1
|
Liu M, Liu JP, Wang P, Fu YJ, Zhao M, Jiang YJ, Zhang ZN, Shang H. Approaches for Performance Verification Toward Standardization of Peripheral Blood Regulatory T-Cell Detection by Flow Cytometry. Arch Pathol Lab Med 2024; 148:1234-1243. [PMID: 38385871 DOI: 10.5858/arpa.2023-0284-oa] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2023] [Indexed: 02/23/2024]
Abstract
CONTEXT.— Regulatory T-cell (Treg) detection in peripheral blood, based on flow cytometry, is invaluable for diagnosis and treatment of immune-mediated diseases. However, there is a lack of reliable methods to verify the performance, which is pivotal toward standardization of the Tregs assay. OBJECTIVE.— To conduct standardization studies and verify the performance of 3 commercially available reagent sets for the Tregs assay based on flow cytometry and agreement analysis for Treg detection across the different reagent sets. DESIGN.— The analytical performance of Tregs assay using reagent sets supplied by 3 manufacturers was evaluated after establishing the gating strategy and determining the optimal antibody concentration. Postcollection sample stability was evaluated, as well as the repeatability, reproducibility, reportable range, linearity, and assay carryover. Agreement between the different assays was assessed via Bland-Altman plots and linear regression analysis. The relationship between the frequency of CD4+CD25+CD127low/- Tregs and CD4+CD25+Foxp3+ Tregs was evaluated. RESULTS.— The postcollection sample stability was set at 72 hours after collection at room temperature. The accuracy, repeatability, reproducibility, and accuracy all met the requirements for clinical analysis. Excellent linearity, with R2 ≥0.9 and no assay carryover, was observed. For reportable range, a minimum of 1000 events in the CD3+CD4+ gate was required for Tregs assay. Moreover, the results for Tregs labeled by antibodies from the 3 manufacturers were in good agreement. The percentage of CD4+CD25+CD127low/- Tregs was closely correlated with CD4+CD25+Foxp3+ Tregs. CONCLUSIONS.— This is the first study to evaluate systematically the measurement performance of Tregs in peripheral blood by flow cytometry, which provides a practical solution to verifying the performance of flow cytometry-based immune monitoring projects in clinical practice.
Collapse
Affiliation(s)
- Mei Liu
- From NHC Key Laboratory of AIDS Immunology - China Medical University (M Liu, J-P Liu, Wang, Fu, Jiang, Zhang, Shang), National Clinical Research Center for Laboratory Medicine (M Liu, J-P Liu, Wang, Fu, Zhao, Jiang, Zhang, Shang), and the Department of Laboratory Medicine (Zhao, Shang), The First Hospital of China Medical University, Shenyang, China
- Units of Medical Laboratory (M Liu, J-P Liu, Wang, Fu, Jiang, Zhang, Shang) and Key Laboratory of AIDS Immunology (J-P Liu, Wang, Fu, Jiang, Zhang, Shang), Chinese Academy of Medical Sciences, Shenyang, China
| | - Jin-Peng Liu
- From NHC Key Laboratory of AIDS Immunology - China Medical University (M Liu, J-P Liu, Wang, Fu, Jiang, Zhang, Shang), National Clinical Research Center for Laboratory Medicine (M Liu, J-P Liu, Wang, Fu, Zhao, Jiang, Zhang, Shang), and the Department of Laboratory Medicine (Zhao, Shang), The First Hospital of China Medical University, Shenyang, China
- Units of Medical Laboratory (M Liu, J-P Liu, Wang, Fu, Jiang, Zhang, Shang) and Key Laboratory of AIDS Immunology (J-P Liu, Wang, Fu, Jiang, Zhang, Shang), Chinese Academy of Medical Sciences, Shenyang, China
| | - Pan Wang
- From NHC Key Laboratory of AIDS Immunology - China Medical University (M Liu, J-P Liu, Wang, Fu, Jiang, Zhang, Shang), National Clinical Research Center for Laboratory Medicine (M Liu, J-P Liu, Wang, Fu, Zhao, Jiang, Zhang, Shang), and the Department of Laboratory Medicine (Zhao, Shang), The First Hospital of China Medical University, Shenyang, China
- Units of Medical Laboratory (M Liu, J-P Liu, Wang, Fu, Jiang, Zhang, Shang) and Key Laboratory of AIDS Immunology (J-P Liu, Wang, Fu, Jiang, Zhang, Shang), Chinese Academy of Medical Sciences, Shenyang, China
| | - Ya-Jing Fu
- From NHC Key Laboratory of AIDS Immunology - China Medical University (M Liu, J-P Liu, Wang, Fu, Jiang, Zhang, Shang), National Clinical Research Center for Laboratory Medicine (M Liu, J-P Liu, Wang, Fu, Zhao, Jiang, Zhang, Shang), and the Department of Laboratory Medicine (Zhao, Shang), The First Hospital of China Medical University, Shenyang, China
- Units of Medical Laboratory (M Liu, J-P Liu, Wang, Fu, Jiang, Zhang, Shang) and Key Laboratory of AIDS Immunology (J-P Liu, Wang, Fu, Jiang, Zhang, Shang), Chinese Academy of Medical Sciences, Shenyang, China
| | - Min Zhao
- From NHC Key Laboratory of AIDS Immunology - China Medical University (M Liu, J-P Liu, Wang, Fu, Jiang, Zhang, Shang), National Clinical Research Center for Laboratory Medicine (M Liu, J-P Liu, Wang, Fu, Zhao, Jiang, Zhang, Shang), and the Department of Laboratory Medicine (Zhao, Shang), The First Hospital of China Medical University, Shenyang, China
| | - Yong-Jun Jiang
- From NHC Key Laboratory of AIDS Immunology - China Medical University (M Liu, J-P Liu, Wang, Fu, Jiang, Zhang, Shang), National Clinical Research Center for Laboratory Medicine (M Liu, J-P Liu, Wang, Fu, Zhao, Jiang, Zhang, Shang), and the Department of Laboratory Medicine (Zhao, Shang), The First Hospital of China Medical University, Shenyang, China
- Units of Medical Laboratory (M Liu, J-P Liu, Wang, Fu, Jiang, Zhang, Shang) and Key Laboratory of AIDS Immunology (J-P Liu, Wang, Fu, Jiang, Zhang, Shang), Chinese Academy of Medical Sciences, Shenyang, China
| | - Zi-Ning Zhang
- From NHC Key Laboratory of AIDS Immunology - China Medical University (M Liu, J-P Liu, Wang, Fu, Jiang, Zhang, Shang), National Clinical Research Center for Laboratory Medicine (M Liu, J-P Liu, Wang, Fu, Zhao, Jiang, Zhang, Shang), and the Department of Laboratory Medicine (Zhao, Shang), The First Hospital of China Medical University, Shenyang, China
- Units of Medical Laboratory (M Liu, J-P Liu, Wang, Fu, Jiang, Zhang, Shang) and Key Laboratory of AIDS Immunology (J-P Liu, Wang, Fu, Jiang, Zhang, Shang), Chinese Academy of Medical Sciences, Shenyang, China
| | - Hong Shang
- From NHC Key Laboratory of AIDS Immunology - China Medical University (M Liu, J-P Liu, Wang, Fu, Jiang, Zhang, Shang), National Clinical Research Center for Laboratory Medicine (M Liu, J-P Liu, Wang, Fu, Zhao, Jiang, Zhang, Shang), and the Department of Laboratory Medicine (Zhao, Shang), The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
2
|
Papadopoulos G, Giannousi E, Avdi AP, Velliou RI, Nikolakopoulou P, Chatzigeorgiou A. Τ cell-mediated adaptive immunity in the transition from metabolic dysfunction-associated steatohepatitis to hepatocellular carcinoma. Front Cell Dev Biol 2024; 12:1343806. [PMID: 38774646 PMCID: PMC11106433 DOI: 10.3389/fcell.2024.1343806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 04/22/2024] [Indexed: 05/24/2024] Open
Abstract
Metabolic dysfunction-associated steatohepatitis (MASH) is the progressed version of metabolic dysfunction-associated steatotic liver disease (MASLD) characterized by inflammation and fibrosis, but also a pathophysiological "hub" that favors the emergence of liver malignancies. Current research efforts aim to identify risk factors, discover disease biomarkers, and aid patient stratification in the context of MASH-induced hepatocellular carcinoma (HCC), the most prevalent cancer among MASLD patients. To investigate the tumorigenic transition in MASH-induced HCC, researchers predominantly exploit preclinical animal-based MASH models and studies based on archived human biopsies and clinical trials. Recapitulating the immune response during tumor development and progression is vital to obtain mechanistic insights into MASH-induced HCC. Notably, the advanced complexity behind MASLD and MASH pathogenesis shifted the research focus towards innate immunity, a fundamental element of the hepatic immune niche that is usually altered robustly in the course of liver disease. During the last few years, however, there has been an increasing interest for deciphering the role of adaptive immunity in MASH-induced HCC, particularly regarding the functions of the various T cell populations. To effectively understand the specific role of T cells in MASH-induced HCC development, scientists should urgently fill the current knowledge gaps in this field. Pinpointing the metabolic signature, sketching the immune landscape, and characterizing the cellular interactions and dynamics of the specific T cells within the MASH-HCC liver are essential to unravel the mechanisms that adaptive immunity exploits to enable the emergence and progression of this cancer. To this end, our review aims to summarize the current state of research regarding the T cell functions linked to MASH-induced HCC.
