first mitosis upon strong TCR stimulation markedly curtails the formation of memory precursor cells. Conversely, no effect of ACD on fate commitment is observed upon weak TCR stimulation. Our data provide relevant mechanistic insights into the role of ACD for CD8 T cell fate regulation upon different activation conditions.
Collapse
Affiliation(s)
- Fabienne Gräbnitz
- Institute of Microbiology, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
| | - Dominique Stark
- Institute of Microbiology, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
| | - Danielle Shlesinger
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Anthony Petkidis
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Mariana Borsa
- Institute of Microbiology, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland; The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Roosevelt Drive, Oxford OX3 7FY, UK
| | - Alexander Yermanos
- Institute of Microbiology, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland; Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland; Center for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Andreas Carr
- Institute of Microbiology, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
| | - Niculò Barandun
- Institute of Microbiology, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
| | - Arne Wehling
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Miroslav Balaz
- Department of Metabolic Disease Research, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia; Department of Health Sciences and Technology, ETH Zurich, Schorenstrasse 16, 8603 Schwerzenbach, Switzerland
| | - Timm Schroeder
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Annette Oxenius
- Institute of Microbiology, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland.
| |
Collapse
|
35
|
Ohara RA, Murphy KM. The evolving biology of cross-presentation. Semin Immunol 2023; 66:101711. [PMID: 36645993 PMCID: PMC10931539 DOI: 10.1016/j.smim.2023.101711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/16/2022] [Accepted: 01/07/2023] [Indexed: 01/15/2023]
Abstract
Cross-priming was first recognized in the context of in vivo cytotoxic T lymphocyte (CTL) responses generated against minor histocompatibility antigens induced by immunization with lymphoid cells. Even though the basis for T cell antigen recognition was still largely unclear at that time, these early studies recognized the implication that such minor histocompatibility antigens were derived from the immunizing cells and were obtained exogenously by the host's antigen presenting cells (APCs) that directly prime the CTL response. As antigen recognition by the T cell receptor became understood to involve peptides derived from antigens processed by the APCs and presented by major histocompatibility molecules, the "cross-priming" phenomenon was subsequently recast as "cross-presentation" and the scope considered for examining this process gradually broadened to include many different forms of antigens, including soluble proteins, and different types of APCs that may not be involved in in vivo CTL priming. Many studies of cross-presentation have relied on in vitro cell models that were recently found to differ from in vivo APCs in particular mechanistic details. A recent trend has focused on the APCs and pathways of cross-presentation used in vivo, especially the type 1 dendritic cells. Current efforts are also being directed towards validating the in vivo role of various putative pathways and gene candidates in cross-presentation garnered from various in vitro studies and to determine the relative contributions they make to CTL responses across various forms of antigens and immunologic settings. Thus, cross-presentation appears to be carried by different pathways in various types of cells for different forms under different physiologic settings, which remain to be evaluated in an in vivo physiologic setting.
Collapse
Affiliation(s)
- Ray A Ohara
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA
| | - Kenneth M Murphy
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
36
|
Cerny O. Quantification of interaction frequency between antigen-presenting cells and T cells by conjugation assay. Methods Cell Biol 2023; 173:65-75. [PMID: 36653086 DOI: 10.1016/bs.mcb.2022.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Interaction between an antigen-presenting cell and a T cell, and their subsequent conjugation are a prerequisite for the formation of the immunological synapse and productive, antigen-dependent activation of T cells. This initial interaction is accompanied by recognition of the presented antigen by the T cell receptor, and by changes in the morphology of the interacting cells and in actin cytoskeleton structure in the site of interaction. The experimental protocol below describes a simple assay for quantitative assessment of antigen-presenting cells-T cell conjugation using confocal microscopy or flow cytometry.
Collapse
Affiliation(s)
- Ondrej Cerny
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
37
|
NCoR1 controls immune tolerance in conventional dendritic cells by fine-tuning glycolysis and fatty acid oxidation. Redox Biol 2022; 59:102575. [PMID: 36565644 PMCID: PMC9804250 DOI: 10.1016/j.redox.2022.102575] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/04/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Dendritic cells (DCs) undergo rapid metabolic reprogramming to generate signal-specific immune responses. The fine control of cellular metabolism underlying DC immune tolerance remains elusive. We have recently reported that NCoR1 ablation generates immune-tolerant DCs through enhanced IL-10, IL-27 and SOCS3 expression. In this study, we did comprehensive metabolic profiling of these tolerogenic DCs and identified that they meet their energy requirements through enhanced glycolysis and oxidative phosphorylation (OXPHOS), supported by fatty acid oxidation-driven oxygen consumption. In addition, the reduced pyruvate and glutamine oxidation with a broken TCA cycle maintains the tolerogenic state of the cells. Mechanistically, the AKT-mTOR-HIF-1α-axis mediated glycolysis and CPT1a-driven β-oxidation were enhanced in these tolerogenic DCs. To confirm these observations, we used synthetic metabolic inhibitors and found that the combined inhibition of HIF-1α and CPT1a using KC7F2 and etomoxir, respectively, compromised the overall transcriptional signature of immunological tolerance including the regulatory cytokines IL-10 and IL-27. Functionally, treatment of tolerogenic DCs with dual KC7F2 and etomoxir treatment perturbed the polarization of co-cultured naïve CD4+ T helper (Th) cells towards Th1 than Tregs, ex vivo and in vivo. Physiologically, the Mycobacterium tuberculosis (Mtb) infection model depicted significantly reduced bacterial burden in BMcDC1 ex vivo and in CD103+ lung DCs in Mtb infected NCoR1DC-/-mice. The spleen of these infected animals also showed increased Th1-mediated responses in the inhibitor-treated group. These findings suggested strong involvement of NCoR1 in immune tolerance. Our validation in primary human monocyte-derived DCs (moDCs) showed diminished NCOR1 expression in dexamethasone-derived tolerogenic moDCs along with suppression of CD4+T cell proliferation and Th1 polarization. Furthermore, the combined KC7F2 and etomoxir treatment rescued the decreased T cell proliferative capacity and the Th1 phenotype. Overall, for the first time, we demonstrated here that NCoR1 mediated control of glycolysis and fatty acid oxidation fine-tunes immune tolerance versus inflammation balance in murine and human DCs.
