1
|
Zhao Y, Knight CM, Jiang Z, Delgado E, Van Hoven AM, Ghanny S, Zhou Z, Zhou H, Yu H, Hu W, Li H, Li X, Perez-Basterrechea M, Zhao L, Zhao Y, Giangola J, Weinberg R, Mazzone T. Stem Cell Educator therapy in type 1 diabetes: From the bench to clinical trials. Clin Exp Rheumatol 2022; 21:103058. [PMID: 35108619 DOI: 10.1016/j.autrev.2022.103058] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 01/25/2022] [Indexed: 12/11/2022]
Abstract
Type 1 diabetes (T1D) is an autoimmune disease that causes a deficit of pancreatic islet β cells. Millions of individuals worldwide have T1D, and its incidence increases annually. Recent clinical trials have highlighted the limits of conventional immunotherapy in T1D and underscore the need for novel treatments that not only overcome multiple immune dysfunctions, but also help restore islet β-cell function. To address these two key issues, we have developed a unique and novel procedure designated the Stem Cell Educator therapy, based on the immune education by cord-blood-derived multipotent stem cells (CB-SC). Over the last 10 years, this technology has been evaluated through international multi-center clinical studies, which have demonstrated its clinical safety and efficacy in T1D and other autoimmune diseases. Mechanistic studies revealed that Educator therapy could fundamentally correct the autoimmunity and induce immune tolerance through multiple molecular and cellular mechanisms such as the expression of a master transcription factor autoimmune regulator (AIRE) in CB-SC for T-cell modulation, an expression of Galectin-9 on CB-SC to suppress activated B cells, and secretion of CB-SC-derived exosomes to polarize human blood monocytes/macrophages into type 2 macrophages. Educator therapy is the leading immunotherapy to date to safely and efficiently correct autoimmunity and restore β cell function in T1D patients.
Collapse
Affiliation(s)
- Yong Zhao
- Throne Biotechnologies, Paramus, NJ 07652, USA.
| | - Colette M Knight
- Hackensack Meridian School of Medicine, Inserra Family Diabetes Institute, Department of Medicine, Hackensack University Medical Center, Hackensack, NJ 07601, USA.
| | - Zhaoshun Jiang
- Department of Endocrinology, The 960th Hospital of the PLA Joint Logistics Support Force, Jinan, Shandong 250031, China.
| | - Elias Delgado
- Department of Endocrinology and Nutrition, Hospital Universitario Central de Asturias (HUCA), Department of Medicine, University of Oviedo, Health Research Institute of the Principality of Asturias (ISPA), Oviedo 33006, Spain.
| | - Anne Marie Van Hoven
- Hackensack Meridian School of Medicine, Inserra Family Diabetes Institute, Department of Medicine, Hackensack University Medical Center, Hackensack, NJ 07601, USA
| | - Steven Ghanny
- Department of Pediatric, Division of Endocrinology and Diabetes, Hackensack University Medical Center, Hackensack, NJ 07601, USA
| | - Zhiguang Zhou
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Huimin Zhou
- Section of Endocrinology, The First Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei 050031, China
| | - Haibo Yu
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Wei Hu
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, USA
| | - Heng Li
- Section of Neurology, Jinan Central Hospital, Shandong University, Jinan, Shandong 250020, China
| | - Xia Li
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Marcos Perez-Basterrechea
- Unit of Cell Therapy and Regenerative Medicine, Hematology and Hemotherapy, Central University Hospital of Asturias, Health Research Institute of the Principality of Asturias (ISPA), Oviedo 33006, Spain
| | - Laura Zhao
- Throne Biotechnologies, Paramus, NJ 07652, USA
| | - Yeqian Zhao
- Throne Biotechnologies, Paramus, NJ 07652, USA
| | - Joseph Giangola
- Hackensack Meridian School of Medicine, Inserra Family Diabetes Institute, Department of Medicine, Hackensack University Medical Center, Hackensack, NJ 07601, USA
| | - Rona Weinberg
- MPN Laboratory, New York Blood Center, New York, NY 10065, USA
| | | |
Collapse
|
2
|
Setoodeh A, Panjeh-Shahi S, Bahmani F, Vand-Rajabpour F, Jalilian N, Sayarifard F, Abbasi F, Sayarifard A, Rostami P, Parvaneh N, Akhavan-Niaki H, Ahmadifard M, Tabrizi M. Molecular and clinical characterization of autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy syndrome (APECED) in Iranian non-Jewish patients: report of two novel AIRE gene pathogenic variants. Orphanet J Rare Dis 2022; 17:10. [PMID: 34991662 PMCID: PMC8734050 DOI: 10.1186/s13023-021-02170-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 12/19/2021] [Indexed: 12/22/2022] Open
Abstract