Collapse
Affiliation(s)
- Grigorios Papadopoulos
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Eirini Giannousi
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Aikaterini P. Avdi
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Rallia-Iliana Velliou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Polyxeni Nikolakopoulou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
- Center for the Advancement of Integrated Medical and Engineering Sciences (AIMES), Karolinska Institute and KTH Royal Institute of Technology, Stockholm, Sweden
| | - Antonios Chatzigeorgiou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
3
|
Broholm M, Mathiasen AS, Apol ÁD, Weis N. The Adaptive Immune Response in Hepatitis B Virus-Associated Hepatocellular Carcinoma Is Characterized by Dysfunctional and Exhausted HBV-Specific T Cells. Viruses 2024; 16:707. [PMID: 38793588 PMCID: PMC11125979 DOI: 10.3390/v16050707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/26/2024] Open
Abstract
This systematic review investigates the immunosuppressive environment in HBV-associated hepatocellular carcinoma (HCC), characterized by dysfunctional and exhausted HBV-specific T cells alongside an increased infiltration of HBV-specific CD4+ T cells, particularly regulatory T cells (Tregs). Heightened expression of checkpoint inhibitors, notably PD-1, is linked with disease progression and recurrence, indicating its potential as both a prognostic indicator and a target for immunotherapy. Nevertheless, using PD-1 inhibitors has shown limited effectiveness. In a future perspective, understanding the intricate interplay between innate and adaptive immune responses holds promise for pinpointing predictive biomarkers and crafting novel treatment approaches for HBV-associated HCC.
Collapse
Affiliation(s)
- Malene Broholm
- Department of Infectious Disease, Copenhagen University Hospital, 2650 Hvidovre, Denmark
| | - Anne-Sofie Mathiasen
- Department of Infectious Disease, Copenhagen University Hospital, 2650 Hvidovre, Denmark
| | - Ása Didriksen Apol
- Department of Infectious Disease, Copenhagen University Hospital, 2650 Hvidovre, Denmark
| | - Nina Weis
- Department of Infectious Disease, Copenhagen University Hospital, 2650 Hvidovre, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2300 Copenhagen, Denmark
| |
Collapse
|
4
|
Pehlivanoglu B, Aysal A, Agalar C, Egeli T, Ozbilgin M, Unek T, Unek IT, Oztop I, Aktas S, Sagol O. lncRNA XIST Interacts with Regulatory T Cells within the Tumor Microenvironment in Chronic Hepatitis B-Associated Hepatocellular Carcinoma. Turk Patoloji Derg 2024; 40:101-108. [PMID: 38265097 PMCID: PMC11131571 DOI: 10.5146/tjpath.2023.13161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 12/01/2023] [Indexed: 01/25/2024] Open
Abstract
OBJECTIVE Alterations in the expression of several long non-coding RNAs (lncRNAs) have been shown in chronic hepatitis B-associated hepatocellular carcinoma (CHB-HCC). Here, we aimed to investigate the association between the expression of inflammation-associated lncRNA X-inactive specific transcript (XIST) and the type of inflammatory cells within the tumor microenvironment. MATERIAL AND METHODS Twenty-one consecutive cirrhotic patients with CHB-HCC were included. XIST expression levels were investigated on formalin-fixed paraffin-embedded (FFPE) tumoral and peritumoral tissue samples by real-time polymerase chain reaction (RT-PCR). Immunohistochemical staining for CD3, CD4, CD8, CD25, CD163, CTLA4, and PD-1 were performed. The findings were statistically analyzed. RESULTS Of the 21 cases, 11 (52.4%) had tumoral and 10 (47.6%) had peritumoral XIST expression. No significant association was found between the degree of inflammation and XIST expression. The number of intratumoral CD3, CD4, CD8 and CD20 positive cells was higher in XIST-expressing tumors, albeit without statistical significance. Tumoral and peritumoral XIST expression tended to be more common in patients with tumoral and peritumoral CD4high inflammation. The number of intratumoral CD25 positive cells was significantly higher in XIST-expressing tumors (p=0.01). Tumoral XIST expression was significantly more common in intratumoral CD25high cases (p=0.04). Peritumoral XIST expression was also more common among patients with CD25high peritumoral inflammation, albeit without statistical significance (p=0.19). CONCLUSION lncRNA XIST is expressed in CHB-HCC and its expression is significantly associated with the inflammatory tumor microenvironment, particularly with the presence and number of CD25 (+) regulatory T cells. In vitro studies are needed to explore the detailed mechanism.
Collapse
Affiliation(s)
- Burcin Pehlivanoglu
- Department of Molecular Pathology, Graduate School of Health Sciences, Dokuz Eylul University, Izmir, Turkey; Department of Pathology, Dokuz Eylul University, Faculty of Medicine, Izmir, Turkey
- Department of General Surgery, Dokuz Eylul University, Faculty of Medicine, Izmir, Turkey
| | - Anil Aysal
- Department of Molecular Pathology, Graduate School of Health Sciences, Dokuz Eylul University, Izmir, Turkey; Department of Pathology, Dokuz Eylul University, Faculty of Medicine, Izmir, Turkey
- Department of General Surgery, Dokuz Eylul University, Faculty of Medicine, Izmir, Turkey
| | - Cihan Agalar
- Department of General Surgery, Dokuz Eylul University, Faculty of Medicine, Izmir, Turkey
| | - Tufan Egeli
- Department of General Surgery, Dokuz Eylul University, Faculty of Medicine, Izmir, Turkey
| | - Mucahit Ozbilgin
- Department of General Surgery, Dokuz Eylul University, Faculty of Medicine, Izmir, Turkey
| | - Tarkan Unek
- Department of General Surgery, Dokuz Eylul University, Faculty of Medicine, Izmir, Turkey
| | - Ilkay Tugba Unek
- Department of Medical Oncology, Dokuz Eylul University, Faculty of Medicine, Izmir, Turkey
| | - Ilhan Oztop
- Department of Medical Oncology, Dokuz Eylul University, Faculty of Medicine, Izmir, Turkey
| | - Safiye Aktas
- Department of Medical Oncology, Dokuz Eylul University, Faculty of Medicine, Izmir, Turkey
- Department of Molecular Pathology, Graduate School of Health Sciences, Dokuz Eylul University, Izmir, Turkey; Department of Basic Oncology, Dokuz Eylul University, Institute of Oncology, Izmir, Turkey
| | - Ozgul Sagol
- Department of Molecular Pathology, Graduate School of Health Sciences, Dokuz Eylul University, Izmir, Turkey; Department of Pathology, Dokuz Eylul University, Faculty of Medicine, Izmir, Turkey
| |
Collapse
|
5
|
Robertson SE, Yasukawa M, Marchion DC, Xiong Y, Naqvi SMH, Gheit T, Tommasino M, Wenham RM, Giuliano AR, Lancaster JM, Shahzad MMK. Prevalence of viral DNA in high-grade serous epithelial ovarian cancer and correlation with clinical outcomes. PLoS One 2023; 18:e0294448. [PMID: 38039311 PMCID: PMC10691703 DOI: 10.1371/journal.pone.0294448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 11/01/2023] [Indexed: 12/03/2023] Open
Abstract
INTRODUCTION Currently 11 infectious agents are classified as carcinogenic but the role of infectious agents on outcomes of epithelial ovarian cancer is largely unknown. OBJECTIVE To explore the association between infectious agents and ovarian cancer, we investigated the prevalence of viral DNA in primary ovarian cancer tumors and its association with clinical outcomes. METHODS Archived tumors from 98 patients diagnosed with high-grade serous epithelial ovarian cancer were collected between 1/1/1994 and 12/31/2010. After DNA extraction, Luminex technology was utilized to identify polymerase chain reaction-amplified viral DNA for 113 specific viruses. Demographic data and disease characteristics were summarized using descriptive statistics. We used logistic regression and Cox proportional hazards model to assess associations between tumor viral status and disease outcome and between tumor viral presence and overall survival (OS), respectively. RESULTS Forty-six cases (45.9%) contained at least one virus. Six highly prevalent viruses were associated with clinical outcomes and considered viruses of interest (VOI; Epstein-Barr virus 1, Merkel cell polyomavirus, human herpes virus 6b, and human papillomaviruses 4, 16, and 23). Factors independently associated with OS were presence of VOI (HR 4.11, P = 0.0001) and platinum sensitivity (HR 0.21, P<0.0001). Median OS was significantly decreased when tumors showed VOI versus not having these viruses (22 vs 44 months, P<0.0001). Women <70 year old with VOI in tumors had significantly lower median OS versus age-matched women without VOI (20 vs 57 months, P = 0.0006); however, among women ≥70 years old, there was no difference in OS by tumor virus status. CONCLUSIONS The presence of a VOI was significantly associated with a lower OS. These findings may have implications for clinical management of ovarian cancer but require additional studies.
