1
|
Kittur FS, Hung CY, Li PA, Sane DC, Xie J. Asialo-rhuEPO as a Potential Neuroprotectant for Ischemic Stroke Treatment. Pharmaceuticals (Basel) 2023; 16:610. [PMID: 37111367 PMCID: PMC10143832 DOI: 10.3390/ph16040610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/11/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Neuroprotective drugs to protect the brain against cerebral ischemia and reperfusion (I/R) injury are urgently needed. Mammalian cell-produced recombinant human erythropoietin (rhuEPOM) has been demonstrated to have excellent neuroprotective functions in preclinical studies, but its neuroprotective properties could not be consistently translated in clinical trials. The clinical failure of rhuEPOM was thought to be mainly due to its erythropoietic activity-associated side effects. To exploit its tissue-protective property, various EPO derivatives with tissue-protective function only have been developed. Among them, asialo-rhuEPO, lacking terminal sialic acid residues, was shown to be neuroprotective but non-erythropoietic. Asialo-rhuEPO can be prepared by enzymatic removal of sialic acid residues from rhuEPOM (asialo-rhuEPOE) or by expressing human EPO gene in glycoengineered transgenic plants (asialo-rhuEPOP). Both types of asialo-rhuEPO, like rhuEPOM, displayed excellent neuroprotective effects by regulating multiple cellular pathways in cerebral I/R animal models. In this review, we describe the structure and properties of EPO and asialo-rhuEPO, summarize the progress on neuroprotective studies of asialo-rhuEPO and rhuEPOM, discuss potential reasons for the clinical failure of rhuEPOM with acute ischemic stroke patients, and advocate future studies needed to develop asialo-rhuEPO as a multimodal neuroprotectant for ischemic stroke treatment.
Collapse
Affiliation(s)
- Farooqahmed S. Kittur
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute & Technology Enterprise, North Carolina Central University, Durham, NC 27707, USA; (C.-Y.H.); (P.A.L.)
| | - Chiu-Yueh Hung
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute & Technology Enterprise, North Carolina Central University, Durham, NC 27707, USA; (C.-Y.H.); (P.A.L.)
| | - P. Andy Li
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute & Technology Enterprise, North Carolina Central University, Durham, NC 27707, USA; (C.-Y.H.); (P.A.L.)
| | - David C. Sane
- Carilion Clinic and Virginia Tech Carilion School of Medicine, Roanoke, VA 24014, USA;
| | - Jiahua Xie
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute & Technology Enterprise, North Carolina Central University, Durham, NC 27707, USA; (C.-Y.H.); (P.A.L.)
| |
Collapse
|
2
|
Lai YF, Lin TY, Ho PK, Chen YH, Huang YC, Lu DW. Erythropoietin in Optic Neuropathies: Current Future Strategies for Optic Nerve Protection and Repair. Int J Mol Sci 2022; 23:ijms23137143. [PMID: 35806148 PMCID: PMC9267007 DOI: 10.3390/ijms23137143] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/13/2022] [Accepted: 06/24/2022] [Indexed: 02/05/2023] Open
Abstract
Erythropoietin (EPO) is known as a hormone for erythropoiesis in response to anemia and hypoxia. However, the effect of EPO is not only limited to hematopoietic tissue. Several studies have highlighted the neuroprotective function of EPO in extra-hematopoietic tissues, especially the retina. EPO could interact with its heterodimer receptor (EPOR/βcR) to exert its anti-apoptosis, anti-inflammation and anti-oxidation effects in preventing retinal ganglion cells death through different intracellular signaling pathways. In this review, we summarized the available pre-clinical studies of EPO in treating glaucomatous optic neuropathy, optic neuritis, non-arteritic anterior ischemic optic neuropathy and traumatic optic neuropathy. In addition, we explore the future strategies of EPO for optic nerve protection and repair, including advances in EPO derivates, and EPO deliveries. These strategies will lead to a new chapter in the treatment of optic neuropathy.