Collapse
|
38
|
Jha A, Ahad A, Mishra GP, Sen K, Smita S, Minz AP, Biswas VK, Tripathy A, Senapati S, Gupta B, Acha-Orbea H, Raghav SK. SMRT and NCoR1 fine-tune inflammatory versus tolerogenic balance in dendritic cells by differentially regulating STAT3 signaling. Front Immunol 2022; 13:910705. [PMID: 36238311 PMCID: PMC9552960 DOI: 10.3389/fimmu.2022.910705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
Dendritic cell (DC) fine-tunes inflammatory versus tolerogenic responses to protect from immune-pathology. However, the role of co-regulators in maintaining this balance is unexplored. NCoR1-mediated repression of DC immune-tolerance has been recently reported. Here we found that depletion of NCoR1 paralog SMRT (NCoR2) enhanced cDC1 activation and expression of IL-6, IL-12 and IL-23 while concomitantly decreasing IL-10 expression/secretion. Consequently, co-cultured CD4+ and CD8+ T-cells depicted enhanced Th1/Th17 frequency and cytotoxicity, respectively. Comparative genomic and transcriptomic analysis demonstrated differential regulation of IL-10 by SMRT and NCoR1. SMRT depletion represses mTOR-STAT3-IL10 signaling in cDC1 by down-regulating NR4A1. Besides, Nfkbia and Socs3 were down-regulated in Ncor2 (Smrt) depleted cDC1, supporting increased production of inflammatory cytokines. Moreover, studies in mice showed, adoptive transfer of SMRT depleted cDC1 in OVA-DTH induced footpad inflammation led to increased Th1/Th17 and reduced tumor burden after B16 melanoma injection by enhancing oncolytic CD8+ T-cell frequency, respectively. We also depicted decreased Ncor2 expression in Rheumatoid Arthritis, a Th1/Th17 disease.
Collapse
Affiliation(s)
- Atimukta Jha
- Immuno-genomics & Systems Biology laboratory, Institute of Life Sciences (ILS), Bhubaneswar, OR, India
- Manipal Academy of Higher Education, Manipal, KA, India
| | - Abdul Ahad
- Immuno-genomics & Systems Biology laboratory, Institute of Life Sciences (ILS), Bhubaneswar, OR, India
- Manipal Academy of Higher Education, Manipal, KA, India
| | - Gyan Prakash Mishra
- Immuno-genomics & Systems Biology laboratory, Institute of Life Sciences (ILS), Bhubaneswar, OR, India
- Department of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, India
| | - Kaushik Sen
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Haryana, India
| | - Shuchi Smita
- Immuno-genomics & Systems Biology laboratory, Institute of Life Sciences (ILS), Bhubaneswar, OR, India
- Manipal Academy of Higher Education, Manipal, KA, India
| | - Aliva Prity Minz
- Immuno-genomics & Systems Biology laboratory, Institute of Life Sciences (ILS), Bhubaneswar, OR, India
| | - Viplov Kumar Biswas
- Immuno-genomics & Systems Biology laboratory, Institute of Life Sciences (ILS), Bhubaneswar, OR, India
- Department of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, India
| | - Archana Tripathy
- Department of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, India
| | - Shantibhushan Senapati
- Immuno-genomics & Systems Biology laboratory, Institute of Life Sciences (ILS), Bhubaneswar, OR, India
- Manipal Academy of Higher Education, Manipal, KA, India
| | - Bhawna Gupta
- Department of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, India
| | - Hans Acha-Orbea
- Department of Biochemistry Center of Immunity and Infection Lausanne (CIIL), University of Lausanne (UNIL), Epalinges, Switzerland
| | - Sunil Kumar Raghav
- Immuno-genomics & Systems Biology laboratory, Institute of Life Sciences (ILS), Bhubaneswar, OR, India
- Manipal Academy of Higher Education, Manipal, KA, India
- *Correspondence: Sunil Kumar Raghav, ;
| |
Collapse
|
39
|
Papadas A, Deb G, Cicala A, Officer A, Hope C, Pagenkopf A, Flietner E, Morrow ZT, Emmerich P, Wiesner J, Arauz G, Bansal V, Esbona K, Capitini CM, Matkowskyj KA, Deming DA, Politi K, Abrams SI, Harismendy O, Asimakopoulos F. Stromal remodeling regulates dendritic cell abundance and activity in the tumor microenvironment. Cell Rep 2022; 40:111201. [PMID: 35977482 PMCID: PMC9402878 DOI: 10.1016/j.celrep.2022.111201] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 06/10/2022] [Accepted: 07/20/2022] [Indexed: 11/24/2022] Open
Abstract
Stimulatory type 1 conventional dendritic cells (cDC1s) engage in productive interactions with CD8+ effectors along tumor-stroma boundaries. The paradoxical accumulation of “poised” cDC1s within stromal sheets is unlikely to simply reflect passive exclusion from tumor cores. Drawing parallels with embryonic morphogenesis, we hypothesized that invasive margin stromal remodeling generates developmentally conserved cell fate cues that regulate cDC1 behavior. We find that, in human T cell-inflamed tumors, CD8+ T cells penetrate tumor nests, whereas cDC1s are confined within adjacent stroma that recurrently displays site-specific proteolysis of the matrix proteoglycan versican (VCAN), an essential organ-sculpting modification in development. VCAN is necessary, and its proteolytic fragment (matrikine) versikine is sufficient for cDC1 accumulation. Versikine does not influence tumor-seeding pre-DC differentiation; rather, it orchestrates a distinctive cDC1 activation program conferring exquisite sensitivity to DNA sensing, supported by atypical innate lymphoid cells. Thus, peritumoral stroma mimicking embryonic provisional matrix remodeling regulates cDC1 abundance and activity to elicit T cell-inflamed tumor microenvironments. T cell-inflamed tumor microenvironments are a prerequisite for immunotherapy efficacy; however, why some tumors are inflamed and others not remains poorly understood. Papadas et al. link stromal reaction dynamics with T cell-induced inflammation. Peritumoral stroma emulating embryonic provisional matrix remodeling regulates cDC1-NK-CD8+ crosstalk to promote T cell repriming and penetration into tumor nests.