Collapse
Affiliation(s)
- Sharon E. Robertson
- Department of Gynecology Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
| | - Maya Yasukawa
- Department of Gynecology Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
| | - Douglas C. Marchion
- Department of Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
| | - Yin Xiong
- Department of Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
| | - Syeda Mahrukh Hussnain Naqvi
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
| | - Tarik Gheit
- International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Massimo Tommasino
- International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Robert M. Wenham
- Department of Gynecology Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
- Department of Oncologic Sciences, University of South Florida, Tampa, Florida, United States of America
| | - Anna R. Giuliano
- Risk Assessment, Detection and Intervention Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
| | - Johnathan M. Lancaster
- Department of Gynecology Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
- Department of Oncologic Sciences, University of South Florida, Tampa, Florida, United States of America
| | - Mian M. K. Shahzad
- Department of Gynecology Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
- Department of Oncologic Sciences, University of South Florida, Tampa, Florida, United States of America
| |
Collapse
|
6
|
Guil-Luna S, Rivas-Crespo A, Navarrete-Sirvent C, Mantrana A, Pera A, Mena-Osuna R, Toledano-Fonseca M, García-Ortíz MV, Villar C, Sánchez-Montero MT, Krueger J, Medina-Fernández FJ, De La Haba-Rodríguez J, Gómez-España A, Aranda E, Rudd CE, Rodríguez-Ariza A. Clinical significance of glycogen synthase kinase 3 (GSK-3) expression and tumor budding grade in colorectal cancer: Implications for targeted therapy. Biomed Pharmacother 2023; 167:115592. [PMID: 37778272 DOI: 10.1016/j.biopha.2023.115592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/14/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023] Open
Abstract
INTRODUCTION Glycogen synthase kinase 3 (GSK-3) has been proposed as a novel cancer target due to its regulating role in both tumor and immune cells. However, the connection between GSK-3 and immunoevasive contexture, including tumor budding (TB) has not been previously examined. METHODS we investigated the expression levels of total GSK-3 as well as its isoforms (GSK-3β and GSK-3α) and examined their potential correlation with TB grade and the programmed cell death-ligand 1 (PD-L1) in colorectal cancer (CRC) tumor samples. Additionally, we compared the efficacy of GSK-3-inhibition with PD-1/PD-L1 blockade in humanized patient-derived (PDXs) xenografts models of high-grade TB CRC. RESULTS we show that high-grade (BD3) TB CRC is associated with elevated expression levels of total GSK-3, specifically the GSK-3β isoform, along with increased expression of PD-L1 in tumor cells. Moreover, we define an improved risk stratification of CRC patients based on the presence of GSK-3+/PD-L1+/BD3 tumors, which are associated with a worse prognosis. Significantly, in contrast to the PD-L1/PD-1 blockade approach, the inhibition GSK-3 demonstrated a remarkable enhancement in the antitumor response. This was achieved through the reduction of tumor buds via necrosis and apoptosis pathways, along with a notable increase of activated tumor-infiltrating CD8+ T cells, NK cells, and CD4- CD8- T cells. CONCLUSIONS our study provides compelling evidence for the clinical significance of GSK-3 expression and TB grade in risk stratification of CRC patients. Moreover, our findings strongly support GSK-3 inhibition as an effective therapy specifically targeting high-grade TB in CRC.
Collapse
Affiliation(s)
- Silvia Guil-Luna
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain; Cancer Network Biomedical Research Centre (CIBERONC), Madrid, Spain; Andalusia-ROCHE Network Mixed Alliance in Precision Medical Oncology, Spain; Department of Comparative Pathology, Faculty of Veterinary Medicine, University of Córdoba, Córdoba, Spain..
| | - Aurora Rivas-Crespo
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain; Cancer Network Biomedical Research Centre (CIBERONC), Madrid, Spain; Andalusia-ROCHE Network Mixed Alliance in Precision Medical Oncology, Spain.
| | - Carmen Navarrete-Sirvent
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain; Cancer Network Biomedical Research Centre (CIBERONC), Madrid, Spain; Andalusia-ROCHE Network Mixed Alliance in Precision Medical Oncology, Spain.
| | - Ana Mantrana
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain; Cancer Network Biomedical Research Centre (CIBERONC), Madrid, Spain; Andalusia-ROCHE Network Mixed Alliance in Precision Medical Oncology, Spain.
| | - Alejandra Pera
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain; Department of Cell Biology, Physiology and Immunology, University of Córdoba, Spain.
| | - Rafael Mena-Osuna
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain; Cancer Network Biomedical Research Centre (CIBERONC), Madrid, Spain; Andalusia-ROCHE Network Mixed Alliance in Precision Medical Oncology, Spain.
| | - Marta Toledano-Fonseca
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain; Cancer Network Biomedical Research Centre (CIBERONC), Madrid, Spain; Andalusia-ROCHE Network Mixed Alliance in Precision Medical Oncology, Spain.
| | - María Victoria García-Ortíz
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain; Cancer Network Biomedical Research Centre (CIBERONC), Madrid, Spain; Andalusia-ROCHE Network Mixed Alliance in Precision Medical Oncology, Spain.
| | - Carlos Villar
- Pathological Anatomy Department, Reina Sofía University Hospital, Córdoba, Spain.
| | - Maria Teresa Sánchez-Montero
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain; Cancer Network Biomedical Research Centre (CIBERONC), Madrid, Spain; Andalusia-ROCHE Network Mixed Alliance in Precision Medical Oncology, Spain.
| | - Janna Krueger
- Division of Immunology-Oncology Research Center, Maisonneuve-Rosemont Hospital, Montreal, QC, Canada.
| | | | - Juan De La Haba-Rodríguez
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain; Cancer Network Biomedical Research Centre (CIBERONC), Madrid, Spain; Andalusia-ROCHE Network Mixed Alliance in Precision Medical Oncology, Spain; Department of Medicine, Faculty of Medicine, University of Córdoba, Córdoba, Spain; Medical Oncology Department, Reina Sofía University Hospital, Córdoba, Spain.
| | - Auxiliadora Gómez-España
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain; Andalusia-ROCHE Network Mixed Alliance in Precision Medical Oncology, Spain; Department of Medicine, Faculty of Medicine, University of Córdoba, Córdoba, Spain; Medical Oncology Department, Reina Sofía University Hospital, Córdoba, Spain.
| | - Enrique Aranda
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain; Cancer Network Biomedical Research Centre (CIBERONC), Madrid, Spain; Andalusia-ROCHE Network Mixed Alliance in Precision Medical Oncology, Spain; Department of Medicine, Faculty of Medicine, University of Córdoba, Córdoba, Spain; Medical Oncology Department, Reina Sofía University Hospital, Córdoba, Spain.
| | - Christopher E Rudd
- General and Digestive Surgery Department, Reina Sofía University Hospital, Córdoba, Spain; Faculty of Medicine, Universite de Montreal, Montreal, Canada.
| | - Antonio Rodríguez-Ariza
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain; Cancer Network Biomedical Research Centre (CIBERONC), Madrid, Spain; Andalusia-ROCHE Network Mixed Alliance in Precision Medical Oncology, Spain; Medical Oncology Department, Reina Sofía University Hospital, Córdoba, Spain.
| |
Collapse
|
7
|
Jiang D, Ma X, Zhang X, Cheng B, Wang R, Liu Y, Zhang X. New techniques: a roadmap for the development of HCC immunotherapy. Front Immunol 2023; 14:1121162. [PMID: 37426674 PMCID: PMC10323423 DOI: 10.3389/fimmu.2023.1121162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 06/09/2023] [Indexed: 07/11/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide. The absence of effective early diagnostic methods and the limitations of conventional therapies have led to a growing interest in immunotherapy as a novel treatment approach for HCC. The liver serves as an immune organ and a recipient of antigens from the digestive tract, creating a distinctive immune microenvironment. Key immune cells, including Kupffer cells and cytotoxic T lymphocytes, play a crucial role in HCC development, thus offering ample research opportunities for HCC immunotherapy. The emergence of advanced technologies such as clustered regularly interspaced short palindromic repeats (CRISPR) and single-cell ribonucleic acid sequencing has introduced new biomarkers and therapeutic targets, facilitating early diagnosis and treatment of HCC. These advancements have not only propelled the progress of HCC immunotherapy based on existing studies but have also generated new ideas for clinical research on HCC therapy. Furthermore, this review analysed and summarised the combination of current therapies for HCC and the improvement of CRISPR technology for chimeric antigen receptor T cell therapy, instilling renewed hope for HCC treatment. This review comprehensively explores the advancements in immunotherapy for HCC, focusing on the use of new techniques.
Collapse
|
8
|
Qiu J, Shi W, Zhang J, Gao Q, Feng L, Zhuang Z. Peripheral CD4 +CD25 hiCD127 low regulatory T cells are increased in patients with gastrointestinal cancer. BMC Gastroenterol 2023; 23:168. [PMID: 37210494 DOI: 10.1186/s12876-023-02798-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 05/03/2023] [Indexed: 05/22/2023] Open
Abstract
BACKGROUND Regulatory T cells (Tregs) play an important role in regulation of immune response and immunologic tolerance in cancer. Gastrointestinal cancer is still a leading cause of cancer-related death in the world. This study aimed to detect Tregs in patients with gastrointestinal cancer. METHODS In this study, 45 gastric cancer patients, 50 colorectal cancer patients and 50 healthy controls were enrolled. Flow cytometry was used to detect CD4+CD25hiCD127low Tregs, CD4+CD25hi, and CD4+ cells in peripheral blood. Cytokine interleukin-10 (IL-10) and transforming growth factor-β1 (TGF-β1) in peripheral blood and in the supernatant of Tregs cultures were measured by enzyme linked immunosorbent assay. RESULTS Compared with healthy controls, the levels of CD4+CD25hiCD127low Tregs and CD4+CD25hi cells increased significantly in patients with gastrointestinal cancer. Patients with gastrointestinal cancer also showed a significantly increased levels of IL-10 and TGF-β1 in both peripheral blood and CD4+CD25hiCD127low Tregs culture medium. CONCLUSION The present study firstly demonstrated that gastrointestinal patients have a compromised immune status where the CD4+CD25hiCD127low Tregs, as well as levels of IL-10 and TGF-β1 are elevated. The data offered new information for understanding the immunological features of gastrointestinal patients, as well as provided new insights into approaches to develop new immunotherapies for patients with gastrointestinal cancer.