Objective Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy syndrome (APECED) is a rare autosomal recessive systemic autoimmune disease caused by mutations in the autoimmune regulator (AIRE) gene. Incidence of this genetic disorder is estimated at 1/90,000–200,000 worldwide and 1/6500–9000 in genetically isolated populations such as Iran. Here, we investigated AIRE gene mutations in eight independent Iranian non-Jewish families. Methods We sequenced the coding regions of the AIRE gene and documented mutations which were further confirmed in respective parents. Results In total, 11 cases from 8 independent families were recruited. Mucosal candidiasis, Addison’s disease and hypoparathyroidism were the most common clinical manifestations in these patients. One novel homozygous splice acceptor mutation (c.308-1G>C), and one novel heterozygous stop-gain mutation (c.1496delC) combined with a known heterozygous c.232T>C missense mutation were found. Moreover, we observed previously described splice donor (c.1095+2T>A), frameshift (c.967-979del), stop-gain (c.415C>T), and missense (c.62C>T) mutations among the patients. All results were co-segregated in parents. Conclusion Here, we reported two novel mutations in the AIRE gene leading to APECED. Our data could provide insight into the phenotypic and genotypic spectrum of APECED in the non-Jewish Iranian population. These findings, in addition to future functional assays, can elucidate disease-causing mechanisms related to the AIRE gene and assist in genetic counseling and diagnosis.
Collapse
Affiliation(s)
- Aria Setoodeh
- Division of Endocrinology and Metabolism, Growth and Development Research Center, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Samareh Panjeh-Shahi
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Fariba Bahmani
- Division of Endocrinology and Metabolism, Growth and Development Research Center, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Vand-Rajabpour
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nazanin Jalilian
- Department of Clinical Biochemistry, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fatemeh Sayarifard
- Division of Endocrinology and Metabolism, Growth and Development Research Center, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Farzaneh Abbasi
- Division of Endocrinology and Metabolism, Growth and Development Research Center, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Azadeh Sayarifard
- Growth and Development Research Center, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Parastoo Rostami
- Division of Endocrinology and Metabolism, Growth and Development Research Center, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Parvaneh
- Division of Allergy and Clinical Immunology, Department of Pediatrics, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Haleh Akhavan-Niaki
- Department of Medical Genetics, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Mohamadreza Ahmadifard
- Department of Medical Genetics, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Mina Tabrizi
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Rozmus J. Monogenic Immune Diseases Provide Insights Into the Mechanisms and Treatment of Chronic Graft-Versus-Host Disease. Front Immunol 2021; 11:574569. [PMID: 33613511 PMCID: PMC7889949 DOI: 10.3389/fimmu.2020.574569] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 12/07/2020] [Indexed: 12/22/2022] Open
Abstract
Chronic graft-versus-host disease (GvHD) has become a leading cause of morbidity and mortality following allogeneic hematopoietic stem cell transplantation (HSCT) and can burden patients with devastating and lifelong health effects. Our understanding of the pathogenic mechanisms underlying chronic GvHD remains incomplete and this lack of understanding is reflected by lack of clear therapeutic approaches to steroid refractory disease. Observations predominantly from mouse models and human correlative studies currently support a three phase model for the initiation and development of chronic GvHD: 1) early inflammation and tissue damage triggers the innate immune system. This leads to inflammatory cytokine/chemokine patterns that recruit effector immune cell populations; 2) chronic inflammation causes the loss of central and peripheral tolerance mechanisms leading to emergence of pathogenic B and T cell populations that promote autoimmune and alloimmune reactions; 3) the dysregulated immunity causes altered macrophage polarization, aberrant tissue repair leading to scarring and end organ fibrosis. This model has led to the evaluation of many new therapies aimed at limiting inflammation, targeting dysregulated signaling pathways and restoring tolerance mechanisms. However, chronic GvHD is a multisystem disease with complex clinical phenotypes and it remains unclear as to which cluster of patients will respond best to specific therapeutic strategies. However, it is possible to gain novel insights from immune-related monogenic diseases. These diseases either share common clinical manifestations, replicate steps from the three phase chronic GvHD model or serve as surrogates for perfectly targeted drugs being investigated in chronic GvHD therapy. In this review, we will summarize the evidence from these monogenic immune related diseases that provide insight into pathogenic pathways in chronic GvHD, rationales for current therapies and novel directions for future drug discovery.