Collapse
Affiliation(s)
- Athanasios Papadas
- Division of Blood and Marrow Transplantation, Department of Medicine, University of California, San Diego (UCSD), La Jolla, CA, USA; Moores Cancer Center, University of California, San Diego (UCSD), La Jolla, CA, USA; Cellular and Molecular Pathology Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Gauri Deb
- Division of Blood and Marrow Transplantation, Department of Medicine, University of California, San Diego (UCSD), La Jolla, CA, USA; Moores Cancer Center, University of California, San Diego (UCSD), La Jolla, CA, USA
| | - Alexander Cicala
- Division of Blood and Marrow Transplantation, Department of Medicine, University of California, San Diego (UCSD), La Jolla, CA, USA; Moores Cancer Center, University of California, San Diego (UCSD), La Jolla, CA, USA
| | - Adam Officer
- Moores Cancer Center, University of California, San Diego (UCSD), La Jolla, CA, USA; Division of Biomedical Informatics, Department of Medicine, University of California, San Diego (UCSD), Moores Cancer Center, La Jolla, CA, USA; Bioinformatics and Systems Biology Graduate Program, University of California, San Diego (UCSD), La Jolla, CA, USA
| | - Chelsea Hope
- Cellular and Molecular Pathology Graduate Program, University of Wisconsin-Madison, Madison, WI, USA; Division of Hematology and Oncology, Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA; UW Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Adam Pagenkopf
- Division of Hematology and Oncology, Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA; UW Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Evan Flietner
- Cellular and Molecular Pathology Graduate Program, University of Wisconsin-Madison, Madison, WI, USA; Division of Hematology and Oncology, Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA; UW Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Zachary T Morrow
- Division of Hematology and Oncology, Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA; UW Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Philip Emmerich
- Cellular and Molecular Pathology Graduate Program, University of Wisconsin-Madison, Madison, WI, USA; UW Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Joshua Wiesner
- Division of Blood and Marrow Transplantation, Department of Medicine, University of California, San Diego (UCSD), La Jolla, CA, USA; Moores Cancer Center, University of California, San Diego (UCSD), La Jolla, CA, USA
| | - Garrett Arauz
- Division of Blood and Marrow Transplantation, Department of Medicine, University of California, San Diego (UCSD), La Jolla, CA, USA; Moores Cancer Center, University of California, San Diego (UCSD), La Jolla, CA, USA
| | - Varun Bansal
- Division of Blood and Marrow Transplantation, Department of Medicine, University of California, San Diego (UCSD), La Jolla, CA, USA; Moores Cancer Center, University of California, San Diego (UCSD), La Jolla, CA, USA
| | - Karla Esbona
- UW Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA; Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Christian M Capitini
- UW Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA; Division of Hematology and Oncology, Department of Pediatrics, University of Wisconsin-Madison, Madison, WI, USA
| | - Kristina A Matkowskyj
- UW Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA; Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Dustin A Deming
- Division of Hematology and Oncology, Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA; UW Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA; McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI, USA
| | - Katerina Politi
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA; Department of Medicine, Yale School of Medicine, New Haven, CT, USA; Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA
| | - Scott I Abrams
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Olivier Harismendy
- Moores Cancer Center, University of California, San Diego (UCSD), La Jolla, CA, USA; Division of Biomedical Informatics, Department of Medicine, University of California, San Diego (UCSD), Moores Cancer Center, La Jolla, CA, USA
| | - Fotis Asimakopoulos
- Division of Blood and Marrow Transplantation, Department of Medicine, University of California, San Diego (UCSD), La Jolla, CA, USA; Moores Cancer Center, University of California, San Diego (UCSD), La Jolla, CA, USA.
| |
Collapse
|
40
|
Gros M, Segura E, Rookhuizen DC, Baudon B, Heurtebise-Chrétien S, Burgdorf N, Maurin M, Kapp EA, Simpson RJ, Kozik P, Villadangos JA, Bertrand MJM, Burbage M, Amigorena S. Endocytic membrane repair by ESCRT-III controls antigen export to the cytosol during antigen cross-presentation. Cell Rep 2022; 40:111205. [PMID: 35977488 PMCID: PMC9396532 DOI: 10.1016/j.celrep.2022.111205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 06/10/2022] [Accepted: 07/22/2022] [Indexed: 11/03/2022] Open
Abstract
Despite its crucial role in initiation of cytotoxic immune responses, the molecular pathways underlying antigen cross-presentation remain incompletely understood. The mechanism of antigen exit from endocytic compartments into the cytosol is a long-standing matter of controversy, confronting two main models: transfer through specific channels/transporters or rupture of endocytic membranes and leakage of luminal content. By monitoring the occurrence of intracellular damage in conventional dendritic cells (cDCs), we show that cross-presenting cDC1s display more frequent endomembrane injuries and increased recruitment of endosomal sorting complex required for transport (ESCRT)-III, the main repair system for intracellular membranes, relative to cDC2s. Silencing of CHMP2a or CHMP4b, two effector subunits of ESCRT-III, enhances cytosolic antigen export and cross-presentation. This phenotype is partially reversed by chemical inhibition of RIPK3, suggesting that endocytic damage is related to basal activation of the necroptosis pathway. Membrane repair therefore proves crucial in containing antigen export to the cytosol and cross-presentation in cDCs.
Collapse
Affiliation(s)
- Marine Gros
- Institut Curie, PSL University, INSERM U932, Immunity and Cancer, 75005 Paris, France.
| | - Elodie Segura
- Institut Curie, PSL University, INSERM U932, Immunity and Cancer, 75005 Paris, France; Department of Microbiology and Immunology at the Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, VIC 3010, Australia; Department of Biochemistry and Molecular Biology at the Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Derek C Rookhuizen
- Institut Curie, PSL University, INSERM U932, Immunity and Cancer, 75005 Paris, France
| | - Blandine Baudon
- Institut Curie, PSL University, INSERM U932, Immunity and Cancer, 75005 Paris, France
| | | | - Nina Burgdorf
- Institut Curie, PSL University, INSERM U932, Immunity and Cancer, 75005 Paris, France
| | - Mathieu Maurin
- Institut Curie, PSL University, INSERM U932, Immunity and Cancer, 75005 Paris, France
| | - Eugene A Kapp
- Walter & Eliza Hall Institute of Medical Research, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Richard J Simpson
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Melbourne, VIC 3086, Australia
| | - Patrycja Kozik
- Protein & Nucleic Acid Chemistry Division, MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Jose A Villadangos
- Department of Microbiology and Immunology at the Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, VIC 3010, Australia; Department of Biochemistry and Molecular Biology at the Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Mathieu J M Bertrand
- Department of Biomedical Molecular Biology, Ghent University, Technologiepark-Zwinjaarde 71, 9052 Zwinaarde-Ghent, Belgium; VIB Center for Inflammation Research, Technologiepark-Zwinjaarde 71, 9052 Zwinaarde-Ghent, Belgium
| | - Marianne Burbage
- Institut Curie, PSL University, INSERM U932, Immunity and Cancer, 75005 Paris, France.