Collapse
Affiliation(s)
- Junlan Qiu
- Department of Oncology, Suzhou Science and Technology Town Hospital, Suzhou, Jiangsu, 215153, China.
| | - Weiqiang Shi
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Jin Zhang
- Department of Pathology, Suzhou Science and Technology Town Hospital, Suzhou, Jiangsu, 215153, China
| | - Qinqin Gao
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Lin Feng
- Department of Oncology, Suzhou Science and Technology Town Hospital, Suzhou, Jiangsu, 215153, China
| | - Zhixiang Zhuang
- Department of Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215004, China
| |
Collapse
|
9
|
El-Makarem MAERA, Sayed DM, Matta RA, Mohamed MR, El-Malak MAA, Abbas NI. Interaction of peripheral CD4+CD25+CD127− Tregs with prolactin in HCV hepatocellular carcinoma: oncogenic or immunogenic mechanisms. EGYPTIAN LIVER JOURNAL 2023. [DOI: 10.1186/s43066-023-00250-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023] Open
Abstract
Abstract
Background and objective
There is little and conflicting data about the peripheral CD4+CD25+CD127− Tregs in patients with hepatocellular carcinoma (HCC) of various etiologies. The expressed membrane-bound transforming growth factor (mTGF-β1) on these Tregs is a marker of their suppressive function. Prolactin suppresses Tregs function in healthy subjects but enhances local Tregs in breast cancer. Our study is the first to assess the frequency and function of CD4+CD25+CD127−Tregs and their association with clinicopathological features and staging in HCV-related HCC and to determine whether prolactin acts as an oncogenic growth factor or participates in the regulation of the immune response mediated by peripheral Tregs. In patients with HCV- elated HCC, HCV-cirrhotic patients, and healthy subjects, we measured the frequency of peripheral traditional CD4+ CD25+ Tregs and well-characterized CD4+CD25+CD127−Tregs and their mTGF-β1 using flow cytometric analysis and measured serum prolactin level.
Results
The frequency of CD4+ CD25+ and CD4+CD25+CD127− Tregs was comparable between HCC and cirrhotic patients and healthy subjects. Serum prolactin and mTGF-β1 on traditional and CD4+CD25+CD127− Tregs were significantly higher in HCC and cirrhotic patients than healthy subjects with an insignificant difference between HCC and cirrhotic patients. Roc curve analysis revealed that cutoff value for mTGF-β1 on Tregs ≥ 13.5% is a good specific (87%) but low sensitive (54%) test in discriminating HCC patients from healthy subjects. The frequency of Tregs and mTGF-β1 were not correlated to clinicopathological characteristics or staging of HCC. Prolactin was higher in the multifocal lesions and negatively correlated to expressed mTGFβ1. The expressed mTGF-β1 was positively correlated with hemoglobin and alanine transaminase. The traditional Tregs was positively correlated with hemoglobin and albumin.
Conclusion
mTGFβ1, as a marker for suppressive function of peripheral CD4 + CD25 + CD127-Tregs, has a diagnostic role in discriminating HCV-related HCC patient from healthy subjects, unfortunately not from HCV-related cirrhotic patients. Serum prolactin has an oncogenic role as it is correlated to multiple focal lesions. It also impedes the suppressive function of peripheral Tregs as an immunogenic role. mTGF-β1 is related to hemoglobin and hepatic inflammation.
Collapse
|
10
|
Xu L, Li F, Jiang M, Li Z, Xu D, Jing J, Wang J, Ding J. Immunosuppression by Inflammation-Stimulated Amplification of Myeloid-Derived Suppressor Cells and Changes in Expression of Immune Checkpoint HHLA2 in Chronic Obstructive Pulmonary Disease. Int J Chron Obstruct Pulmon Dis 2023; 18:139-153. [PMID: 36846109 PMCID: PMC9946009 DOI: 10.2147/copd.s394327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/02/2023] [Indexed: 02/20/2023] Open
Abstract
Background The interaction between immune checkpoint and myeloid-derived suppressor cells (MDSCs) play a significant role in inflammatory diseases. But their correlation with chronic obstructive pulmonary disease (COPD) remains unclear. Methods The differentially expressed immune checkpoints and immunocytes in the airway tissues of COPD patients were identified by bioinformatics analysis, followed by correlation analysis and identification of immune-related differential genes for Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analysis. The results of bioinformatics analysis were verified by ELISA and Real-Time PCR and transcriptome sequencing of the peripheral blood of both COPD patients and healthy subjects. Results The results of the bioinformatics analysis showed that the level of MDSCs in airway tissue and peripheral blood of COPD patients was higher than that of healthy controls. The expression of CSF1 in airway tissue and peripheral blood of COPD patients increased, and CYBB was increased in airway tissue and decreased in peripheral blood of COPD patients. The expression of HHLA2 in the airway tissue decreased in COPD patients, and showed a negative correlation with MDSCs, with a correlation coefficient of -0.37. The peripheral blood flow cytometry results indicated that MDSCs and Treg cells of COPD patients were higher than those in the healthy control group. The results of peripheral blood ELISA and RT-PCR showed that the HHLA2 and CSF1 levels in COPD patients were higher than those in the healthy control group. Conclusion In COPD, the bone marrow is stimulated to produce MDSCs, and a large number of MDSCs migrate to airway tissue through peripheral blood and cooperate with HHLA2 to exert an immunosuppressive effect. Whether MDSCs play an immunosuppressive effect during migration needs to be further confirmed.
Collapse
Affiliation(s)
- Lijuan Xu
- The Fourth Clinical Medical College, Xinjiang Medical University, Urumqi, People’s Republic of China
| | - Fengsen Li
- Xinjiang Laboratory of Respiratory Disease Research, Traditional Chinese Medicine Hospital Affiliated to Xinjiang Medical University, Urumqi, People’s Republic of China
| | - Min Jiang
- Xinjiang Laboratory of Respiratory Disease Research, Traditional Chinese Medicine Hospital Affiliated to Xinjiang Medical University, Urumqi, People’s Republic of China
| | - Zheng Li
- Xinjiang Laboratory of Respiratory Disease Research, Traditional Chinese Medicine Hospital Affiliated to Xinjiang Medical University, Urumqi, People’s Republic of China
| | - Dan Xu
- Xinjiang Laboratory of Respiratory Disease Research, Traditional Chinese Medicine Hospital Affiliated to Xinjiang Medical University, Urumqi, People’s Republic of China
| | - Jing Jing
- Xinjiang Laboratory of Respiratory Disease Research, Traditional Chinese Medicine Hospital Affiliated to Xinjiang Medical University, Urumqi, People’s Republic of China
| | - Jing Wang
- Xinjiang Laboratory of Respiratory Disease Research, Traditional Chinese Medicine Hospital Affiliated to Xinjiang Medical University, Urumqi, People’s Republic of China,Correspondence: Jing Wang, Xinjiang Laboratory of Respiratory Disease Research, Traditional Chinese Medicine Hospital Affiliated to Xinjiang Medical University, Urumqi, People’s Republic of China, Tel +86-13999908413, Email
| | - Jianbing Ding
- Department of Immunology, College of Basic Medicine, Xinjiang Medical University, Urumqi, People’s Republic of China,Jianbing Ding, Department of Immunology, College of Basic Medicine, Xinjiang Medical University, Urumqi, People’s Republic of China, Tel +86-13999847738, Email
| |
Collapse
|
11
|
Chen C, Wang Z, Ding Y, Qin Y. Tumor microenvironment-mediated immune evasion in hepatocellular carcinoma. Front Immunol 2023; 14:1133308. [PMID: 36845131 PMCID: PMC9950271 DOI: 10.3389/fimmu.2023.1133308] [Citation(s) in RCA: 47] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 02/02/2023] [Indexed: 02/12/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver malignancy and is the third leading cause of tumor-related mortality worldwide. In recent years, the emergency of immune checkpoint inhibitor (ICI) has revolutionized the management of HCC. Especially, the combination of atezolizumab (anti-PD1) and bevacizumab (anti-VEGF) has been approved by the FDA as the first-line treatment for advanced HCC. Despite great breakthrough in systemic therapy, HCC continues to portend a poor prognosis owing to drug resistance and frequent recurrence. The tumor microenvironment (TME) of HCC is a complex and structured mixture characterized by abnormal angiogenesis, chronic inflammation, and dysregulated extracellular matrix (ECM) remodeling, collectively contributing to the immunosuppressive milieu that in turn prompts HCC proliferation, invasion, and metastasis. The tumor microenvironment coexists and interacts with various immune cells to maintain the development of HCC. It is widely accepted that a dysfunctional tumor-immune ecosystem can lead to the failure of immune surveillance. The immunosuppressive TME is an external cause for immune evasion in HCC consisting of 1) immunosuppressive cells; 2) co-inhibitory signals; 3) soluble cytokines and signaling cascades; 4) metabolically hostile tumor microenvironment; 5) the gut microbiota that affects the immune microenvironment. Importantly, the effectiveness of immunotherapy largely depends on the tumor immune microenvironment (TIME). Also, the gut microbiota and metabolism profoundly affect the immune microenvironment. Understanding how TME affects HCC development and progression will contribute to better preventing HCC-specific immune evasion and overcoming resistance to already developed therapies. In this review, we mainly introduce immune evasion of HCC underlying the role of immune microenvironment, describe the dynamic interaction of immune microenvironment with dysfunctional metabolism and the gut microbiome, and propose therapeutic strategies to manipulate the TME in favor of more effective immunotherapy.
