1
|
Abstract
Animal models provide the link between in vitro research and the first in-man application during clinical trials. They provide substantial information in preclinical studies for the assessment of new therapeutic interventions in advance of human clinical trials. However, each model has its advantages and limitations in the ability to imitate specific pathomechanisms. Therefore, the selection of an animal model for the evaluation of a specific research question or evaluation of a novel therapeutic strategy requires a precise analysis. Transplantation research is a discipline that largely benefits from the use of animal models with mouse and pig models being the most frequently used models in organ transplantation research. A suitable animal model should reflect best the situation in humans, and the researcher should be aware of the similarities as well as the limitations of the chosen model. Small animal models with rats and mice are contributing to the majority of animal experiments with the obvious advantages of these models being easy handling, low costs, and high reproductive rates. However, unfortunately, they often do not translate to clinical use. Large animal models, especially in transplantation medicine, are an important element for establishing preclinical models that do often translate to the clinic. Nevertheless, they can be costly, present increased regulatory requirements, and often are of high ethical concern. Therefore, it is crucial to select the right animal model from which extrapolations and valid conclusions can be obtained and translated into the human situation. This review provides an overview in the models frequently used in organ transplantation research.
Collapse
|
2
|
Yang L, Huang Q, Fu J, Lin Z, Mao Q, Zhao L, Gao X, Chen S, Hua G, Li S. A novel and efficient method to induce allospecific CD8 + memory T lymphocytes. J Clin Lab Anal 2021; 35:e23972. [PMID: 34465008 PMCID: PMC8529130 DOI: 10.1002/jcla.23972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 07/12/2021] [Accepted: 08/09/2021] [Indexed: 12/26/2022] Open
Abstract
The aim of the current study was to establish a simple method for effectively inducing memory T lymphocytes by the intraperitoneal injection of spleen lymphocytes into mice. In total, 75 mice were divided into the following groups: an injection group administered three doses of spleen lymphocytes (1 × 106, 5 × 106, and 1 × 107 cells), a transplantation group in which a 0.25‐cm2 skin section from C57BL/6 mice was transplanted onto the back of the recipient, and a control group in which an equal volume of phosphate‐buffered saline was injected. At 1, 2, or 3 months following transplantation, the following parameters were evaluated: quantity of T lymphocytes, percentage of cluster of differentiation 8+ (CD8+) memory T cells, and proliferation index of purified CD8+ memory T cells. No significant differences among groups were detected at 1 month (p > .05). However, the injection group administered 1 × 106 cells exhibited the highest proportion of CD8+ memory T cells among all groups at 2 months, and the proportions of CD8+ T cells were higher in the three injection groups than in the skin transplantation and control groups at 3 months. The proportions of memory T cells were higher in the injection groups administered 5 × 106 or 1 × 107 cells than in the skin transplantation and control groups at 3 months. The newly established method effectively induces memory T lymphocytes via the intraperitoneal injection of spleen lymphocytes in vivo and has potential applications in the field of immunotherapy.