Collapse
Affiliation(s)
- Yi-Fen Lai
- Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (Y.-F.L.); (T.-Y.L.); (Y.-H.C.)
| | - Ting-Yi Lin
- Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (Y.-F.L.); (T.-Y.L.); (Y.-H.C.)
| | - Pin-Kuan Ho
- School of Dentistry, National Defense Medical Center, Taipei 11490, Taiwan;
| | - Yi-Hao Chen
- Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (Y.-F.L.); (T.-Y.L.); (Y.-H.C.)
| | - Yu-Chuan Huang
- School of Pharmacy, National Defense Medical Center, Taipei 11490, Taiwan
- Department of Research and Development, National Defense Medical Center, Taipei 11490, Taiwan
- Correspondence: (Y.-C.H.); (D.-W.L.); Tel.: +886-2-87923100 (Y.-C.H.); +886-2-87927163 (D.-W.L.)
| | - Da-Wen Lu
- Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (Y.-F.L.); (T.-Y.L.); (Y.-H.C.)
- Correspondence: (Y.-C.H.); (D.-W.L.); Tel.: +886-2-87923100 (Y.-C.H.); +886-2-87927163 (D.-W.L.)
| |
Collapse
|
3
|
Ma Y, Zhou Z, Yang GY, Ding J, Wang X. The Effect of Erythropoietin and Its Derivatives on Ischemic Stroke Therapy: A Comprehensive Review. Front Pharmacol 2022; 13:743926. [PMID: 35250554 PMCID: PMC8892214 DOI: 10.3389/fphar.2022.743926] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 01/19/2022] [Indexed: 12/17/2022] Open
Abstract
Numerous studies explored the therapeutic effects of erythropoietin (EPO) on neurodegenerative diseases. Few studies provided comprehensive and latest knowledge of EPO treatment for ischemic stroke. In the present review, we introduced the structure, expression, function of EPO, and its receptors in the central nervous system. Furthermore, we comprehensively discussed EPO treatment in pre-clinical studies, clinical trials, and its therapeutic mechanisms including suppressing inflammation. Finally, advanced studies of the therapy of EPO derivatives in ischemic stroke were also discussed. We wish to provide valuable information on EPO and EPO derivatives’ treatment for ischemic stroke for basic researchers and clinicians to accelerate the process of their clinical applications.
Collapse
Affiliation(s)
- Yuanyuan Ma
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhiyuan Zhou
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Guo-Yuan Yang
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Guo-Yuan Yang, ; Jing Ding,
| | - Jing Ding
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
- *Correspondence: Guo-Yuan Yang, ; Jing Ding,
| | - Xin Wang
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of The State Key Laboratory of Medical Neurobiology, The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
4
|
Antsiferov OV, Cherevatenko RF, Korokin MV, Gureev VV, Gureeva AV, Zatolokina MA, Avdeyeva EV, Zhilinkova LA, Kolesnik IM. A new EPOR/CD131 heteroreceptor agonist EP-11-1: a neuroprotective effect in experimental traumatic brain injury. RESEARCH RESULTS IN PHARMACOLOGY 2021. [DOI: 10.3897/rrpharmacology.7.75301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Introduction: EP-11-1 (UEHLERALNSS) is a short-chain erythropoietin derivative without have erythropoietic activity. It was created by modifying a peptide mimicking the spatial structure of the erythropoietin a-helix B pHBSP. One of the promising directions of its administration is the correction of morphofunctional disorders that occur in traumatic brain injury (TBI).
Materials and methods: The study was performed in 160 male Wistar rats, weighing 180–200 g.TBI was simulated using the drop-weight method. To assess the emerging morphofunctional disorders and a degree of their correction, we used the severity of neurological deficit, indicators of locomotor activity and exploration, a marker of brain injury S100B and morphological examination.