Collapse
Affiliation(s)
| | | | | | - Yanru Qin
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
12
|
Cassese G, Han HS, Lee B, Lee HW, Cho JY, Panaro F, Troisi RI. Immunotherapy for hepatocellular carcinoma: A promising therapeutic option for advanced disease. World J Hepatol 2022; 14:1862-1874. [PMID: 36340753 PMCID: PMC9627435 DOI: 10.4254/wjh.v14.i10.1862] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/26/2022] [Accepted: 10/04/2022] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related deaths worldwide, and its incidence continues to increase. Despite improvements in both medical and surgical therapies, HCC remains associated with poor outcomes due to its high rates of recurrence and mortality. Approximately 50% of patients require systemic therapies that traditionally consist of tyrosine kinase inhibitors. Recently, however, immune checkpoint inhibitors have revolutionized HCC management, providing new therapeutic options. Despite these major advances, the different factors involved in poor clinical responses and molecular pathways leading to resistance following use of these therapies remain unclear. Alternative strategies, such as adoptive T cell transfer, vaccination, and virotherapy, are currently under evaluation. Combinations of immunotherapies with other systemic or local treatments are also being investigated and may be the most promising opportunities for HCC treatment. The aim of this review is to provide updated information on currently available immunotherapies for HCC as well as future perspectives.
Collapse
Affiliation(s)
- Gianluca Cassese
- Department of Clinical Medicine and Surgery, Division of Minimally Invasive and Robotic HPB Surgery, Federico II University, Naples 80131, Italy
- Department of Surgery, Seoul National University Bundang Hospital, Seongnam 13620, South Korea
| | - Ho-Seong Han
- Department of Surgery, Seoul National University Bundang Hospital, Seongnam 13620, South Korea
| | - Boram Lee
- Department of Surgery, Seoul National University Bundang Hospital, Seongnam 13620, South Korea
| | - Hae Won Lee
- Department of Surgery, Seoul National University Bundang Hospital, Seongnam 13620, South Korea
| | - Jai Young Cho
- Department of Surgery, Seoul National University Bundang Hospital, Seongnam 13620, South Korea
| | - Fabrizio Panaro
- Department of Surgery, Division of HBP Surgery and Transplantation, Montpellier University Hospital - School of Medicine, Montpellier 34000, France
| | - Roberto Ivan Troisi
- Department of Clinical Medicine and Surgery, Division of Minimally Invasive and Robotic HPB Surgery, Federico II University, Naples 80131, Italy
| |
Collapse
|
13
|
Karin N. Chemokines in the Landscape of Cancer Immunotherapy: How They and Their Receptors Can Be Used to Turn Cold Tumors into Hot Ones? Cancers (Basel) 2021; 13:6317. [PMID: 34944943 PMCID: PMC8699256 DOI: 10.3390/cancers13246317] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 02/07/2023] Open
Abstract
Over the last decade, monoclonal antibodies to immune checkpoint inhibitors (ICI), also known as immune checkpoint blockers (ICB), have been the most successful approach for cancer therapy. Starting with mAb to cytotoxic T lymphocyte antigen 4 (CTLA-4) inhibitors in metastatic melanoma and continuing with blockers of the interactions between program cell death 1 (PD-1) and its ligand program cell death ligand 1 (PDL-1) or program cell death ligand 2 (PDL-2), that have been approved for about 20 different indications. Yet for many cancers, ICI shows limited success. Several lines of evidence imply that the limited success in cancer immunotherapy is associated with attempts to treat patients with "cold tumors" that either lack effector T cells, or in which these cells are markedly suppressed by regulatory T cells (Tregs). Chemokines are a well-defined group of proteins that were so named due to their chemotactic properties. The current review focuses on key chemokines that not only attract leukocytes but also shape their biological properties. CXCR3 is a chemokine receptor with 3 ligands. We suggest using Ig-based fusion proteins of two of them: CXL9 and CXCL10, to enhance anti-tumor immunity and perhaps transform cold tumors into hot tumors. Potential differences between CXCL9 and CXCL10 regarding ICI are discussed. We also discuss the possibility of targeting the function or deleting a key subset of Tregs that are CCR8+ by monoclonal antibodies to CCR8. These cells are preferentially abundant in several tumors and are likely to be the key drivers in suppressing anti-cancer immune reactivity.
Collapse
Affiliation(s)
- Nathan Karin
- Department of Immunology, Faculty of Medicine, Technion, P.O. Box 9697, Haifa 31096, Israel
| |
Collapse
|
14
|
Cho HJ, Cheong JY. Role of Immune Cells in Patients with Hepatitis B Virus-Related Hepatocellular Carcinoma. Int J Mol Sci 2021; 22:ijms22158011. [PMID: 34360777 PMCID: PMC8348470 DOI: 10.3390/ijms22158011] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/23/2021] [Accepted: 07/23/2021] [Indexed: 12/17/2022] Open
Abstract
Hepatocellular carcinoma (HCC) develops almost entirely in the presence of chronic inflammation. Chronic hepatitis B virus (HBV) infection with recurrent immune-mediated liver damage ultimately leads to cirrhosis and HCC. It is widely accepted that HBV infection induces the dysfunction of the innate and adaptive immune responses that engage various immune cells. Natural killer (NK) cells are associated with early antiviral and antitumor properties. On the other hand, inflammatory cells release various cytokines and chemokines that may promote HCC tumorigenesis. Moreover, immunosuppressive cells such as regulatory T cells (Treg) and myeloid-derived suppressive cells play a critical role in hepatocarcinogenesis. HBV-specific CD8+ T cells have been identified as pivotal players in antiviral responses, whilst extremely activated CD8+ T cells induce enormous inflammatory responses, and chronic inflammation can facilitate hepatocarcinogenesis. Controlling and maintaining the balance in the immune system is an important aspect in the management of HBV-related HCC. We conducted a review of the current knowledge on the immunopathogenesis of HBV-induced inflammation and the role of such immune activation in the tumorigenesis of HCC based on the recent studies on innate and adaptive immune cell dysfunction in HBV-related HCC.
Collapse
Affiliation(s)
| | - Jae-Youn Cheong
- Correspondence: ; Tel.: +82-31-219-6939; Fax: +82-31-219-5999
| |
Collapse
|
15
|
Preoperative immune landscape predisposes adverse outcomes in hepatocellular carcinoma patients with liver transplantation. NPJ Precis Oncol 2021; 5:27. [PMID: 33772139 PMCID: PMC7997876 DOI: 10.1038/s41698-021-00167-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 03/03/2021] [Indexed: 01/15/2023] Open
Abstract
Immune class in hepatocellular carcinoma (HCC) has been shown to possess immunogenic power; however, how preestablished immune landscapes in premalignant and early HCC stages impact the clinical outcomes of HCC patients remains unexplored. We sequenced bulk transcriptomes for 62 malignant tumor samples from a Korean HCC cohort in which 38 patients underwent total hepatectomy, as well as for 15 normal and 47 adjacent nontumor samples. Using in silico deconvolution of expression mixtures, 22 immune cell fractions for each sample were inferred, and validated with immune cell counting by immunohistochemistry. Cell type-specific immune signatures dynamically shifted from premalignant stages to the late HCC stage. Total hepatectomy patients displayed elevated immune infiltration and prolonged disease-free survival compared to the partial hepatectomy patients. However, patients who exhibited an infiltration of regulatory T cells (Tregs) during the pretransplantation period displayed a high risk of tumor relapse with suppressed immune responses, and pretreatment was a potential driver of Treg infiltration in the total hepatectomy group. Treg infiltration appeared to be independent of molecular classifications based on transcriptomic data. Our study provides not only comprehensive immune signatures in adjacent nontumor lesions and early malignant HCC stages but also clinical guidance for HCC patients who will undergo liver transplantation.
Collapse
|
16
|
Bian J, Lin J, Long J, Yang X, Yang X, Lu X, Sang X, Zhao H. T lymphocytes in hepatocellular carcinoma immune microenvironment: insights into human immunology and immunotherapy. Am J Cancer Res 2020; 10:4585-4606. [PMID: 33415021 PMCID: PMC7783774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 11/12/2020] [Indexed: 06/12/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is characterized by poor outcome and shows limited drug-response in clinical trials. Tumor immune microenvironment (TIME) exerts a strong selection pressure on HCC, leading to HCC evolvement and recurrence after multiple therapies. T cell-mediated immunoreaction during cancer surveillance and clearance is central in cancer immunity. Heterogenous T cell subsets play multiple roles in HCC development and progression. The re-educated T cells in TIME usually lead to deteriorated T cell response and tumor progression. Investigation into immune system dysregulation during HCC development will shed light on how to turn immune suppressive state to immune activation and induce more efficient immune response. Emerging T cell-based treatment such as cancer vaccines, CAR-T cell therapy, adoptive cell therapy, and immune checkpoint inhibitors (ICIs), have been proved to cause tumor regression in some clinical and preclinical trials. In this review, we focused on recent studies that explored T cells involved in HCC and how they affect the course of disease. We also briefly outlined current T cell-based immunotherapies in HCC.