Collapse
Affiliation(s)
- Lei Yang
- The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, China
| | - Qingyun Huang
- The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, China
| | - Jianping Fu
- The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, China
| | - Zhimin Lin
- Guangxi University of Chinese Medicine, Nanning, China
| | - Qiqi Mao
- Ningbo Medical Center Lihuili Hospital, Ningbo, China
| | - Lili Zhao
- The General Hospital of the Armed Police Force of Guangxi, Nanning, China
| | - Xingxin Gao
- The First Affiliated Hospital of Guangxi University, Nanning, China
| | - Songlin Chen
- The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, China
| | - Guangzong Hua
- The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, China
| | - Sheng Li
- The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, China
| |
Collapse
|
3
|
The importance of MHC class II in allogeneic bone marrow transplantation and chimerism-based solid organ tolerance in a rat model. PLoS One 2020; 15:e0233497. [PMID: 32442182 PMCID: PMC7244129 DOI: 10.1371/journal.pone.0233497] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 05/06/2020] [Indexed: 01/25/2023] Open
Abstract
Mixed hematopoietic chimerism enables donor-specific tolerance for solid organ grafts. This study evaluated the influence of different serological major histocompatibility complex disparities on chimerism development, graft-versus-host disease incidence and subsequently on solid organ tolerance in a rat model. For bone marrow transplantation conditioning total body irradiation was titrated using 10, 8 or 6 Gray. Bone marrow transplantation was performed across following major histocompatibility complex mismatched barriers: complete disparity, MHC class II, MHC class I or non-MHC mismatch. Recipients were clinically monitored for graft-versus-host disease and analyzed for chimerism using flow cytometry. After a reconstitution of 100 days, composition of peripheral leukocytes was determined. Mixed chimeras were challenged with heart grafts from allogeneic donor strains to define the impact of donor MHC class disparities on solid organ tolerance on the basis of stable chimerism. After myeloablation with 10 Gray of total body irradiation, chimerism after bone marrow transplantation was induced independent of MHC disparity. MHC class II disparity increased the incidence of graft-versus-host disease and reduced induction of stable chimerism upon myelosuppressive total body irradiation with 8 and 6 Gray, respectively. Stable mixed chimeras showed tolerance towards heart grafts from donors with MHC matched to either bone marrow donors or recipients. Isolated matching of MHC class II with bone marrow donors likewise led to stable tolerance as opposed to matching of MHC class I. In summary, MHC class II disparity was critically associated with the onset of graft-versus host disease and was identified as obstacle for successful development of chimerism after bone marrow transplantation and subsequent donor-specific solid organ tolerance.
Collapse
|
4
|
Naserian S, Leclerc M, Thiolat A, Pilon C, Le Bret C, Belkacemi Y, Maury S, Charlotte F, Cohen JL. Simple, Reproducible, and Efficient Clinical Grading System for Murine Models of Acute Graft-versus-Host Disease. Front Immunol 2018; 9:10. [PMID: 29403494 PMCID: PMC5786520 DOI: 10.3389/fimmu.2018.00010] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 01/04/2018] [Indexed: 12/16/2022] Open
Abstract
Acute graft-versus-host disease (aGVHD) represents a challenging complication after allogeneic hematopoietic stem cell transplantation. Despite the intensive preclinical research in the field of prevention and treatment of aGVHD, and the presence of a well-established clinical grading system to evaluate human aGVHD, such a valid tool is still lacking for the evaluation of murine aGVHD. Indeed, several scoring systems have been reported, but none of them has been properly evaluated and they all share some limitations: they incompletely reflect the disease, rely on severity stages that are distinguished by subjective assessment of clinical criteria and are not easy to discriminate, which could render evaluation more time consuming, and their reproducibility among different experimenters is uncertain. Consequently, clinical murine aGVHD description is often based merely on animal weight loss and mortality. Here, we propose a simple scoring system of aGVHD relying on the binary (yes or no) evaluation of five important visual parameters that reflect the complexity of the disease without the need to sacrifice the mice. We show that this scoring system is consistent with the gold standard histological staging of aGVHD across several donor/recipient mice combinations. This system is also a strong predictor of survival of recipient mice when used early after transplant and is highly reproducible between experimenters.