Results and discussion: The combined administration of a new EPOR/CD131 heteroreceptor agonist EP-11-1 with citicoline and trimetazidine led to a more pronounced correction of the neurological deficit when compared not only to the group of the ”untreated” animals, but also to the groups of animals to which these drugs had been administered as monotherapy (p < 0.05). The same tendency was also observed in the study of locomotor activity and exploration. A biochemical study showed that the administration of all three combinations led to a statistically significant (p < 0.05) decrease in the S-100B concentration compared not only to the group of “untreated” animals, but also to the groups of animals to which these drugs had been administered as a monotherapy.
Conclusion: The results of the conducted experiments prove the most pronounced positive dynamics in the combined administration of the new EPOR/CD131 heteroreceptor agonist EP-11-1with citicoline and trimetazidine.
Collapse
|
5
|
Li C, Shah KA, Powell K, Wu YC, Chaung W, Sonti AN, White TG, Doobay M, Yang WL, Wang P, Becker LB, Narayan RK. CBF oscillations induced by trigeminal nerve stimulation protect the pericontusional penumbra in traumatic brain injury complicated by hemorrhagic shock. Sci Rep 2021; 11:19652. [PMID: 34608241 PMCID: PMC8490389 DOI: 10.1038/s41598-021-99234-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 09/16/2021] [Indexed: 02/08/2023] Open
Abstract
Traumatic peri-contusional penumbra represents crucial targets for therapeutic interventions after traumatic brain injury (TBI). Current resuscitative approaches may not adequately alleviate impaired cerebral microcirculation and, hence, compromise oxygen delivery to peri-contusional areas. Low-frequency oscillations in cerebral blood flow (CBF) may improve cerebral oxygenation in the setting of oxygen deprivation. However, no method has been reported to induce controllable oscillations in CBF and it hasn't been applied as a therapeutic strategy. Electrical stimulation of the trigeminal nerve (TNS) plays a pivotal role in modulating cerebrovascular tone and cerebral perfusion. We hypothesized that TNS can modulate CBF at the targeted frequency band via the trigemino-cerebrovascular network, and TNS-induced CBF oscillations would improve cerebral oxygenation in peri-contusional areas. In a rat model of TBI complicated by hemorrhagic shock, TNS-induced CBF oscillations conferred significant preservation of peri-contusional tissues leading to reduced lesion volume, attenuated hypoxic injury and neuroinflammation, increased eNOS expression, improved neurological recovery and better 10-day survival rate, despite not significantly increasing CBF as compared with those in immediate and delayed resuscitation animals. Our findings indicate that low-frequency CBF oscillations enhance cerebral oxygenation in peri-contusional areas, and play a more significant protective role than improvements in non-oscillatory cerebral perfusion or volume expansion alone.
Collapse
Affiliation(s)
- Chunyan Li
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA. .,Department of Neurosurgery, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA.
| | - Kevin A Shah
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA.,Department of Neurosurgery, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Keren Powell
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Yi-Chen Wu
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Wayne Chaung
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Anup N Sonti
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA.,Department of Neurosurgery, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Timothy G White
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA.,Department of Neurosurgery, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Mohini Doobay
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Weng-Lang Yang
- Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ping Wang
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Lance B Becker
- Department of Emergency Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Raj K Narayan
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA.,Department of Neurosurgery, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| |
Collapse
|
6
|
Haber M, Amyot F, Lynch CE, Sandsmark DK, Kenney K, Werner JK, Moore C, Flesher K, Woodson S, Silverman E, Chou Y, Pham D, Diaz-Arrastia R. Imaging biomarkers of vascular and axonal injury are spatially distinct in chronic traumatic brain injury. J Cereb Blood Flow Metab 2021; 41:1924-1938. [PMID: 33444092 PMCID: PMC8327117 DOI: 10.1177/0271678x20985156] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 10/07/2020] [Accepted: 12/06/2020] [Indexed: 11/17/2022]
Abstract
Traumatic Brain Injury (TBI) is associated with both diffuse axonal injury (DAI) and diffuse vascular injury (DVI), which result from inertial shearing forces. These terms are often used interchangeably, but the spatial relationships between DAI and DVI have not been carefully studied. Multimodal magnetic resonance imaging (MRI) can help distinguish these injury mechanisms: diffusion tensor imaging (DTI) provides information about axonal integrity, while arterial spin labeling (ASL) can be used to measure cerebral blood flow (CBF), and the reactivity of the Blood Oxygen Level Dependent (BOLD) signal to a hypercapnia challenge reflects cerebrovascular reactivity (CVR). Subjects with chronic TBI (n = 27) and healthy controls (n = 14) were studied with multimodal MRI. Mean values of mean diffusivity (MD), fractional anisotropy (FA), CBF, and CVR were extracted for pre-determined regions of interest (ROIs). Normalized z-score maps were generated from the pool of healthy controls. Abnormal ROIs in one modality were not predictive of abnormalities in another. Approximately 9-10% of abnormal voxels for CVR and CBF also showed an abnormal voxel value for MD, while only 1% of abnormal CVR and CBF voxels show a concomitant abnormal FA value. These data indicate that DAI and DVI represent two distinct TBI endophenotypes that are spatially independent.