Collapse
Affiliation(s)
- Jacob Rozmus
- Division of Pediatric Hematology, Oncology & BMT, Department of Pediatrics, BC Children's Hospital, University of British Columbia, Vancouver, BC, Canada.,Michael Cuccione Childhood Cancer Research Program, BC Children's Hospital Research Institute, Vancouver, BC, Canada
| |
Collapse
|
4
|
Miragaia RJ, Zhang X, Gomes T, Svensson V, Ilicic T, Henriksson J, Kar G, Lönnberg T. Single-cell RNA-sequencing resolves self-antigen expression during mTEC development. Sci Rep 2018; 8:685. [PMID: 29330484 PMCID: PMC5766627 DOI: 10.1038/s41598-017-19100-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 12/14/2017] [Indexed: 01/03/2023] Open
Abstract
The crucial capability of T cells for discrimination between self and non-self peptides is based on negative selection of developing thymocytes by medullary thymic epithelial cells (mTECs). The mTECs purge autoreactive T cells by expression of cell-type specific genes referred to as tissue-restricted antigens (TRAs). Although the autoimmune regulator (AIRE) protein is known to promote the expression of a subset of TRAs, its mechanism of action is still not fully understood. The expression of TRAs that are not under the control of AIRE also needs further characterization. Furthermore, expression patterns of TRA genes have been suggested to change over the course of mTEC development. Herein we have used single-cell RNA-sequencing to resolve patterns of TRA expression during mTEC development. Our data indicated that mTEC development consists of three distinct stages, correlating with previously described jTEC, mTEChi and mTEClo phenotypes. For each subpopulation, we have identified marker genes useful in future studies. Aire-induced TRAs were switched on during jTEC-mTEC transition and were expressed in genomic clusters, while otherwise the subsets expressed largely overlapping sets of TRAs. Moreover, population-level analysis of TRA expression frequencies suggested that such differences might not be necessary to achieve efficient thymocyte selection.
Collapse
Affiliation(s)
- Ricardo J Miragaia
- European Bioinformatics Institute (EMBL-EBI), European Molecular Biology Laboratory, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, United Kingdom
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Xiuwei Zhang
- European Bioinformatics Institute (EMBL-EBI), European Molecular Biology Laboratory, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, United Kingdom
- University of California, Berkeley, USA
| | - Tomás Gomes
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | - Valentine Svensson
- European Bioinformatics Institute (EMBL-EBI), European Molecular Biology Laboratory, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, United Kingdom
| | - Tomislav Ilicic
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | - Johan Henriksson
- European Bioinformatics Institute (EMBL-EBI), European Molecular Biology Laboratory, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, United Kingdom
| | - Gozde Kar
- European Bioinformatics Institute (EMBL-EBI), European Molecular Biology Laboratory, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, United Kingdom
| | - Tapio Lönnberg
- European Bioinformatics Institute (EMBL-EBI), European Molecular Biology Laboratory, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, United Kingdom.