| | - Sebastian Amigorena
- Institut Curie, PSL University, INSERM U932, Immunity and Cancer, 75005 Paris, France
| |
Collapse
|
41
|
Ebrahimnezhaddarzi S, Bird CH, Allison CC, Tuipulotu DE, Kostoulias X, Macri C, Stutz MD, Abraham G, Kaiserman D, Pang SS, Man SM, Mintern JD, Naderer T, Peleg AY, Pellegrini M, Whisstock JC, Bird PI. Mpeg1 is not essential for antibacterial or antiviral immunity, but is implicated in antigen presentation. Immunol Cell Biol 2022; 100:529-546. [PMID: 35471730 PMCID: PMC9545170 DOI: 10.1111/imcb.12554] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/01/2022] [Accepted: 04/25/2022] [Indexed: 11/29/2022]
Abstract
To control infections phagocytes can directly kill invading microbes. Macrophage‐expressed gene 1 (Mpeg1), a pore‐forming protein sometimes known as perforin‐2, is reported to be essential for bacterial killing following phagocytosis. Mice homozygous for the mutant allele Mpeg1tm1Pod succumb to bacterial infection and exhibit deficiencies in bacterial killing in vitro. Here we describe a new Mpeg mutant allele Mpeg1tm1.1Pib on the C57BL/6J background. Mice homozygous for the new allele are not abnormally susceptible to bacterial or viral infection, and irrespective of genetic background show no perturbation in bacterial killing in vitro. Potential reasons for these conflicting findings are discussed. In further work, we show that cytokine responses to inflammatory mediators, as well as antibody generation, are also normal in Mpeg1tm1.1Pib/tm1.1Pib mice. We also show that Mpeg1 is localized to a CD68‐positive endolysosomal compartment, and that it exists predominantly as a processed, two‐chain disulfide‐linked molecule. It is abundant in conventional dendritic cells 1, and mice lacking Mpeg1 do not present the model antigen ovalbumin efficiently. We conclude that Mpeg1 is not essential for innate antibacterial protection or antiviral immunity, but may play a focused role early in the adaptive immune response.
Collapse
Affiliation(s)
- Salimeh Ebrahimnezhaddarzi
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute Monash University Clayton VIC Australia
| | - Catherina H Bird
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute Monash University Clayton VIC Australia
| | - Cody C Allison
- The Walter and Eliza Hall Institute of Medical Research Parkville VIC Australia
| | - Daniel E Tuipulotu
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research The Australian National University Canberra ACT Australia
| | - Xenia Kostoulias
- Department of Microbiology, Monash Biomedicine Discovery Institute Monash University Clayton VIC Australia
| | - Christophe Macri
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute The University of Melbourne Parkville VIC Australia
| | - Michael D Stutz
- The Walter and Eliza Hall Institute of Medical Research Parkville VIC Australia
- Department of Medical Biology The University of Melbourne Parkville VIC Australia
| | - Gilu Abraham
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute Monash University Clayton VIC Australia
| | - Dion Kaiserman
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute Monash University Clayton VIC Australia
| | - Siew Siew Pang
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute Monash University Clayton VIC Australia
| | - Si Ming Man
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research The Australian National University Canberra ACT Australia
| | - Justine D Mintern
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute The University of Melbourne Parkville VIC Australia
| | - Thomas Naderer
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute Monash University Clayton VIC Australia
| | - Anton Y Peleg
- Department of Microbiology, Monash Biomedicine Discovery Institute Monash University Clayton VIC Australia
- Department of Infectious Diseases, The Alfred Hospital and Central Clinical School Monash University Prahran VIC Australia
| | - Marc Pellegrini
- The Walter and Eliza Hall Institute of Medical Research Parkville VIC Australia
- Department of Medical Biology The University of Melbourne Parkville VIC Australia
| | - James C Whisstock
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute Monash University Clayton VIC Australia
| | - Phillip I Bird
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute Monash University Clayton VIC Australia
| |
Collapse
|
42
|
Mishra GP, Jha A, Ahad A, Sen K, Sen A, Podder S, Prusty S, Biswas VK, Gupta B, Raghav SK. Epigenomics of conventional type-I dendritic cells depicted preferential control of TLR9 versus TLR3 response by NCoR1 through differential IRF3 activation. Cell Mol Life Sci 2022; 79:429. [PMID: 35849243 PMCID: PMC9293861 DOI: 10.1007/s00018-022-04424-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/28/2022] [Accepted: 06/13/2022] [Indexed: 11/26/2022]
Abstract
Tight control of gene regulation in dendritic cells (DCs) is important to mount pathogen specific immune responses. Apart from transcription factor binding, dynamic regulation of enhancer activity through global transcriptional repressors like Nuclear Receptor Co-repressor 1 (NCoR1) plays a major role in fine-tuning of DC responses. However, how NCoR1 regulates enhancer activity and gene expression in individual or multiple Toll-like receptor (TLR) activation in DCs is largely unknown. In this study, we did a comprehensive epigenomic analysis of murine conventional type-I DCs (cDC1) across different TLR ligation conditions. We profiled gene expression changes along with H3K27ac active enhancers and NCoR1 binding in the TLR9, TLR3 and combined TLR9 + TLR3 activated cDC1. We observed spatio-temporal activity of TLR9 and TLR3 specific enhancers regulating signal specific target genes. Interestingly, we found that NCoR1 differentially controls the TLR9 and TLR3-specific responses. NCoR1 depletion specifically enhanced TLR9 responses as evident from increased enhancer activity as well as TLR9-specific gene expression, whereas TLR3-mediated antiviral response genes were negatively regulated. We validated that NCoR1 KD cDC1 showed significantly decreased TLR3 specific antiviral responses through decreased IRF3 activation. In addition, decreased IRF3 binding was observed at selected ISGs leading to their decreased expression upon NCoR1 depletion. Consequently, the NCoR1 depleted cDC1 showed reduced Sendai Virus (SeV) clearance and cytotoxic potential of CD8+ T cells upon TLR3 activation. NCoR1 directly controls the majority of these TLR specific enhancer activity and the gene expression. Overall, for the first time, we revealed NCoR1 mediates transcriptional control towards TLR9 as compared to TLR3 in cDC1.
Collapse
Affiliation(s)
- Gyan Prakash Mishra
- Immuno-Genomics and Systems Biology Laboratory, Institute of Life Sciences (ILS), Bhubaneswar, Odisha, 751023, India
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, Odisha, 751024, India
| | - Atimukta Jha
- Immuno-Genomics and Systems Biology Laboratory, Institute of Life Sciences (ILS), Bhubaneswar, Odisha, 751023, India
- Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Abdul Ahad
- Immuno-Genomics and Systems Biology Laboratory, Institute of Life Sciences (ILS), Bhubaneswar, Odisha, 751023, India
| | - Kaushik Sen
- Immuno-Genomics and Systems Biology Laboratory, Institute of Life Sciences (ILS), Bhubaneswar, Odisha, 751023, India
- Regional Centre for Biotechnology, Faridabad, Haryana, 121001, India
| | - Aishwarya Sen
- Immuno-Genomics and Systems Biology Laboratory, Institute of Life Sciences (ILS), Bhubaneswar, Odisha, 751023, India
- Regional Centre for Biotechnology, Faridabad, Haryana, 121001, India
| | - Sreeparna Podder
- Immuno-Genomics and Systems Biology Laboratory, Institute of Life Sciences (ILS), Bhubaneswar, Odisha, 751023, India
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, Odisha, 751024, India
| | - Subhasish Prusty
- Immuno-Genomics and Systems Biology Laboratory, Institute of Life Sciences (ILS), Bhubaneswar, Odisha, 751023, India
- Regional Centre for Biotechnology, Faridabad, Haryana, 121001, India
| | - Viplov Kumar Biswas
- Immuno-Genomics and Systems Biology Laboratory, Institute of Life Sciences (ILS), Bhubaneswar, Odisha, 751023, India
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, Odisha, 751024, India
| | - Bhawna Gupta
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, Odisha, 751024, India
| | - Sunil Kumar Raghav
- Immuno-Genomics and Systems Biology Laboratory, Institute of Life Sciences (ILS), Bhubaneswar, Odisha, 751023, India.