Collapse
Affiliation(s)
- Margalit Haber
- Department of Neurology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Franck Amyot
- National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Cillian E Lynch
- Department of Neurology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Danielle K Sandsmark
- Department of Neurology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Kimbra Kenney
- National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, MD, USA
- Department of Neurology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - John K Werner
- Department of Neurology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Carol Moore
- Department of Neurology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Kelley Flesher
- Department of Neurology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Sarah Woodson
- Department of Neurology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Erika Silverman
- Department of Neurology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Yiyu Chou
- Center for Neuroscience and Regenerative Medicine, Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Dzung Pham
- Center for Neuroscience and Regenerative Medicine, Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Ramon Diaz-Arrastia
- Department of Neurology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
7
|
Lynch CE, Eisenbaum M, Algamal M, Balbi M, Ferguson S, Mouzon B, Saltiel N, Ojo J, Diaz-Arrastia R, Mullan M, Crawford F, Bachmeier C. Impairment of cerebrovascular reactivity in response to hypercapnic challenge in a mouse model of repetitive mild traumatic brain injury. J Cereb Blood Flow Metab 2021; 41:1362-1378. [PMID: 33050825 PMCID: PMC8142124 DOI: 10.1177/0271678x20954015] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Incidences of repetitive mild TBI (r-mTBI), like those sustained by contact sports athletes and military personnel, are thought to be a risk factor for development of neurodegenerative disorders. Those suffering from chronic TBI-related illness demonstrate deficits in cerebrovascular reactivity (CVR), the ability of the cerebral vasculature to respond to a vasoactive stimulus. CVR is thus an important measure of traumatic cerebral vascular injury (TCVI), and a possible in vivo endophenotype of TBI-related neuropathogenesis. We combined laser speckle imaging of CVR in response to hypercapnic challenge with neurobehavioral assessment of learning and memory, to investigate if decreased cerebrovascular responsiveness underlies impaired cognitive function in our mouse model of chronic r-mTBI. We demonstrate a profile of blunted hypercapnia-evoked CVR in the cortices of r-mTBI mice like that of human TBI, alongside sustained memory and learning impairment, without biochemical or immunohistopathological signs of cerebral vessel laminar or endothelium constituent loss. Transient decreased expression of alpha smooth muscle actin and platelet-derived growth factor receptor β, indicative of TCVI, is obvious only at the time of the most pronounced CVR deficit. These findings implicate CVR as a valid preclinical measure of TCVI, perhaps useful for developing therapies targeting TCVI after recurrent mild head trauma.