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom.
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland.
| |
Collapse
|
5
|
Vuddamalay Y, van Meerwijk JPM. CD28 - and CD28 lowCD8 + Regulatory T Cells: Of Mice and Men. Front Immunol 2017; 8:31. [PMID: 28167946 PMCID: PMC5256148 DOI: 10.3389/fimmu.2017.00031] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 01/09/2017] [Indexed: 12/12/2022] Open
Abstract
Since the rebirth of regulatory (formerly known as suppressor) T cells in the early 1990s, research in the field of immune-regulation by various T cell populations has quickly gained momentum. While T cells expressing the transcription factor Foxp3 are currently in the spotlight, several other T cell populations endowed with potent immunomodulatory capacities have been identified in both the CD8+ and CD4+ compartment. The fundamental difference between CD4+ and CD8+ T cells in terms of antigen recognition suggests non-redundant, and perhaps complementary, functions of regulatory CD4+ and CD8+ T cells in immunoregulation. This emphasizes the importance and necessity of continuous research on both subpopulations of regulatory T cells (Tregs) so as to decipher their complex physiological relevance and possible synergy. Two distinct CD8-expressing Treg populations can be distinguished based on expression of the co-stimulatory receptor CD28. Here, we review the literature on these (at least in part) thymus-derived CD28low and peripherally induced CD28-CD8+ Tregs.
Collapse
Affiliation(s)
- Yirajen Vuddamalay
- School of Health Sciences, University of Technology , Port Louis , Mauritius
| | - Joost P M van Meerwijk
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1043, Toulouse, France; Centre National de la Recherche Scientifique (CNRS), U5282, Toulouse, France; Université de Toulouse, Université Paul Sabatier, Centre de Physiopathologie de Toulouse Purpan (CPTP), Toulouse, France
| |
Collapse
|
6
|
Fierabracci A. Type 1 Diabetes in Autoimmune Polyendocrinopathy-Candidiasis-Ectodermal Dystrophy Syndrome (APECED): A "Rare" Manifestation in a "Rare" Disease. Int J Mol Sci 2016; 17:E1106. [PMID: 27420045 PMCID: PMC4964482 DOI: 10.3390/ijms17071106] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 07/01/2016] [Indexed: 02/06/2023] Open
Abstract
Type 1 autoimmune polyglandular syndrome (APS1) is a rare autosomal recessive disease, caused by mutations in the autoimmune regulator gene (AIRE); the encoded Aire protein plays an important role in the establishment of the immunological tolerance acting as a transcriptional regulator of the expression of organ-specific antigens within the thymus in perinatal age. While a high prevalence for this rare syndrome is reported in Finland and Scandinavia (Norway), autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy syndrome (APECED) cohorts of patients are also detected in continental Italy and Sardinia, among Iranian Jews, as well as in other countries. The syndrome is diagnosed when patients present at least two out of the three fundamental disorders including chronic mucocutaneous candidiasis, hypoparathyroidism, and Addison's disease. Among the associated conditions insulin-dependent diabetes mellitus (Type 1 diabetes) has been rarely reported in different series of patients and occurring more frequently in Finnish APECED patients. In this review, we analyze the incidence of Type 1 diabetes as a clinical manifestation of APECED in different populations highlighting the peculiar genetic and immunological features of the disease when occurring in the context of this syndrome.