Collapse
Affiliation(s)
- Jin Bian
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC)Beijing, China
| | - Jianzhen Lin
- Pancreas Center, First Affiliated Hospital of Nanjing Medical UniversityNanjing, China
- Pancreas Institute, Nanjing Medical UniversityNanjing, Jiangsu, China
| | - Junyu Long
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC)Beijing, China
| | - Xu Yang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC)Beijing, China
| | - Xiaobo Yang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC)Beijing, China
| | - Xin Lu
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC)Beijing, China
| | - Xinting Sang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC)Beijing, China
| | - Haitao Zhao
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC)Beijing, China
| |
Collapse
|
17
|
Levels and Clinical Significance of Regulatory B Cells and T Cells in Acute Myeloid Leukemia. BIOMED RESEARCH INTERNATIONAL 2020; 2020:7023168. [PMID: 33083479 PMCID: PMC7557919 DOI: 10.1155/2020/7023168] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/05/2020] [Indexed: 12/16/2022]
Abstract
Acute myeloid leukemia (AML) is a heterogeneous hematological malignancy, whose immunological mechanisms are still partially uncovered. Regulatory B cells (Bregs) and CD4+ regulatory T cells (Tregs) are subgroups of immunoregulatory cells involved in modulating autoimmunity, inflammation, and transplantation reactions. Herein, by studying the number and function of Breg and Treg cell subsets in patients with AML, we explored their potential role in the pathogenesis of AML. Newly diagnosed AML patients, AML patients in complete remission, and healthy controls were enrolled. Flow cytometry was used to detect percentages of Bregs and Tregs. ELISA was conducted to detect IL-10 and TGF-β in plasma. The mRNA levels of IL-10 and Foxp3 were measured with RT-qPCR. The relationship of Bregs and Tregs with the clinicopathological parameters was analyzed. There was a significant reduction in the frequencies of Bregs and an increase of Tregs in newly diagnosed AML patients compared with healthy controls. Meanwhile, patients in complete remission exhibited levels of Bregs and Tregs comparable to healthy controls. Furthermore, compared with healthy controls and AML patients in complete remission, newly diagnosed AML patients had increased plasma IL-10 but reduced TGF-β. IL-10 and Foxp3 mRNA levels were upregulated in the newly diagnosed AML patients. However, there were no significant differences in IL-10 and Foxp3 mRNA levels between patients in complete remission and healthy controls. Bregs and Tregs have abnormal distribution in AML patients, suggesting that they might play an important role in regulating immune responses in AML.
Collapse
|
18
|
Immunotherapy for Hepatocellular Carcinoma: A 2021 Update. Cancers (Basel) 2020; 12:cancers12102859. [PMID: 33020428 PMCID: PMC7600093 DOI: 10.3390/cancers12102859] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/26/2020] [Accepted: 09/30/2020] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of one of the most frequent liver cancers and the fourth leading cause of cancer-related mortality worldwide. Current treatment options such as surgery, neoadjuvant chemoradiotherapy, liver transplantation, and radiofrequency ablation will benefit only a very small percentage of patients. Immunotherapy is a novel treatment approach representing an effective and promising option against several types of cancer. The aim of our study is to present the currently ongoing clinical trials and to evaluate the efficacy of immunotherapy in HCC. In this paper, we demonstrate that combination of different immunotherapies or immunotherapy with other modalities results in better overall survival (OS) and progression-free survival (PFS) compared to single immunotherapy agent. Another objective of this paper is to demonstrate and highlight the importance of tumor microenvironment as a predictive and prognostic marker and its clinical implications in immunotherapy response.
Collapse
|
19
|
Li B, Yan C, Zhu J, Chen X, Fu Q, Zhang H, Tong Z, Liu L, Zheng Y, Zhao P, Jiang W, Fang W. Anti-PD-1/PD-L1 Blockade Immunotherapy Employed in Treating Hepatitis B Virus Infection-Related Advanced Hepatocellular Carcinoma: A Literature Review. Front Immunol 2020; 11:1037. [PMID: 32547550 PMCID: PMC7270402 DOI: 10.3389/fimmu.2020.01037] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 04/29/2020] [Indexed: 12/24/2022] Open
Abstract
Hepatitis B virus (HBV) infection is regarded as the main etiological risk factor in the process of hepatocellular carcinoma (HCC), as it promotes an immunosuppressive microenvironment that is partially mediated by the programmed cell death protein 1 (PD-1)/programmed death-ligand 1 (PD-L1) signaling pathway. The tumor microenvironment (TME) of HBV-related HCC is indeed more immunosuppressive than microenvironments not associated with viruses. And compared to TME in hepatitis C virus (HCV) infected HCC, TME of HBV-related HCC is less vascularized and presents different immune components resulting in similar immunosuppression. However, few studies are focusing on the specific side effects and efficacy of PD-1/PD-L1 blockade immunotherapy in HBV-related HCC patients, as well as on the underlying mechanism. Herein, we reviewed the basic research focusing on potential TME alteration caused by HBV infection, especially in HCC patients. Moreover, we reviewed PD-1/PD-L1 blockade immunotherapy clinical trials to clarify the safety and efficacy of this newly developed treatment in the particular circumstances of HBV infection. We found that patients with HBV-related HCC displayed an acceptable safety profile similar to those of non-infected HCC patients. However, we could not determine the antiviral activity of PD-1/PD-L1 blockade because standard anti-viral therapies were conducted in all of the current clinical trials, which made it difficult to distinguish the potential influence of PD-1/PD-L1 blockade on HBV infection. Generally, the objective response rates (ORRs) of PD-1/PD-L1 blockade immunotherapy did not differ significantly between virus-positive and virus-negative patients, except that disease control rates (DCRs) were obviously lower in HBV-infected HCC patients.
Collapse
Affiliation(s)
- Bin Li
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Cong Yan
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jiamin Zhu
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaobing Chen
- Department of Oncology, Henan Cancer Hospital, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Qihan Fu
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Hangyu Zhang
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhou Tong
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lulu Liu
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yi Zheng
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Peng Zhao
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Weiqin Jiang
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Weijia Fang
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
20
|
Zhou L, Pan LC, Zheng YG, Zhang XX, Liu ZJ, Meng X, Shi HD, Du GS, He Q. Reduction of FoxP3 + Tregs by an immunosuppressive protocol of rapamycin plus Thymalfasin and Huaier extract predicts positive survival benefits in a rat model of hepatocellular carcinoma. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:472. [PMID: 32395516 PMCID: PMC7210174 DOI: 10.21037/atm.2020.03.129] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background Investigate immunoregulation and anti-tumor immunity of FoxP3+Tregs after treatment with rapamycin (RAPA/SRL) plus thymalfasin (Zadaxin) and Huaier extract (PS-T) in a hepatocellular carcinoma (HCC) rat model simulating HCC relapse after liver transplant (LT). Methods We successfully established a rat model simulating HCC relapse after LT using an optimized chemical induction method with TACROLIMUS, methylprednisolone, and diethylnitrosamine as identified by visible liver nodules and hematoxylin-eosin staining. The model rats were then treated with RAPA, Zadaxin, and PS-T. Immune status changes were analyzed by flow cytometry, and protein expression of Akt and mTOR was determined by western blotting. Cytokines were measured by ELISAs. Results Combined therapy by RAPA plus Zadaxin and PS-T obviously alleviated hepatic pathological changes and significantly decreased the levels of FoxP3+Tregs in peripheral blood, the spleen, and the liver (P<0.05) and expression of mTOR protein (P<0.01) in the liver, obviously improved survival time (P=0.02). Moreover, the levels of CD8+T cells were increased significantly to almost normal levels (P<0.05) in comparison with no SRL monotherapy protocols. Inhibitory cytokines were also decreased in accordance with FoxP3+Tregs. Significant decreases of IL-10 and TGF-β were observed after SRL-based therapy (P<0.01) in comparison with the other groups. Serum alpha fetoprotein (AFP) and vascular endothelial growth factor (VEGF) levels were also decreased significantly (P<0.05). FoxP3+Tregs showed a negative correlation with CD8+ and CD4+/CD8+T cells and a positive correlation with AFP, and VEGF (P<0.05). Conclusions SRL-based therapy reduces FoxP3+Tregs to decrease secreted inhibitory cytokines which may enhancement the viability and number of CD8+T cells to exert anti-tumor effects that are mainly mediated through the AKT-mTOR signaling pathway.