Collapse
Affiliation(s)
- Cillian E Lynch
- The Roskamp Institute, Sarasota, FL, USA.,Department of Life Sciences, The Open University, Milton Keynes, UK.,James A. Haley Veteran's Administration, Tampa, FL, USA.,Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Maxwell Eisenbaum
- The Roskamp Institute, Sarasota, FL, USA.,Department of Life Sciences, The Open University, Milton Keynes, UK
| | - Moustafa Algamal
- The Roskamp Institute, Sarasota, FL, USA.,Department of Life Sciences, The Open University, Milton Keynes, UK
| | - Matilde Balbi
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Scott Ferguson
- The Roskamp Institute, Sarasota, FL, USA.,Department of Life Sciences, The Open University, Milton Keynes, UK
| | - Benoit Mouzon
- The Roskamp Institute, Sarasota, FL, USA.,Department of Life Sciences, The Open University, Milton Keynes, UK.,James A. Haley Veteran's Administration, Tampa, FL, USA
| | | | - Joseph Ojo
- The Roskamp Institute, Sarasota, FL, USA.,Department of Life Sciences, The Open University, Milton Keynes, UK.,James A. Haley Veteran's Administration, Tampa, FL, USA
| | - Ramon Diaz-Arrastia
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Mike Mullan
- The Roskamp Institute, Sarasota, FL, USA.,Department of Life Sciences, The Open University, Milton Keynes, UK
| | - Fiona Crawford
- The Roskamp Institute, Sarasota, FL, USA.,Department of Life Sciences, The Open University, Milton Keynes, UK.,James A. Haley Veteran's Administration, Tampa, FL, USA
| | - Corbin Bachmeier
- The Roskamp Institute, Sarasota, FL, USA.,Department of Life Sciences, The Open University, Milton Keynes, UK.,Bay Pines VA Healthcare System, Bay Pines, FL, USA
| |
Collapse
|
8
|
Abstract
INTRODUCTION This case demonstrates an underrecognized cause of posterior reversible encephalopathy syndrome (PRES). CASE REPORT We report a 51-year-old male with a history of essential hypertension without preexisting renal impairment who presented with 3 days of occipital headache and convulsive status epilepticus in the setting of refractory hypertension. He had been receiving outpatient human recombinant erythropoietin injections for virally mediated bone marrow suppression, which worsened his baseline hypertension. Magnetic resosnance imaging (MRI) of the brain on admission showed diffuse bilateral, symmetric signal hyperintensities and patchy enhancement involving the cortex and white matter in both cerebral hemispheres. His blood pressure and seizures were successfully treated during hospital admission, with complete resolution of his neurological deficits. MRI brain performed 6 weeks from initial scan showed normalization of his prior findings. CONCLUSION Recombinant human erythropoietin (RhEPO) may be an underrecognized cause of PRES and should be considered in patients receiving this treatment regardless of the absence or presence of renal impairment. RhEPO-mediated precipitation/exacerbation of hypertension, alterations in cerebral blood flow, and changes in endothelial integrity may underlie this association. MRI signal changes are reversible and typical for that of PRES, and significant improvement of symptoms can be expected.
Collapse
|
9
|
Erythropoietin and its derivatives: from tissue protection to immune regulation. Cell Death Dis 2020; 11:79. [PMID: 32015330 PMCID: PMC6997384 DOI: 10.1038/s41419-020-2276-8] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 01/03/2020] [Accepted: 01/07/2020] [Indexed: 02/07/2023]
Abstract
Erythropoietin (EPO) is an evolutionarily conserved hormone well documented for its erythropoietic role via binding the homodimeric EPO receptor (EPOR)2. In past decades, evidence has proved that EPO acts far beyond erythropoiesis. By binding the tissue-protective receptor (TPR), EPO suppresses proinflammatory cytokines, protects cells from apoptosis and promotes wound healing. Very recently, new data revealed that TPR is widely expressed on a variety of immune cells, and EPO could directly modulate their activation, differentiation and function. Notably, nonerythropoietic EPO derivatives, which mimic the structure of helix B within EPO, specifically bind TPR and show great potency in tissue protection and immune regulation. These small peptides prevent the cardiovascular side effects of EPO and are promising as clinical drugs. This review briefly introduces the receptors and tissue-protective effects of EPO and its derivatives and highlights their immunomodulatory functions and application prospects.