Collapse
Affiliation(s)
- Alessandra Fierabracci
- Infectivology and Clinical Trials Area, Children's Hospital Bambino Gesù, Rome 00146, Italy.
| |
Collapse
|
7
|
Heikkilä N, Laakso SM, Mannerström H, Kekäläinen E, Saavalainen P, Jarva H, Arstila TP. Expanded CD4+ Effector/Memory T Cell Subset in APECED Produces Predominantly Interferon Gamma. J Clin Immunol 2016; 36:555-63. [DOI: 10.1007/s10875-016-0302-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 05/23/2016] [Indexed: 12/15/2022]
|
8
|
Saldaña JI, Solanki A, Lau CI, Sahni H, Ross S, Furmanski AL, Ono M, Holländer G, Crompton T. Sonic Hedgehog regulates thymic epithelial cell differentiation. J Autoimmun 2016; 68:86-97. [PMID: 26778835 PMCID: PMC4803023 DOI: 10.1016/j.jaut.2015.12.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 12/11/2015] [Accepted: 12/16/2015] [Indexed: 12/12/2022]
Abstract
Sonic Hedgehog (Shh) is expressed in the thymus, where it regulates T cell development. Here we investigated the influence of Shh on thymic epithelial cell (TEC) development. Components of the Hedgehog (Hh) signalling pathway were expressed by TEC, and use of a Gli Binding Site-green fluorescence protein (GFP) transgenic reporter mouse demonstrated active Hh-dependent transcription in TEC in the foetal and adult thymus. Analysis of Shh-deficient foetal thymus organ cultures (FTOC) showed that Shh is required for normal TEC differentiation. Shh-deficient foetal thymus contained fewer TEC than wild type (WT), the proportion of medullary TEC was reduced relative to cortical TEC, and cell surface expression of MHC Class II molecules was increased on both cortical and medullary TEC populations. In contrast, the Gli3-deficient thymus, which shows increased Hh-dependent transcription in thymic stroma, had increased numbers of TEC, but decreased cell surface expression of MHC Class II molecules on both cortical and medullary TEC. Neutralisation of endogenous Hh proteins in WT FTOC led to a reduction in TEC numbers, and in the proportion of mature Aire-expressing medullary TEC, but an increase in cell surface expression of MHC Class II molecules on medullary TEC. Likewise, conditional deletion of Shh from TEC in the adult thymus resulted in alterations in TEC differentiation and consequent changes in T cell development. TEC numbers, and the proportion of mature Aire-expressing medullary TEC were reduced, and cell surface expression of MHC Class II molecules on medullary TEC was increased. Differentiation of mature CD4 and CD8 single positive thymocytes was increased, demonstrating the regulatory role of Shh production by TEC on T cell development. Treatment of human thymus explants with recombinant Shh or neutralising anti-Shh antibody indicated that the Hedgehog pathway is also involved in regulation of differentiation from DP to mature SP T cells in the human thymus. TEC express components of the Hedgehog signalling pathway and transduce it's signals. Sonic hedgehog (Shh) is required for normal TEC development. Sonic hedgehog particularly influences differentiation to the medullary TEC lineage. Shh regulates cell surface MHCII expression on both cortical and medullary TEC.
Collapse
Affiliation(s)
- José Ignacio Saldaña
- Immunobiology Section, UCL Institute of Child Health, 30 Guilford Street London WC1N 1EH, UK
| | - Anisha Solanki
- Immunobiology Section, UCL Institute of Child Health, 30 Guilford Street London WC1N 1EH, UK
| | - Ching-In Lau
- Immunobiology Section, UCL Institute of Child Health, 30 Guilford Street London WC1N 1EH, UK
| | - Hemant Sahni
- Immunobiology Section, UCL Institute of Child Health, 30 Guilford Street London WC1N 1EH, UK
| | - Susan Ross
- Immunobiology Section, UCL Institute of Child Health, 30 Guilford Street London WC1N 1EH, UK
| | - Anna L Furmanski
- Immunobiology Section, UCL Institute of Child Health, 30 Guilford Street London WC1N 1EH, UK
| | - Masahiro Ono
- Immunobiology Section, UCL Institute of Child Health, 30 Guilford Street London WC1N 1EH, UK
| | - Georg Holländer
- Weatherall Institute of Molecular Medicine, and Department of Paediatrics, University of Oxford, UK
| | - Tessa Crompton
- Immunobiology Section, UCL Institute of Child Health, 30 Guilford Street London WC1N 1EH, UK.