Collapse
Affiliation(s)
- Sina Naserian
- Université Paris-Est, UMR_S955, Université Paris-Est Créteil Val de Marne, Créteil, France.,INSERM, U955, Equipe 21, Créteil, France
| | - Mathieu Leclerc
- Université Paris-Est, UMR_S955, Université Paris-Est Créteil Val de Marne, Créteil, France.,INSERM, U955, Equipe 21, Créteil, France.,APHP, Service d'hématologie Clinique, Hôpital Henri Mondor, Créteil, France
| | - Allan Thiolat
- Université Paris-Est, UMR_S955, Université Paris-Est Créteil Val de Marne, Créteil, France.,INSERM, U955, Equipe 21, Créteil, France
| | - Caroline Pilon
- Université Paris-Est, UMR_S955, Université Paris-Est Créteil Val de Marne, Créteil, France.,INSERM, U955, Equipe 21, Créteil, France.,UPEC, APHP, INSERM, CIC Biothérapie, Hôpital Henri Mondor, Créteil, France
| | - Cindy Le Bret
- Université Paris-Est Créteil Val de Marne, APHP, Service d'Oncologie-Radiothérapie, Hôpital Henri Mondor, Créteil, France
| | - Yazid Belkacemi
- Université Paris-Est Créteil Val de Marne, APHP, Service d'Oncologie-Radiothérapie, Hôpital Henri Mondor, Créteil, France
| | - Sébastien Maury
- Université Paris-Est, UMR_S955, Université Paris-Est Créteil Val de Marne, Créteil, France.,INSERM, U955, Equipe 21, Créteil, France.,APHP, Service d'hématologie Clinique, Hôpital Henri Mondor, Créteil, France
| | - Frédéric Charlotte
- APHP, Hôpital Pitié Salpêtrière, Service d'Anatomopathologie, Paris, France
| | - José L Cohen
- Université Paris-Est, UMR_S955, Université Paris-Est Créteil Val de Marne, Créteil, France.,INSERM, U955, Equipe 21, Créteil, France.,UPEC, APHP, INSERM, CIC Biothérapie, Hôpital Henri Mondor, Créteil, France
| |
Collapse
|
5
|
Ghimire S, Weber D, Mavin E, Wang XN, Dickinson AM, Holler E. Pathophysiology of GvHD and Other HSCT-Related Major Complications. Front Immunol 2017; 8:79. [PMID: 28373870 PMCID: PMC5357769 DOI: 10.3389/fimmu.2017.00079] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Accepted: 01/17/2017] [Indexed: 12/13/2022] Open
Abstract
For over 60 years, hematopoietic stem cell transplantation has been the major curative therapy for several hematological and genetic disorders, but its efficacy is limited by the secondary disease called graft versus host disease (GvHD). Huge advances have been made in successful transplantation in order to improve patient quality of life, and yet, complete success is hard to achieve. This review assimilates recent updates on pathophysiology of GvHD, prophylaxis and treatment of GvHD-related complications, and advances in the potential treatment of GvHD.
Collapse
Affiliation(s)
- Sakhila Ghimire
- Department of Internal Medicine III, University Medical Centre , Regensburg , Germany
| | - Daniela Weber
- Department of Internal Medicine III, University Medical Centre , Regensburg , Germany
| | - Emily Mavin
- Hematological Sciences, Institute of Cellular Medicine, Newcastle University , Newcastle , UK
| | - Xiao Nong Wang
- Hematological Sciences, Institute of Cellular Medicine, Newcastle University , Newcastle , UK
| | - Anne Mary Dickinson
- Hematological Sciences, Institute of Cellular Medicine, Newcastle University , Newcastle , UK
| | - Ernst Holler
- Department of Internal Medicine III, University Medical Centre , Regensburg , Germany
| |
Collapse
|
6
|
Boieri M, Shah P, Dressel R, Inngjerdingen M. The Role of Animal Models in the Study of Hematopoietic Stem Cell Transplantation and GvHD: A Historical Overview. Front Immunol 2016; 7:333. [PMID: 27625651 PMCID: PMC5003882 DOI: 10.3389/fimmu.2016.00333] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 08/18/2016] [Indexed: 12/13/2022] Open
Abstract
Bone marrow transplantation (BMT) is the only therapeutic option for many hematological malignancies, but its applicability is limited by life-threatening complications, such as graft-versus-host disease (GvHD). The last decades have seen great advances in the understanding of BMT and its related complications; in particular GvHD. Animal models are beneficial to study complex diseases, as they allow dissecting the contribution of single components in the development of the disease. Most of the current knowledge on the therapeutic mechanisms of BMT derives from studies in animal models. Parallel to BMT, the understanding of the pathophysiology of GvHD, as well as the development of new treatment regimens, has also been supported by studies in animal models. Pre-clinical experimentation is the basis for deep understanding and successful improvements of clinical applications. In this review, we retrace the history of BMT and GvHD by describing how the studies in animal models have paved the way to the many advances in the field. We also describe how animal models contributed to the understanding of GvHD pathophysiology and how they are fundamental for the discovery of new treatments.