Collapse
Affiliation(s)
- Lin Zhou
- Department of Hepatobiliary and Pancreaticosplenic Surgery, Beijing ChaoYang Hospital, Capital Medical University, Beijing 100020, China.,Department of (Second) Hepatobiliary Surgery, the 1 Medical Center of Chinese PLA General Hospital, Beijing 100853, China.,Departmentof Hepatobiliary Surgery, the 8 Medical center of Chinese PLA General Hospital, Beijing 100091, China
| | - Li-Chao Pan
- Department of (Second) Hepatobiliary Surgery, the 1 Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Yong-Gen Zheng
- Departmentof Hepatobiliary Surgery, the 8 Medical center of Chinese PLA General Hospital, Beijing 100091, China
| | - Xin-Xue Zhang
- Department of Hepatobiliary and Pancreaticosplenic Surgery, Beijing ChaoYang Hospital, Capital Medical University, Beijing 100020, China
| | - Zhi-Jia Liu
- Departmentof Hepatobiliary Surgery, the 8 Medical center of Chinese PLA General Hospital, Beijing 100091, China
| | - Xuan Meng
- Department of (Second) Hepatobiliary Surgery, the 1 Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Hai-Da Shi
- Department of (Second) Hepatobiliary Surgery, the 1 Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Guo-Sheng Du
- Departmentof Hepatobiliary Surgery, the 8 Medical center of Chinese PLA General Hospital, Beijing 100091, China
| | - Qiang He
- Department of Hepatobiliary and Pancreaticosplenic Surgery, Beijing ChaoYang Hospital, Capital Medical University, Beijing 100020, China
| |
Collapse
|
21
|
Figueiredo CR, Kalirai H, Sacco JJ, Azevedo RA, Duckworth A, Slupsky JR, Coulson JM, Coupland SE. Loss of BAP1 expression is associated with an immunosuppressive microenvironment in uveal melanoma, with implications for immunotherapy development. J Pathol 2020; 250:420-439. [PMID: 31960425 PMCID: PMC7216965 DOI: 10.1002/path.5384] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 12/28/2019] [Accepted: 01/14/2020] [Indexed: 12/22/2022]
Abstract
Immunotherapy using immune checkpoint inhibitors (ICIs) induces durable responses in many metastatic cancers. Metastatic uveal melanoma (mUM), typically occurring in the liver, is one of the most refractory tumours to ICIs and has dismal outcomes. Monosomy 3 (M3), polysomy 8q, and BAP1 loss in primary uveal melanoma (pUM) are associated with poor prognoses. The presence of tumour-infiltrating lymphocytes (TILs) within pUM and surrounding mUM - and some evidence of clinical responses to adoptive TIL transfer - strongly suggests that UMs are indeed immunogenic despite their low mutational burden. The mechanisms that suppress TILs in pUM and mUM are unknown. We show that BAP1 loss is correlated with upregulation of several genes associated with suppressive immune responses, some of which build an immune suppressive axis, including HLA-DR, CD38, and CD74. Further, single-cell analysis of pUM by mass cytometry confirmed the expression of these and other markers revealing important functions of infiltrating immune cells in UM, most being regulatory CD8+ T lymphocytes and tumour-associated macrophages (TAMs). Transcriptomic analysis of hepatic mUM revealed similar immune profiles to pUM with BAP1 loss, including the expression of IDO1. At the protein level, we observed TAMs and TILs entrapped within peritumoural fibrotic areas surrounding mUM, with increased expression of IDO1, PD-L1, and β-catenin (CTNNB1), suggesting tumour-driven immune exclusion and hence the immunotherapy resistance. These findings aid the understanding of how the immune response is organised in BAP1 - mUM, which will further enable functional validation of detected biomarkers and the development of focused immunotherapeutic approaches. © 2020 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Carlos R Figueiredo
- Department of Molecular and Clinical Cancer Medicine, ITMUniversity of LiverpoolLiverpoolUK
- Department of the Faculty of Medicine, MediCity Research Laboratory and Institute of BiomedicineUniversity of TurkuTurkuFinland
| | - Helen Kalirai
- Department of Molecular and Clinical Cancer Medicine, ITMUniversity of LiverpoolLiverpoolUK
| | - Joseph J Sacco
- Department of Molecular and Clinical Cancer Medicine, ITMUniversity of LiverpoolLiverpoolUK
- Department of Medical OncologyThe Clatterbridge Cancer CentreWirralUK
| | - Ricardo A Azevedo
- Department of Cancer BiologyThe University of Texas–MD Anderson Cancer CenterHoustonTXUSA
| | - Andrew Duckworth
- Department of Molecular and Clinical Cancer Medicine, ITMUniversity of LiverpoolLiverpoolUK
| | - Joseph R Slupsky
- Department of Molecular and Clinical Cancer Medicine, ITMUniversity of LiverpoolLiverpoolUK
| | - Judy M Coulson
- Department of Cellular and Molecular PhysiologyUniversity of LiverpoolLiverpoolUK
| | - Sarah E Coupland
- Department of Molecular and Clinical Cancer Medicine, ITMUniversity of LiverpoolLiverpoolUK
- Liverpool Clinical LaboratoriesRoyal Liverpool University HospitalLiverpoolUK
| |
Collapse
|
22
|
Zongyi Y, Xiaowu L. Immunotherapy for hepatocellular carcinoma. Cancer Lett 2020; 470:8-17. [DOI: 10.1016/j.canlet.2019.12.002] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/25/2019] [Accepted: 12/01/2019] [Indexed: 02/08/2023]
|
23
|
Wang J, Xu Y, Wang Y, Zhang X, Zhang G. Further Study of Circulating Antibodies to P16, CD25 and FOXP3 in Hepatocellular Carcinoma. Onco Targets Ther 2019; 12:10487-10493. [PMID: 31819529 PMCID: PMC6897059 DOI: 10.2147/ott.s226404] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 11/15/2019] [Indexed: 12/21/2022] Open
Abstract
Purpose It has been reported that circulating levels of IgG antibodies against p16, CD25 and FOXP3 proteins were significantly changed in patients with lung cancer, breast cancer and esophageal cancer. However, different peptide fragments appear to trigger different immune responses. This work aimed to analyze the alteration of plasma IgG for p16-derived peptide antigen called p16a, CD25-derived peptide antigen called CD25a and a FOXP3-derived antigen in hepatocellular carcinoma (HCC). Patients and methods An enzyme-linked immunosorbent assay (ELISA) was developed in-house to detect plasma IgG to p16a, CD25a and FOXP3 in 119 patients with HCC and 132 control subjects. Results Circulating levels of IgG antibodies for all three peptide antigens were significantly higher in HCC patients than control subjects (P<0.001 for all 3 assays); male patients mainly contributed to increase (P<0.01 for all 3 assays). Further analysis showed that plasma anti-p16a, anti-CD25a and anti-FOXP3 IgG levels were increased mainly in patients with intermediate and late-stage HCC (P<0.01 for both assays). Receiver operating characteristic (ROC) curve analysis showed that with a specificity of >95%, the area under the ROC curve (AUC) was 0.62 with 11.4% sensitivity for anti-p16a assay, 0.68 with 14.3% sensitivity for anti-CD25a IgG assay and 0.64 with 10.1% sensitivity for anti-FOXP3 assay. Of the three groups of HCC patients, group 3 (BCLC stage C+D) showed the best sensitivity for the detection of plasma anti-p16a and anti-FOXP3 IgG levels with an AUC of 0.66 and 0.65. Conclusion Circulating IgG antibody to p16a, CD25a and FOXP3 proteins may be a useful biomarker for assessment of HCC prognosis of this malignancy, especially in male patients with HCC.
Collapse
Affiliation(s)
- Jiaxin Wang
- Department of Endocrinology, The Second Hospital of Jilin University, Changchun, People's Republic of China
| | - Yangchun Xu
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, People's Republic of China
| | - Yanjun Wang
- Department of Endocrinology, The Second Hospital of Jilin University, Changchun, People's Republic of China
| | - Xuan Zhang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, People's Republic of China
| | - Guizhen Zhang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, People's Republic of China
| |
Collapse
|
24
|
Fu Y, Liu S, Zeng S, Shen H. From bench to bed: the tumor immune microenvironment and current immunotherapeutic strategies for hepatocellular carcinoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:396. [PMID: 31500650 PMCID: PMC6734524 DOI: 10.1186/s13046-019-1396-4] [Citation(s) in RCA: 260] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 08/27/2019] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC) ranks the most common primary liver malignancy and the third leading cause of tumor-related mortality worldwide. Unfortunately, despite advances in HCC treatment, less than 40% of HCC patients are eligible for potentially curative therapies. Recently, cancer immunotherapy has emerged as one of the most promising approaches for cancer treatment. It has been proven therapeutically effective in many types of solid tumors, such as non-small cell lung cancer and melanoma. As an inflammation-associated tumor, it's well-evidenced that the immunosuppressive microenvironment of HCC can promote immune tolerance and evasion by various mechanisms. Triggering more vigorous HCC-specific immune response represents a novel strategy for its management. Pre-clinical and clinical investigations have revealed that various immunotherapies might extend current options for needed HCC treatment. In this review, we provide the recent progress on HCC immunology from both basic and clinical perspectives, and discuss potential advances and challenges of immunotherapy in HCC.
Collapse
Affiliation(s)
- Yaojie Fu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Shanshan Liu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Shan Zeng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.,Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Hong Shen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
25
|
The detection and clinical significance of peripheral regulatory CD4+CD25hiCD127low T cells in patients with non-small cell lung cancer. Clin Transl Oncol 2019; 21:1343-1347. [DOI: 10.1007/s12094-019-02063-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 02/11/2019] [Indexed: 12/26/2022]
|
26
|
Zhou F, Zhang GX, Rostami A. Distinct Role of IL-27 in Immature and LPS-Induced Mature Dendritic Cell-Mediated Development of CD4 + CD127 +3G11 + Regulatory T Cell Subset. Front Immunol 2018; 9:2562. [PMID: 30483251 PMCID: PMC6244609 DOI: 10.3389/fimmu.2018.02562] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 10/17/2018] [Indexed: 12/18/2022] Open
Abstract
Interleukin-27 (IL-27) plays an important role in regulation of anti-inflammatory responses and autoimmunity; however, the molecular mechanisms of IL-27 in modulation of immune tolerance and autoimmunity have not been fully elucidated. Dendritic cells (DCs) play a central role in regulating immune responses mediated by innate and adaptive immune systems, but regulatory mechanisms of DCs in CD4+ T cell-mediated immune responses have not yet been elucidated. Here we show that IL-27 treated mature DCs induced by LPS inhibit immune tolerance mediated by LPS-stimulated DCs. IL-27 treatment facilitates development of the CD4+ CD127+3G11+ regulatory T cell subset in vitro and in vivo. By contrast, IL-27 treated immature DCs fail to modulate development of the CD4+CD127+3G11+ regulatory T cell sub-population in vitro and in vivo. Our results suggest that IL-27 may break immune tolerance induced by LPS-stimulated mature DCs through modulating development of a specific CD4+ regulatory T cell subset mediated by 3G11 and CD127. Our data reveal a new cellular regulatory mechanism of IL-27 that targets DC-mediated immune responses in autoimmune diseases such as multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE).