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, Odisha, 751024, India.
- Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
- Regional Centre for Biotechnology, Faridabad, Haryana, 121001, India.
| |
Collapse
|
43
|
Zhao L, Zhang S, Kepp O, Kroemer G, Liu P. Dendritic cell transfer for cancer immunotherapy. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 370:33-64. [PMID: 35798506 DOI: 10.1016/bs.ircmb.2022.03.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Dendritic cells (DCs) play a major role in cancer immunosurveillance as they bridge innate and adaptive immunity by detecting tumor-associated antigens and presenting them to T lymphocytes. The adoptive transfer of antigen loaded DCs has been proposed as an immunotherapeutic approach for the treatment of various types of cancer. Nevertheless, despite promising preclinical data, the therapeutic efficacy of DC transfer is still deceptive in cancer patients. Here we summarize recent findings in DC biology with a special focus on the development of actionable therapeutic strategies and discuss experimental and clinical approaches that aim at improving the efficacy of DC-based immunotherapies, including, but not limited to, optimized DC production and antigen loading, stimulated maturation, the co-treatment with additional immunotherapies, as well as the inhibition of DC checkpoints.
Collapse
Affiliation(s)
- Liwei Zhao
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Université Paris Saclay, Villejuif, France; Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
| | - Shuai Zhang
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Université Paris Saclay, Villejuif, France; Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
| | - Oliver Kepp
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Université Paris Saclay, Villejuif, France; Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France.
| | - Guido Kroemer
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Université Paris Saclay, Villejuif, France; Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France; Institut du Cancer Paris Carpem, Department of Biology, Hôpital Européen Georges Pompidou, APHP, Paris, France.
| | - Peng Liu
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Université Paris Saclay, Villejuif, France; Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France.
| |
Collapse
|
44
|
Koga MM, Comberlato A, Rodríguez-Franco HJ, Bastings MMC. Strategic Insights into Engineering Parameters Affecting Cell Type-Specific Uptake of DNA-Based Nanomaterials. Biomacromolecules 2022; 23:2586-2594. [PMID: 35641881 PMCID: PMC9198982 DOI: 10.1021/acs.biomac.2c00282] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
DNA-based nanomaterials are gaining popularity as uniform and programmable bioengineering tools as a result of recent solutions to their weak stability under biological conditions. The DNA nanotechnology platform uniquely allows decoupling of engineering parameters to comprehensively study the effect of each upon cellular encounter. We here present a systematic analysis of the effect of surface parameters of DNA-based nanoparticles on uptake in three different cell models: tumor cells, macrophages, and dendritic cells. The influence of surface charge, stabilizing coating, fluorophore types, functionalization technique, and particle concentration employed is found to cause significant differences in material uptake among these cell types. We therefore provide new insights into the large variance in cell type-specific uptake, highlighting the necessity of proper engineering and careful assay development when DNA-based materials are used as tools in bioengineering and as future nanotherapeutic agents.
Collapse
Affiliation(s)
- Marianna M Koga
- Programmable Biomaterials Laboratory, Institute of Materials/Interfaculty Bioengineering Institute, School of Engineering, Ecole Polytechnique Fédérale Lausanne, Lausanne 1015, Switzerland
| | - Alice Comberlato
- Programmable Biomaterials Laboratory, Institute of Materials/Interfaculty Bioengineering Institute, School of Engineering, Ecole Polytechnique Fédérale Lausanne, Lausanne 1015, Switzerland
| | - Hugo J Rodríguez-Franco
- Programmable Biomaterials Laboratory, Institute of Materials/Interfaculty Bioengineering Institute, School of Engineering, Ecole Polytechnique Fédérale Lausanne, Lausanne 1015, Switzerland
| | - Maartje M C Bastings
- Programmable Biomaterials Laboratory, Institute of Materials/Interfaculty Bioengineering Institute, School of Engineering, Ecole Polytechnique Fédérale Lausanne, Lausanne 1015, Switzerland
| |
Collapse
|
45
|
Zeyn Y, Harms G, Tubbe I, Montermann E, Röhrig N, Hartmann M, Grabbe S, Bros M. Inhibitors of the Actin-Bundling Protein Fascin-1 Developed for Tumor Therapy Attenuate the T-Cell Stimulatory Properties of Dendritic Cells. Cancers (Basel) 2022; 14:cancers14112738. [PMID: 35681718 PMCID: PMC9179534 DOI: 10.3390/cancers14112738] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 05/28/2022] [Accepted: 05/29/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Expression of the actin-bundling protein Fascin-1 (Fscn1) is largely restricted to neuronal cells and to activated dendritic cells (DCs). DCs are important inducers of (antitumor) immune responses. In tumor cells, de novo expression of Fscn-1 correlates with their invasive and metastatic activities. Pharmacological Fscn1 inhibitors, which are currently under clinical trials for tumor therapy, were demonstrated to counteract tumor metastasis. Within this study, we were interested in better understanding the effects of Fscn1 inhibitors on DCs and discovered that two distinct Fascin-1 inhibitors affect the immune-phenotype and T-cell stimulatory activity of DCs. Our results suggest that systemic application of Fscn1 inhibitors for tumor therapy may also modulate antitumor immune responses. Abstract Background: Stimulated dendritic cells (DCs), which constitute the most potent population of antigen-presenting cells (APCs), express the actin-bundling protein Fascin-1 (Fscn1). In tumor cells, de novo expression of Fscn1 correlates with their invasive and metastatic properties. Therefore, Fscn1 inhibitors have been developed to serve as antitumor agents. In this study, we were interested in better understanding the impact of Fscn1 inhibitors on DCs. Methods: In parallel settings, murine spleen cells and bone-marrow-derived DCs (BMDCs) were stimulated with lipopolysaccharide in the presence of Fscn1 inhibitors (NP-G2-044 and BDP-13176). An analysis of surface expression of costimulatory and coinhibitory receptors, as well as cytokine production, was performed by flow cytometry. Cytoskeletal alterations were assessed by confocal microscopy. The effects on the interactions of BMDCs with antigen-specific T cells were monitored by time lapse microscopy. The T-cell stimulatory and polarizing capacity of BMDCs were measured in proliferation assays and cytokine studies. Results: Administration of Fscn1 inhibitors diminished Fscn1 expression and the formation of dendritic processes by stimulated BMDCs and elevated CD273 (PD-L2) expression. Fscn1 inhibition attenuated the interaction of DCs with antigen-specific T cells and concomitant T-cell proliferation. Conclusions: Systemic administration of Fscn1 inhibitors for tumor therapy may also modulate DC-induced antitumor immune responses.