Collapse
|
10
|
Artificial Intelligence and the detection of pediatric concussion using epigenomic analysis. Brain Res 2019; 1726:146510. [PMID: 31628932 DOI: 10.1016/j.brainres.2019.146510] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/14/2019] [Accepted: 10/15/2019] [Indexed: 12/12/2022]
Abstract
Concussion, also referred to as mild traumatic brain injury (mTBI) is the most common type of traumatic brain injury. Currently concussion is an area ofintensescientific interest to better understand the biological mechanisms and for biomarker development. We evaluated whole genome-wide blood DNA cytosine ('CpG') methylation in 17 pediatric concussion isolated cases and 18 unaffected controls using Illumina Infinium MethylationEPIC assay. Pathway analysis was performed using Ingenuity Pathway Analysis to help elucidate the epigenetic and molecular mechanisms of the disorder. Area under the receiver operating characteristics (AUC) curves and FDR p-values were calculated for mTBI detection based on CpG methylation levels. Multiple Artificial Intelligence (AI) platforms including Deep Learning (DL), the newest form of AI, were used to predict concussion based on i) CpG methylation markers alone, and ii) combined epigenetic, clinical and demographic predictors. We found 449 CpG sites (473 genes), those were statistically significantly methylated in mTBI compared to controls. There were four CpGs with excellent individual accuracy (AUC ≥ 0.90-1.00) while 119 displayed good accuracy (AUC ≥ 0.80-0.89) for the prediction of mTBI. The CpG methylation changes ≥10% were observed in many CpG loci after concussion suggesting biological significance. Pathway analysis identified several biologically important neurological pathways that were perturbed including those associated with: impaired brain function, cognition, memory, neurotransmission, intellectual disability and behavioral change and associated disorders. The combination of epigenomic and clinical predictors were highly accurate for the detection of concusion using AI techniques. Using DL/AI, a combination of epigenomic and clinical markers had sensitivity and specificity ≧95% for prediction of mTBI. In this novel study, we identified significant methylation changes in multiple genes in response to mTBI. Gene pathways that were epigenetically dysregulated included several known to be involved in neurological function, thus giving biological plausibility to our findings.
Collapse
|
11
|
Blixt J, Gunnarson E, Wanecek M. Erythropoietin Attenuates the Brain Edema Response after Experimental Traumatic Brain Injury. J Neurotrauma 2018; 35:671-680. [PMID: 29179621 PMCID: PMC5806078 DOI: 10.1089/neu.2017.5015] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Erythropoietin (EPO) has neuroprotective effects in multiple central nervous system (CNS) injury models; however EPO's effects on traumatic brain edema are elusive. To explore EPO as an intervention in traumatic brain edema, male Sprague–Dawley (SD) rats were subjected to blunt, controlled traumatic brain injury (TBI). Animals were randomized to EPO 5000 IU/kg or saline (control group) intraperitoneally within 30 min after trauma and once daily for 4 consecutive days. Brain MRI, immunohistofluorescence, immunohistochemistry, and quantitative protein analysis were performed at days 1 and 4 post- trauma. EPO significantly prevented the loss of the tight junction protein zona occludens 1 (ZO-1) observed in control animals after trauma. The decrease of ZO-1 in the control group was associated with an immunoglobulin (Ig)G increase in the perilesional parenchyma, indicating blood–brain barrier (BBB) dysfunction and increased permeability. EPO treatment attenuated decrease in apparent diffusion coefficient (ADC) after trauma, suggesting a reduction of cytotoxic edema, and reduced the IgG leakage, indicating that EPO contributed to preserve BBB integrity and attenuated vasogenic edema. Animals treated with EPO demonstrated conserved levels of aquaporin 4 (AQP4) protein expression in the perilesional area, whereas control animals showed a reduction of AQP4. We show that post TBI administration of EPO decreases early cytotoxic brain edema and preserves structural and functional properties of the BBB, leading to attenuation of the vasogenic edema response. The data support that the mechanisms involve preservation of the tight junction protein ZO-1 and the water channel AQP4, and indicate that treatment with EPO may have beneficial effects on the brain edema response following TBI.