| |
Collapse
|
9
|
Pichard DC, Freeman AF, Cowen EW. Primary immunodeficiency update: Part II. Syndromes associated with mucocutaneous candidiasis and noninfectious cutaneous manifestations. J Am Acad Dermatol 2015; 73:367-81; quiz 381-2. [PMID: 26282795 DOI: 10.1016/j.jaad.2015.01.055] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 01/20/2015] [Accepted: 01/21/2015] [Indexed: 12/19/2022]
Abstract
Several primary immunodeficiencies (PIDs) have recently been described that confer an elevated risk of fungal infections and noninfectious cutaneous manifestations. In addition, immunologic advances have provided new insights into our understanding of the pathophysiology of fungal infections in established PIDs. We reviewed PIDs that present with an eczematous dermatitis in part I. In part II of this continuing medical education article we discuss updates on PIDs associated with fungal infections, their biologic basis in PIDs, and noninfectious cutaneous manifestations.
Collapse
Affiliation(s)
- Dominique C Pichard
- National Institutes of Health, National Cancer Institute, Bethesda, Maryland
| | | | - Edward W Cowen
- National Institutes of Health, National Cancer Institute, Bethesda, Maryland.
| |
Collapse
|
10
|
Caramalho Í, Nunes-Cabaço H, Foxall RB, Sousa AE. Regulatory T-Cell Development in the Human Thymus. Front Immunol 2015; 6:395. [PMID: 26284077 PMCID: PMC4522873 DOI: 10.3389/fimmu.2015.00395] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 07/19/2015] [Indexed: 12/23/2022] Open
Abstract
The thymus generates a lineage-committed subset of regulatory T-cells (Tregs), best identified by the expression of the transcription factor FOXP3. The development of thymus-derived Tregs is known to require high-avidity interaction with MHC-self peptides leading to the generation of self-reactive Tregs fundamental for the maintenance of self-tolerance. Notwithstanding their crucial role in the control of immune responses, human thymic Treg differentiation remains poorly understood. In this mini-review, we will focus on the developmental stages at which Treg lineage commitment occurs, and their spatial localization in the human thymus, reviewing the molecular requirements, including T-cell receptor and cytokine signaling, as well as the cellular interactions involved. An overview of the impact of described thymic defects on the Treg compartment will be provided, illustrating the importance of these in vivo models to investigate human Treg development.
Collapse
Affiliation(s)
- Íris Caramalho
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa , Lisbon , Portugal
| | - Helena Nunes-Cabaço
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa , Lisbon , Portugal
| | - Russell B Foxall
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa , Lisbon , Portugal
| | - Ana E Sousa
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa , Lisbon , Portugal
| |
Collapse
|
11
|
Kisand K, Peterson P. Autoimmune polyendocrinopathy candidiasis ectodermal dystrophy. J Clin Immunol 2015; 35:463-78. [PMID: 26141571 DOI: 10.1007/s10875-015-0176-y] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 06/22/2015] [Indexed: 12/29/2022]
Abstract
Autoimmune polyendocrinopathy candidiasis ectodermal dystrophy (APECED) is an autosomal recessive disease caused by mutations in the autoimmune regulator (AIRE) gene. This review focuses on the clinical and immunological features of APECED, summarizes the current knowledge on the function of AIRE and discusses the importance of autoantibodies in disease diagnosis and prognosis. Additionally, we review the outcome of recent immunomodulatory treatments in APECED patients.