Collapse
Affiliation(s)
- Yanira Zeyn
- Department of Dermatology, University Medical Center Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (Y.Z.); (I.T.); (E.M.); (N.R.); (M.H.); (S.G.)
| | - Gregory Harms
- Cell Biology Unit, University Medical Center Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany;
- Departments of Biology and Physics, Wilkes University, 84 W. South St., Wilkes Barre, PA 18766, USA
| | - Ingrid Tubbe
- Department of Dermatology, University Medical Center Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (Y.Z.); (I.T.); (E.M.); (N.R.); (M.H.); (S.G.)
| | - Evelyn Montermann
- Department of Dermatology, University Medical Center Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (Y.Z.); (I.T.); (E.M.); (N.R.); (M.H.); (S.G.)
| | - Nadine Röhrig
- Department of Dermatology, University Medical Center Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (Y.Z.); (I.T.); (E.M.); (N.R.); (M.H.); (S.G.)
| | - Maike Hartmann
- Department of Dermatology, University Medical Center Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (Y.Z.); (I.T.); (E.M.); (N.R.); (M.H.); (S.G.)
| | - Stephan Grabbe
- Department of Dermatology, University Medical Center Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (Y.Z.); (I.T.); (E.M.); (N.R.); (M.H.); (S.G.)
| | - Matthias Bros
- Department of Dermatology, University Medical Center Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (Y.Z.); (I.T.); (E.M.); (N.R.); (M.H.); (S.G.)
- Correspondence: ; Tel.: +49-6131-17-9846
| |
Collapse
|
46
|
Johnson AO, Fowler SB, Webster CI, Brown AJ, James DC. Bioinformatic Design of Dendritic Cell-Specific Synthetic Promoters. ACS Synth Biol 2022; 11:1613-1626. [PMID: 35389220 PMCID: PMC9016764 DOI: 10.1021/acssynbio.2c00027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
![]()
Next-generation DNA vectors for cancer
immunotherapies and vaccine
development require promoters eliciting predefined transcriptional
activities specific to target cell types, such as dendritic cells
(DCs), which underpin immune response. In this study, we describe
the de novo design of DC-specific synthetic promoters via in silico assembly of cis-transcription
factor response elements (TFREs) that harness the DC transcriptional
landscape. Using computational genome mining approaches, candidate
TFREs were identified within promoter sequences of highly expressed
DC-specific genes or those exhibiting an upregulated expression during
DC maturation. Individual TFREs were then screened in vitro in a target DC line and off-target cell lines derived from skeletal
muscle, fibroblast, epithelial, and endothelial cells using homotypic
(TFRE repeats in series) reporter constructs. Based on these data,
a library of heterotypic promoter assemblies varying in the TFRE composition,
copy number, and sequential arrangement was constructed and tested in vitro to identify DC-specific promoters. Analysis of
the transcriptional activity and specificity of these promoters unraveled
underlying design rules, primarily TFRE composition, which govern
the DC-specific synthetic promoter activity. Using these design rules,
a second library of exclusively DC-specific promoters exhibiting varied
transcriptional activities was generated. All DC-specific synthetic
promoter assemblies exhibited >5-fold activity in the target DC
line
relative to off-target cell lines, with transcriptional activities
ranging from 8 to 67% of the nonspecific human cytomegalovirus (hCMV-IE1)
promoter. We show that bioinformatic analysis of a mammalian cell
transcriptional landscape is an effective strategy for de
novo design of cell-type-specific synthetic promoters with
precisely controllable transcriptional activities.
Collapse
Affiliation(s)
- Abayomi O. Johnson
- Department of Chemical and Biological Engineering, University of Sheffield, Mappin Street, Sheffield S1 3JD, U.K
- SynGenSys Limited, Freeths LLP, Norfolk Street, Sheffield S1 2JE, U.K
| | - Susan B. Fowler
- Antibody Discovery and Protein Engineering, R&D, AstraZeneca, Cambridge CB21 6GH, U.K
| | - Carl I. Webster
- Discovery Sciences, R&D, AstraZeneca, Cambridge CB21 6GH, U.K
| | - Adam J. Brown
- Department of Chemical and Biological Engineering, University of Sheffield, Mappin Street, Sheffield S1 3JD, U.K
- SynGenSys Limited, Freeths LLP, Norfolk Street, Sheffield S1 2JE, U.K
| | - David C. James
- Department of Chemical and Biological Engineering, University of Sheffield, Mappin Street, Sheffield S1 3JD, U.K
- SynGenSys Limited, Freeths LLP, Norfolk Street, Sheffield S1 2JE, U.K
| |
Collapse
|
47
|
Sum E, Rapp M, Dürr H, Mazumdar A, Romero PJ, Trumpfheller C, Umaña P. The tumor-targeted CD40 agonist CEA-CD40 promotes T cell priming via a dual mode of action by increasing antigen delivery to dendritic cells and enhancing their activation. J Immunother Cancer 2022; 10:jitc-2021-003264. [PMID: 35292514 PMCID: PMC8928381 DOI: 10.1136/jitc-2021-003264] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2022] [Indexed: 11/03/2022] Open
Abstract
Tumor-targeted CD40 agonism represents an attractive strategy for cancer immunotherapy (CIT) as it promotes dendritic cell (DC) activation and concomitant tumor-specific T cell priming without causing systemic side effects. We developed the bispecific CD40 agonistic antibody CEA-CD40, which triggers CD40 stimulation exclusively in the presence of carcinoembryonic antigen (CEA), a glycoprotein specifically expressed on tumor cells. In this study, we demonstrate that CEA-CD40 can enable potent in vitro DC activation and consecutive T cell cross-priming in a CEA-specific manner. Furthermore, we provide evidence that CEA-CD40 increases colocalization of CEA+ tumor material and DCs. Using CEA+ tumor-derived extracellular vesicles (EVs), which are known to be an excellent tumor antigen source, we show that CEA-CD40 mediates delivery of CEA+ EVs to DCs. Importantly, our data indicates that this fosters acquisition of tumor EV major histocompatibility complex I/peptide complexes by DCs, consequently improving CD8+ T cell priming against EV-associated antigen in vitro. Thus, we provide mechanistic evidence for a dual mode of action of CEA-CD40 for CIT: we suggest that CEA-CD40 has the potential to activate DCs and in addition can promote their loading with tumor antigen derived from EVs to trigger tumor-specific T cell cross-priming.