Collapse
Affiliation(s)
- Fang Zhou
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Guang-Xian Zhang
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Abdolmohamad Rostami
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
27
|
Trehanpati N, Vyas AK. Immune Regulation by T Regulatory Cells in Hepatitis B Virus-Related Inflammation and Cancer. Scand J Immunol 2017; 85:175-181. [PMID: 28109025 DOI: 10.1111/sji.12524] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 01/13/2017] [Indexed: 12/12/2022]
Abstract
Hepatocellular carcinoma (HCC) is the leading cause of cancer death, and hepatitis B virus (HBV) infection is one of the commonest causes in Asian countries. India has the second largest pool after China for hepatitis B-infected subjects. HBV clearance is T cell dependent, and one of the reasons for T cells hyporesponsiveness is due to mass production of regulatory T cells (Tregs) through activation of Notch signalling, which suppress CD4/CD8 T cells. Tregs are important to maintain cellular homoeostasis; however, during viral infection increase of Tregs is inversely proportional to HBV DNA titres. Tregs exert their suppressive effect either via cell-to-cell contact or through release of interleukin (IL)-2, IL-10, TGF-β and IL-35. In Chronic hepatitis B virus CHBV infection, PD-1 pathway also gets activated and is involved in promoting tolerance. However, with Tregs induction, virus-specific T cell responses also get decreased. Circulatory and intratumoural Tregs promote development of HBV-specific HCC more by decreasing and impairing the effector functions of CD8 T cells. Antiviral therapies and PD-1 blockade strategy had shown the inhibition of Tregs and reduction in HBV DNA. However, inhibition of HBV-specific Tregs is major challenge for future therapies. New cytokine blockade therapies have emerged as potential therapeutic potentials.
Collapse
Affiliation(s)
- N Trehanpati
- Departments of Molecular and cellular Medicine, Institute of Liver & Biliary Sciences, New Delhi, India
| | - A K Vyas
- Departments of Molecular and cellular Medicine, Institute of Liver & Biliary Sciences, New Delhi, India
| |
Collapse
|
28
|
Jiang Z, Jiang X, Chen S, Lai Y, Wei X, Li B, Lin S, Wang S, Wu Q, Liang Q, Liu Q, Peng M, Yu F, Weng J, Du X, Pei D, Liu P, Yao Y, Xue P, Li P. Anti-GPC3-CAR T Cells Suppress the Growth of Tumor Cells in Patient-Derived Xenografts of Hepatocellular Carcinoma. Front Immunol 2017; 7:690. [PMID: 28123387 PMCID: PMC5225101 DOI: 10.3389/fimmu.2016.00690] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 12/23/2016] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The lack of a general clinic-relevant model for human cancer is a major impediment to the acceleration of novel therapeutic approaches for clinical use. We propose to establish and characterize primary human hepatocellular carcinoma (HCC) xenografts that can be used to evaluate the cytotoxicity of adoptive chimeric antigen receptor (CAR) T cells and accelerate the clinical translation of CAR T cells used in HCC. METHODS Primary HCCs were used to establish the xenografts. The morphology, immunological markers, and gene expression characteristics of xenografts were detected and compared to those of the corresponding primary tumors. CAR T cells were adoptively transplanted into patient-derived xenograft (PDX) models of HCC. The cytotoxicity of CAR T cells in vivo was evaluated. RESULTS PDX1, PDX2, and PDX3 were established using primary tumors from three individual HCC patients. All three PDXs maintained original tumor characteristics in their morphology, immunological markers, and gene expression. Tumors in PDX1 grew relatively slower than that in PDX2 and PDX3. Glypican 3 (GPC3)-CAR T cells efficiently suppressed tumor growth in PDX3 and impressively eradicated tumor cells from PDX1 and PDX2, in which GPC3 proteins were highly expressed. CONCLUSION GPC3-CAR T cells were capable of effectively eliminating tumors in PDX model of HCC. Therefore, GPC3-CAR T cell therapy is a promising candidate for HCC treatment.
Collapse
Affiliation(s)
- Zhiwu Jiang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China; Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Xiaofeng Jiang
- Department of Surgery, The Second Affiliated Hospital of Guangzhou Medical University , Guangzhou , China
| | - Suimin Chen
- Luogang Chinese Medicine Hospital , Guangzhou , China
| | - Yunxin Lai
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China; Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Xinru Wei
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China; Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Baiheng Li
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China; Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Simiao Lin
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China; Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Suna Wang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China; Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Qiting Wu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China; Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Qiubin Liang
- Guangdong Zhaotai InVivo Biomedicine Co. Ltd , Guangzhou , China
| | - Qifa Liu
- Department of Hematology, Nanfang Hospital, Southern Medical University , Guangzhou , China
| | - Muyun Peng
- Department of Thoracic Oncology, The Second Xiangya Hospital of Central South University , Changcha , China
| | - Fenglei Yu
- Department of Thoracic Oncology, The Second Xiangya Hospital of Central South University , Changcha , China
| | - Jianyu Weng
- Department of Hematology, Guangdong Provincial People's Hospital , Guangzhou , China
| | - Xin Du
- Department of Hematology, Guangdong Provincial People's Hospital , Guangzhou , China
| | - Duanqing Pei
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China; Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Pentao Liu
- Wellcome Trust Sanger Institute , Cambridge , UK
| | - Yao Yao
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China; Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Ping Xue
- Department of Surgery, The Second Affiliated Hospital of Guangzhou Medical University , Guangzhou , China
| | - Peng Li
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China; Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
29
|
Amphiregulin activates regulatory T lymphocytes and suppresses CD8+ T cell-mediated anti-tumor response in hepatocellular carcinoma cells. Oncotarget 2016; 6:32138-53. [PMID: 26451607 PMCID: PMC4741664 DOI: 10.18632/oncotarget.5171] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 09/24/2015] [Indexed: 01/16/2023] Open
Abstract
CD8+ T cell-mediated immune response plays an important role in inhibiting progression of hepatocellular carcinoma (HCC). For strategic immunotherapy, it is critical to understand why some of the tumor cells escape from this immune attack. In this study, we investigated how HCC cells alter endogenous anti-tumor immunity and their related signaling pathways. We found that HCC cells, both in vitro and in vivo, substantially secret and express amphiregulin (AR). AR in turn activates immunosuppressive function of intratumoral CD4+Foxp3+ regulatory T cells (Tregs), a major inhibitor of CD8+ T cells. Using either lentiviral siRNA, or AR neutralizing antibody, we blocked the expression and function of AR to test the specificity of AR mediated activation of Tregs, Biochemical and cell biology studies were followed and confirmed that blocking of AR inhibited Tregs activation. In addition, we found that AR can trigger the activation of rapamycin complex 1(mTORC1) signaling in Tregs. The mTORC1 inhibitor rapamycin treatment led to compromise Treg function and resulted in enhancing anti-tumor function of CD8+ T cells. Blocking AR/EGFR signaling in Tregs with Gefitinib also enhanced anti-tumor immunity and decreased tumor size in a mouse xenograft tumor model. Taken together, our study suggested a novel mechanism of functional interaction between HCC and Tregs for regulating anti-tumor function of CD8+ T cells.
Collapse
|
30
|
Kalathil SG, Thanavala Y. High immunosuppressive burden in cancer patients: a major hurdle for cancer immunotherapy. Cancer Immunol Immunother 2016; 65:813-9. [PMID: 26910314 DOI: 10.1007/s00262-016-1810-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 02/08/2016] [Indexed: 02/08/2023]
Abstract
A bottleneck for immunotherapy of cancer is the immunosuppressive microenvironment in which the tumor cells are located. Regardless of the fact that large numbers of tumor-specific T cells can be generated in patients by active immunization or adoptive transfer, these T cells do not readily translate to tumor cell killing in vivo. The immune regulatory mechanism that prevents autoimmunity may be harnessed by tumor cells for the evasion of immune destruction. Regulatory T cells, myeloid-derived suppressor cells, inhibitory cytokines and immune checkpoint receptors are the major components of the immune system acting in concert with causing the subversion of anti-tumor immunity in the tumor microenvironment. This redundant immunosuppressive network may pose an impediment to efficacious immunotherapy, thus facilitating tumor progression. Cancer progression clearly documents the failure of immune control over relentless growth of tumor cells. Detailed knowledge of each of these factors responsible for creating an immunosuppressive shield to protect tumor cells from immune destruction is essential for the development of novel immune-based therapeutic interventions of cancer. Multipronged targeted depletion of these suppressor cells may restore production of granzyme B by CD8(+) T cells and increase the number of IFN-γ-producing CD4(+) T cells.
Collapse
Affiliation(s)
- Suresh Gopi Kalathil
- Department of Immunology, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY, 14263, USA
| | - Yasmin Thanavala
- Department of Immunology, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY, 14263, USA.
| |
Collapse
|
31
|
Dustin LB, Trehanpati N. Editorial: Recent Advances in HBV and HCV Immunology. Front Immunol 2015; 6:453. [PMID: 26388875 PMCID: PMC4559652 DOI: 10.3389/fimmu.2015.00453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 08/21/2015] [Indexed: 01/16/2023] Open
Affiliation(s)
- Lynn B. Dustin
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Nirupma Trehanpati
- Institute of Liver and Biliary Sciences, New Delhi, India
- *Correspondence: Nirupma Trehanpati,
| |
Collapse
|