Collapse
Affiliation(s)
- Margherita Boieri
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway; Department of Immunology, Oslo University Hospital, Oslo, Norway
| | - Pranali Shah
- Institute of Cellular and Molecular Immunology, University Medical Center Göttingen , Göttingen , Germany
| | - Ralf Dressel
- Institute of Cellular and Molecular Immunology, University Medical Center Göttingen , Göttingen , Germany
| | - Marit Inngjerdingen
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway; Department of Immunology, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
7
|
Toubert A, Einsele H. From immunomonitoring to immune intervention. Front Immunol 2015; 5:669. [PMID: 25610438 PMCID: PMC4285170 DOI: 10.3389/fimmu.2014.00669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 12/13/2014] [Indexed: 11/24/2022] Open
Affiliation(s)
- Antoine Toubert
- Immunology-Histocompatibility, Laboratoire d'Immunologie et d'Histocompatibilité, Laboratoire Jean Dausset, INSERM, Assistance Publique Hôpitaux de Paris, Université Paris Diderot , Paris , France
| | - Hermann Einsele
- Department of Internal Medicine II, University Hospital Würzburg , Würzburg , Germany
| |
Collapse
|
8
|
Jiang T, Piao D, Zhu A, Jiang H. Changes in T lymphocyte subsets in mice with CT26 colon tumors after treatment with donor lymphocyte infusion. Tumour Biol 2014; 35:5599-605. [PMID: 24659423 DOI: 10.1007/s13277-014-1740-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Accepted: 02/10/2014] [Indexed: 10/25/2022] Open
Abstract
The objective of this study was to detect changes in T lymphocyte subpopulations in mice with CT26 subcutaneous colon cancer after treatment with donor lymphocyte infusion (DLI) and cyclophosphamide (CP) chemotherapy. A colon cancer model was established by subcutaneous injection of CT26 carcinoma cells into BALB/C mice. The mice were randomized into different treatment groups. We recorded survival times, tumor growth inhibition rates, histopathological changes, and T lymphocyte subsets in peripheral blood of the mice. Mice treated with DLI and CP survived 33.5 ± 5.02 days, which was significantly longer than the survival time of untreated control mice (16.7 ± 2.98 days, P < 0.01). In addition, the tumor inhibitory rate was higher in mice treated with DLI and CP (89.3 %) than that in mice treated with CP or DLI alone (67.1 and 34.5 %, respectively). There were higher levels of T lymphocytes that were CD3(+) and CD4(+) in mice treated with DLI alone or the combination of CP and DLI (P < 0.05), and the ratio of CD4(+)/CD8(+) cells was significantly improved in these mice (P < 0.05). DLI combined with chemotherapy significantly prolonged survival and inhibited tumor growth in mice with CT26 colon cancer. This treatment might also improve immune function in these mice. Donor spleen cells that include high numbers of allogeneic lymphocytes and a few stem cells could induce a graft-versus-tumor effect, leading to elimination of residual cancer cells. This indicates that it is potentially a feasible adoptive cellular immunotherapy strategy for the management of solid tumors.
Collapse
Affiliation(s)
- Tao Jiang
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Str, Nangang District, Harbin, Heilongjiang Province, People's Republic of China
| | | | | | | |
Collapse
|