Collapse
Affiliation(s)
- Kai Kisand
- Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Str., Tartu, EE50411, Estonia,
| | | |
Collapse
|
12
|
Niemi HJ, Laakso S, Salminen JT, Arstila TP, Tuulasvaara A. A normal T cell receptor beta CDR3 length distribution in patients with APECED. Cell Immunol 2015; 295:99-104. [DOI: 10.1016/j.cellimm.2015.03.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 02/18/2015] [Accepted: 03/13/2015] [Indexed: 10/23/2022]
|
13
|
Carneiro-Sampaio M, Coutinho A. Early-onset autoimmune disease as a manifestation of primary immunodeficiency. Front Immunol 2015; 6:185. [PMID: 25999944 PMCID: PMC4419659 DOI: 10.3389/fimmu.2015.00185] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 04/03/2015] [Indexed: 01/09/2023] Open
Abstract
Autoimmune disorders (AID) have been increasingly observed in association with primary immunodeficiencies (PIDs). Here, we discuss the interface between PID and AID, focusing on autoimmune manifestations early in life, which can be diagnostic clues for underlying PIDs. Inflammatory bowel disease in infants and children has been associated with IL-10 and IL-10R deficiencies, chronic granulomatous disease, immunedysregulation-polyendocrinopathy-enteropathy-X-linked syndrome (IPEX), autoinflammatory disorders, and others. Some PIDs have been identified as underlying defects in juvenile systemic lupus erythematosus: C1q-, IgA-, IgM deficiencies, alterations of the IFN-α pathway (in Aicardi–Goutières syndrome due to TREX1 mutation). IPEX (due to FOXP3 mutation leading to Treg cell deficiency), usually appearing in the first months of life, was recently observed in miscarried fetuses with hydrops who presented with CD3+ infiltrating lymphocytes in the pancreas. Hemophagocytic lymphohistiocytosis due to perforin deficiency was also identified as a cause of fetal hydrops. In conclusion, PID should be suspected in any infant with signs of autoimmunity after excluding transferred maternal effects, or in children with multiple and/or severe AID.
Collapse
Affiliation(s)
- Magda Carneiro-Sampaio
- Department of Pediatrics, Faculdade de Medicina da Universidade de São Paulo , São Paulo , Brazil
| | | |
Collapse
|
14
|
Wolff ASB, Kärner J, Owe JF, Oftedal BEV, Gilhus NE, Erichsen MM, Kämpe O, Meager A, Peterson P, Kisand K, Willcox N, Husebye ES. Clinical and serologic parallels to APS-I in patients with thymomas and autoantigen transcripts in their tumors. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2014; 193:3880-90. [PMID: 25230752 PMCID: PMC4190667 DOI: 10.4049/jimmunol.1401068] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Patients with the autoimmune polyendocrine syndrome type I (APS-I), caused by mutations in the autoimmune regulator (AIRE) gene, and myasthenia gravis (MG) with thymoma, show intriguing but unexplained parallels. They include uncommon manifestations like autoimmune adrenal insufficiency (AI), hypoparathyroidism, and chronic mucocutaneous candidiasis plus autoantibodies neutralizing IL-17, IL-22, and type I IFNs. Thymopoiesis in the absence of AIRE is implicated in both syndromes. To test whether these parallels extend further, we screened 247 patients with MG, thymoma, or both for clinical features and organ-specific autoantibodies characteristic of APS-I patients, and we assayed 26 thymoma samples for transcripts for AIRE and 16 peripheral tissue-specific autoantigens (TSAgs) by quantitative PCR. We found APS-I-typical autoantibodies and clinical manifestations, including chronic mucocutaneous candidiasis, AI, and asplenia, respectively, in 49 of 121 (40%) and 10 of 121 (8%) thymoma patients, but clinical features seldom occurred together with the corresponding autoantibodies. Both were rare in other MG subgroups (n = 126). In 38 patients with APS-I, by contrast, we observed neither autoantibodies against muscle Ags nor any neuromuscular disorders. Whereas relative transcript levels for AIRE and 7 of 16 TSAgs showed the expected underexpression in thymomas, levels were increased for four of the five TSAgs most frequently targeted by these patients' autoantibodies. Therefore, the clinical and serologic parallels to APS-I in patients with thymomas are not explained purely by deficient TSAg transcription in these aberrant AIRE-deficient tumors. We therefore propose additional explanations for the unusual autoimmune biases they provoke. Thymoma patients should be monitored for potentially life-threatening APS-I manifestations such as AI and hypoparathyroidism.