Collapse
Affiliation(s)
- Jonas Blixt
- 1 Perioperative Medicine and Intensive Care, Karolinska University Hospital, Karolinska Institutet , Stockholm, Sweden .,2 Department of Physiology and Pharmacology, Karolinska University Hospital, Karolinska Institutet , Stockholm, Sweden
| | - Eli Gunnarson
- 3 Department of Women's and Children's Health Karolinska University Hospital, Karolinska Institutet , Stockholm, Sweden
| | - Michael Wanecek
- 2 Department of Physiology and Pharmacology, Karolinska University Hospital, Karolinska Institutet , Stockholm, Sweden
| |
Collapse
|
12
|
Memisoglu A, Kolgazi M, Yaman A, Bahadir E, Sirvanci S, Yeğen BÇ, Ozek E. Neuroprotective Effect of Erythropoietin on Phenylhydrazine-Induced Hemolytic Hyperbilirubinemia in Neonatal Rats. Neurochem Res 2016; 42:1026-1037. [PMID: 27995496 DOI: 10.1007/s11064-016-2135-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 11/28/2016] [Accepted: 12/03/2016] [Indexed: 01/04/2023]
Abstract
Neonatal unconjugated hyperbilirubinemia might cause severe bilirubin neurotoxicity in especially hemolytic conditions. The study aimed to elucidate the potential neuroprotective effects of erythropoietin (EPO) in hemolysis-induced hyperbilirubinemia. In newborn rats, hyperbilirubinemia secondary to hemolysis was induced by injecting with phenylhydrazine hydrochloride (PHZ) and rats were injected with either vehicle or EPO. At 54th hour of the PHZ injection, rats were decapitated. Serum levels of TNF-α, IL-1β, IL-10, brain-derived neurotrophic factor (BDNF) and S100-B and brain malondialdehyde, glutathione levels and myeloperoxidase activities were measured. TUNEL staining and NF-κB expression were evaluated. As compared to control pups, in vehicle-treated PHZ group, TNF-α and IL-1β levels, malondialdehyde level and myeloperoxidase activity were increased with concomitant decreases in IL-10 and glutathione. All EPO regimens reversed PHZ-induced alterations in IL-10, TNF-α, malondialdehyde and glutathione levels. Three-day-treatment abolished increases in myeloperoxidase activity and IL-1β levels, while BDNF and S100-B were elevated. Increased TUNEL (+) cells and NF-κB expressions in the brain of PHZ group were reduced in the 3-day-treated group. EPO exerted anti-inflammatory effects on PHZ-induced neural damage in newborn rats, while the neuroprotection was more obvious when the treatments were repeated successively. The results suggest that EPO treatment may have a therapeutic potential in supporting neuroplasticity in the hyperbilirubinemic neonates.
Collapse
Affiliation(s)
- Asli Memisoglu
- Department of Paediatrics, Division of Neonatology, Marmara University School of Medicine, Istanbul, Turkey
| | - Meltem Kolgazi
- Department of Physiology, Acibadem University School of Medicine, Istanbul, Turkey
| | - Akan Yaman
- Department of Paediatrics, Division of Neonatology, Marmara University School of Medicine, Istanbul, Turkey
| | - Elif Bahadir
- Department of Physiology, Marmara University School of Medicine, Basibüyük Mah. Maltepe Basibüyük Yolu No. 9/1, Maltepe, 34854, Istanbul, Turkey
| | - Serap Sirvanci
- Department of Histology and Embryology, Marmara University School of Medicine, Istanbul, Turkey
| | - Berrak Ç Yeğen
- Department of Physiology, Marmara University School of Medicine, Basibüyük Mah. Maltepe Basibüyük Yolu No. 9/1, Maltepe, 34854, Istanbul, Turkey.
| | - Eren Ozek
- Department of Paediatrics, Division of Neonatology, Marmara University School of Medicine, Istanbul, Turkey
| |
Collapse
|