Collapse
Affiliation(s)
- Eva Sum
- Cancer Immunotherapy, Roche Pharmaceutical Research and Early Development, Roche Innovation Center Zurich, Schlieren, Switzerland
| | - Moritz Rapp
- Cancer Immunotherapy, Roche Pharmaceutical Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | - Harald Dürr
- Large Molecule Research, Roche Pharmaceutical Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | | | - Pedro J Romero
- Oncology, University of Lausanne, Epalinges, Switzerland
| | - Christine Trumpfheller
- Cancer Immunotherapy, Roche Pharmaceutical Research and Early Development, Roche Innovation Center Zurich, Schlieren, Switzerland
| | - Pablo Umaña
- Cancer Immunotherapy, Roche Pharmaceutical Research and Early Development, Roche Innovation Center Zurich, Schlieren, Switzerland
| |
Collapse
|
48
|
The mouse cytomegalovirus G protein-coupled receptor homolog, M33, coordinates key features of in vivo infection via distinct components of its signalling repertoire. J Virol 2021; 96:e0186721. [PMID: 34878888 DOI: 10.1128/jvi.01867-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Common to all cytomegalovirus (CMV) genomes analysed to date is the presence of G protein-coupled receptors (GPCR). Animal models of CMV provide insights into their role in viral fitness. The mouse cytomegalovirus (MCMV) GPCR, M33, facilitates dendritic cell (DC)-dependent viremia, the extravasation of blood-borne infected DC to the salivary gland and the frequency of reactivation events from latently-infected tissue explants. Constitutive G protein-coupled M33 signalling is required for these phenotypes, although the contribution of distinct biochemical pathways activated by M33 is unknown. M33 engages Gq/11 to constitutively activate phospholipase C β (PLCβ) and downstream cyclic AMP response-element binding protein (CREB) in vitro. Identification of a MCMV M33 mutant (M33ΔC38) for which CREB signalling was disabled, but PLCβ activation was preserved, provided the opportunity to investigate their relevance in vivo. Following intranasal infection with MCMV M33ΔC38, the absence of M33 CREB Gq/11-dependent signalling correlated with reduced mobilisation of lytically-infected DC to draining lymph node high endothelial venules (HEVs) and reduced viremia compared with wild type MCMV. In contrast, M33ΔC38-infected DC within the vascular compartment extravasated to the salivary glands via a pertussis toxin-sensitive, Gi/o-dependent and CREB-independent mechanism. In the context of MCMV latency, spleen explants from M33ΔC38-infected mice were markedly attenuated for reactivation. Taken together, these data demonstrate that key features of the MCMV lifecycle are coordinated in diverse tissues by distinct pathways of the M33 signalling repertoire. IMPORTANCE G protein-coupled receptors (GPCRs) act as cell surface molecular "switches" which regulate the cellular response to environmental stimuli. All cytomegalovirus (CMV) genomes analysed to date possess GPCR homologs with phylogenetic evidence for independent gene capture events, signifying important in vivo roles. The mouse CMV (MCMV) GPCR homolog, designated M33, is important for cell-associated virus spread and for the establishment and/or reactivation of latent MCMV infection. The signalling repertoire of M33 is distinct from cellular GPCRs and little is known of the relevance of component signalling pathways for in vivo M33 function. In this report, we show temporal and tissue-specific M33 signalling is required facilitating in vivo infection. Understanding the relevance of the viral GPCR signalling profiles for in vivo function will provide opportunities for future targeted interventions.
Collapse
|
49
|
Müller M, Gräbnitz F, Barandun N, Shen Y, Wendt F, Steiner SN, Severin Y, Vetterli SU, Mondal M, Prudent JR, Hofmann R, van Oostrum M, Sarott RC, Nesvizhskii AI, Carreira EM, Bode JW, Snijder B, Robinson JA, Loessner MJ, Oxenius A, Wollscheid B. Light-mediated discovery of surfaceome nanoscale organization and intercellular receptor interaction networks. Nat Commun 2021; 12:7036. [PMID: 34857745 PMCID: PMC8639842 DOI: 10.1038/s41467-021-27280-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 11/09/2021] [Indexed: 12/18/2022] Open
Abstract
The molecular nanoscale organization of the surfaceome is a fundamental regulator of cellular signaling in health and disease. Technologies for mapping the spatial relationships of cell surface receptors and their extracellular signaling synapses would unlock theranostic opportunities to target protein communities and the possibility to engineer extracellular signaling. Here, we develop an optoproteomic technology termed LUX-MS that enables the targeted elucidation of acute protein interactions on and in between living cells using light-controlled singlet oxygen generators (SOG). By using SOG-coupled antibodies, small molecule drugs, biologics and intact viral particles, we demonstrate the ability of LUX-MS to decode ligand receptor interactions across organisms and to discover surfaceome receptor nanoscale organization with direct implications for drug action. Furthermore, by coupling SOG to antigens we achieved light-controlled molecular mapping of intercellular signaling within functional immune synapses between antigen-presenting cells and CD8+ T cells providing insights into T cell activation with spatiotemporal specificity. LUX-MS based decoding of surfaceome signaling architectures thereby provides a molecular framework for the rational development of theranostic strategies. The spatial organization of cell surface receptors is critical for cell signaling and drug action. Here, the authors develop an optoproteomic method for mapping surface protein interactions, revealing cellular responses to antibodies, drugs and viral particles as well as immunosynapse signaling events.
Collapse
Affiliation(s)
- Maik Müller
- Department of Health Sciences and Technology (D-HEST), ETH Zurich, Institute of Translational Medicine (ITM), Zurich, Switzerland.,Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Fabienne Gräbnitz
- Department of Biology, ETH Zurich, Institute of Microbiology, Zurich, Switzerland
| | - Niculò Barandun
- Department of Biology, ETH Zurich, Institute of Microbiology, Zurich, Switzerland
| | - Yang Shen
- Institute of Food Nutrition and Health, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Fabian Wendt
- Department of Health Sciences and Technology (D-HEST), ETH Zurich, Institute of Translational Medicine (ITM), Zurich, Switzerland.,Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Sebastian N Steiner
- Department of Health Sciences and Technology (D-HEST), ETH Zurich, Institute of Translational Medicine (ITM), Zurich, Switzerland.,Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Yannik Severin
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | | | - Milon Mondal
- Chemistry Department, University of Zurich, Zurich, Switzerland
| | | | - Raphael Hofmann
- Laboratory of Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Marc van Oostrum
- Department of Health Sciences and Technology (D-HEST), ETH Zurich, Institute of Translational Medicine (ITM), Zurich, Switzerland.,Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Roman C Sarott
- Laboratory of Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Alexey I Nesvizhskii
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA.,Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Erick M Carreira
- Laboratory of Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Jeffrey W Bode
- Laboratory of Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Berend Snijder
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland.,Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - John A Robinson
- Chemistry Department, University of Zurich, Zurich, Switzerland
| | - Martin J Loessner
- Institute of Food Nutrition and Health, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Annette Oxenius
- Department of Biology, ETH Zurich, Institute of Microbiology, Zurich, Switzerland
| | - Bernd Wollscheid
- Department of Health Sciences and Technology (D-HEST), ETH Zurich, Institute of Translational Medicine (ITM), Zurich, Switzerland. .,Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland.