Collapse
Affiliation(s)
- Anette S B Wolff
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway;
| | - Jaanika Kärner
- Molecular Pathology Group, Institute of Biomedicine and Translational Medicine, University of Tartu, 50090 Tartu, Estonia
| | - Jone F Owe
- Department of Clinical Medicine, University of Bergen, 5021 Bergen, Norway; Department of Neurology, Haukeland University Hospital, 5021 Bergen, Norway
| | | | - Nils Erik Gilhus
- Department of Clinical Medicine, University of Bergen, 5021 Bergen, Norway; Department of Neurology, Haukeland University Hospital, 5021 Bergen, Norway
| | - Martina M Erichsen
- Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway
| | - Olle Kämpe
- Department of Medicine, Solna, Karolinska University Hospital, Karolinska Institutet, SE-171 76 Stockholm, Sweden
| | - Anthony Meager
- Biotherapeutics Group, The National Institute for Biological Standards and Control, South Mimms, Potters Bar, Hertfordshire EN6 3QG, United Kingdom; and
| | - Pärt Peterson
- Molecular Pathology Group, Institute of Biomedicine and Translational Medicine, University of Tartu, 50090 Tartu, Estonia
| | - Kai Kisand
- Molecular Pathology Group, Institute of Biomedicine and Translational Medicine, University of Tartu, 50090 Tartu, Estonia
| | - Nick Willcox
- Department of Clinical Neurology, Weatherall Institute for Molecular Medicine, University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Eystein S Husebye
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway
| |
Collapse
|
15
|
Kisand K, Peterson P, Laan M. Lymphopenia-induced proliferation in aire-deficient mice helps to explain their autoimmunity and differences from human patients. Front Immunol 2014; 5:51. [PMID: 24592265 PMCID: PMC3923166 DOI: 10.3389/fimmu.2014.00051] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 01/29/2014] [Indexed: 12/23/2022] Open
Abstract
Studies on autoimmune polyendocrinopathy candidiasis ectodermal dystrophy (APECED) and its mouse model – both caused by mutant AIRE – have greatly advanced the understanding of thymic processes that generate a self-tolerant T-cell repertoire. Much is now known about the molecular mechanisms by which AIRE induces tissue-specific antigen expression in thymic epithelium, and how this leads to negative selection of auto-reactive thymocytes. However, we still do not understand the processes that lead to the activation of any infrequent naïve auto-reactive T-cells exported by AIRE-deficient thymi. Also, the striking phenotypic differences between APECED and its mouse models have puzzled researchers for years. The aim of this review is to suggest explanations for some of these unanswered questions, based on a fresh view of published experiments. We review evidence that auto-reactive T-cells can be activated by the prolonged neonatal lymphopenia that naturally develops in young Aire-deficient mice due to delayed export of mature thymocytes. Lymphopenia-induced proliferation (LIP) helps to fill the empty space; by favoring auto-reactive T-cells, it also leads to lymphocyte infiltration in the same tissues as in day 3 thymectomized animals. The LIP becomes uncontrolled when loss of Aire is combined with defects in genes responsible for anergy induction and Treg responsiveness, or in signaling from the T-cell receptor and homeostatic cytokines. In APECED patients, LIP is much less likely to be involved in activation of naïve auto-reactive T-cells, as humans are born with a more mature immune system than in neonatal mice. We suggest that human AIRE-deficiency presents with different phenotypes because of additional precipitating factors that compound the defective negative selection of potentially autoaggressive tissue-specific thymocytes.
Collapse
Affiliation(s)
- Kai Kisand
- Molecular Pathology, Institute of Biomedicine and Translational Medicine, University of Tartu , Tartu , Estonia
| | - Pärt Peterson
- Molecular Pathology, Institute of Biomedicine and Translational Medicine, University of Tartu , Tartu , Estonia
| | - Martti Laan
- Molecular Pathology, Institute of Biomedicine and Translational Medicine, University of Tartu , Tartu , Estonia
| |
Collapse
|