| |
Collapse
|
50
|
Alvarez M, Molina C, De Andrea CE, Fernandez-Sendin M, Villalba M, Gonzalez-Gomariz J, Ochoa MC, Teijeira A, Glez-Vaz J, Aranda F, Sanmamed MF, Rodriguez-Ruiz ME, Fan X, Shen WH, Berraondo P, Quintero M, Melero I. Intratumoral co-injection of the poly I:C-derivative BO-112 and a STING agonist synergize to achieve local and distant anti-tumor efficacy. J Immunother Cancer 2021; 9:jitc-2021-002953. [PMID: 34824158 PMCID: PMC8627419 DOI: 10.1136/jitc-2021-002953] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2021] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND BO-112 is a nanoplexed form of polyinosinic:polycytidylic acid that acting on toll-like receptor 3 (TLR3), melanoma differentiation-associated protein 5 (MDA5) and protein kinase RNA-activated (PKR) elicits rejection of directly injected transplanted tumors, but has only modest efficacy against distant untreated tumors. Its clinical activity has also been documented in early phase clinical trials. The 5,6-dimethylxanthenone-4-acetic acid (DMXAA) stimulator of interferon genes (STING) agonist shows a comparable pattern of efficacy when used via intratumoral injections. METHODS Mice subcutaneously engrafted with bilateral MC38 and B16.OVA-derived tumors were treated with proinflammatory immunotherapy agents known to be active when intratumorally delivered. The combination of BO-112 and DMXAA was chosen given its excellent efficacy and the requirements for antitumor effects were studied on selective depletion of immune cell types and in gene-modified mouse strains lacking basic leucine zipper ATF-like transcription factor 3 (BATF3), interferon-α/β receptor (IFNAR) or STING. Spatial requirements for the injections were studied in mice bearing three tumor lesions. RESULTS BO-112 and DMXAA when co-injected in one of the lesions of mice bearing concomitant bilateral tumors frequently achieved complete local and distant antitumor efficacy. Synergistic effects were contingent on CD8 T cell lymphocytes and dependent on conventional type 1 dendritic cells, responsiveness to type I interferon (IFN) and STING function in the tumor-bearing host. Efficacy was preserved even if BO-112 and DMXAA were injected in separate lesions in a manner able to control another untreated third-party tumor. Efficacy could be further enhanced on concurrent PD-1 blockade. CONCLUSION Clinically feasible co-injections of BO-112 and a STING agonist attain synergistic efficacy able to eradicate distant untreated tumor lesions.
Collapse
Affiliation(s)
- Maite Alvarez
- Immunology and Immunotherapy, Center for Applied Medical Research (CIMA). University of Navarra, Pamplona, Spain .,Navarra Institute for Health Research (IdiSNA), Pamplona, Spain.,Centro de Investigacion Biomedica en Red de Cancer (CIBERONC), Madrid, Spain
| | - Carmen Molina
- Immunology and Immunotherapy, Center for Applied Medical Research (CIMA). University of Navarra, Pamplona, Spain.,Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Carlos E De Andrea
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain.,Centro de Investigacion Biomedica en Red de Cancer (CIBERONC), Madrid, Spain.,Pathology, Clinica Universidad de Navarra, Pamplona, Spain
| | - Myriam Fernandez-Sendin
- Immunology and Immunotherapy, Center for Applied Medical Research (CIMA). University of Navarra, Pamplona, Spain.,Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Maria Villalba
- Centro de Investigacion Biomedica en Red de Cancer (CIBERONC), Madrid, Spain.,Pathology, Clinica Universidad de Navarra, Pamplona, Spain
| | - Jose Gonzalez-Gomariz
- Immunology and Immunotherapy, Center for Applied Medical Research (CIMA). University of Navarra, Pamplona, Spain
| | - Maria Carmen Ochoa
- Immunology and Immunotherapy, Center for Applied Medical Research (CIMA). University of Navarra, Pamplona, Spain.,Navarra Institute for Health Research (IdiSNA), Pamplona, Spain.,Centro de Investigacion Biomedica en Red de Cancer (CIBERONC), Madrid, Spain
| | - Alvaro Teijeira
- Immunology and Immunotherapy, Center for Applied Medical Research (CIMA). University of Navarra, Pamplona, Spain.,Navarra Institute for Health Research (IdiSNA), Pamplona, Spain.,Centro de Investigacion Biomedica en Red de Cancer (CIBERONC), Madrid, Spain
| | - Javier Glez-Vaz
- Immunology and Immunotherapy, Center for Applied Medical Research (CIMA). University of Navarra, Pamplona, Spain.,Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Fernando Aranda
- Immunology and Immunotherapy, Center for Applied Medical Research (CIMA). University of Navarra, Pamplona, Spain.,Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Miguel F Sanmamed
- Immunology and Immunotherapy, Center for Applied Medical Research (CIMA). University of Navarra, Pamplona, Spain.,Navarra Institute for Health Research (IdiSNA), Pamplona, Spain.,Centro de Investigacion Biomedica en Red de Cancer (CIBERONC), Madrid, Spain.,Immunology and Oncology, Clinica Universidad de Navarra, Pamplona, Spain
| | | | - Xinyi Fan
- Radiation Oncology, Weill Cornell Medicine, New York, New York, USA
| | - Wen H Shen
- Radiation Oncology, Weill Cornell Medicine, New York, New York, USA
| | - Pedro Berraondo
- Immunology and Immunotherapy, Center for Applied Medical Research (CIMA). University of Navarra, Pamplona, Spain.,Navarra Institute for Health Research (IdiSNA), Pamplona, Spain.,Centro de Investigacion Biomedica en Red de Cancer (CIBERONC), Madrid, Spain
| | | | - Ignacio Melero
- Immunology and Immunotherapy, Center for Applied Medical Research (CIMA). University of Navarra, Pamplona, Spain .,Navarra Institute for Health Research (IdiSNA), Pamplona, Spain.,Centro de Investigacion Biomedica en Red de Cancer (CIBERONC), Madrid, Spain.,Immunology and Oncology, Clinica Universidad de Navarra, Pamplona, Spain
| |
Collapse
|