1
|
Saha S, Namai F, Nishiyama K, Villena J, Kitazawa H. Role of immunomodulatory probiotics in alleviating bacterial diarrhea in piglets: a systematic review. J Anim Sci Biotechnol 2024; 15:112. [PMID: 39129013 PMCID: PMC11318305 DOI: 10.1186/s40104-024-01070-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/26/2024] [Indexed: 08/13/2024] Open
Abstract
Diarrhea is a common enteric disease in piglets that leads to high mortality and economic losses in swine production worldwide. Antibiotics are commonly used to prevent or treat diarrhea in piglets. However, irrational antibiotic use contributes to the development of resistance in bacteria and antibiotic residues in animal products, threatening public health, while causing gut microbiota dysbiosis and antibiotic-resistant bacterial infection in piglets. Therefore, the quest for alternative products (such as probiotics, prebiotics, organic acids, enzymes, essential oils, medium-chain fatty acids, zinc, and plant extracts) has recently been clearly emphasized through the increase in regulations regarding antibiotic use in livestock production. These antibiotic alternatives could lower the risk of antibiotic-resistant bacteria and meet consumer demand for antibiotic-free food. Several antibiotic alternatives have been proposed, including immunomodulatory probiotics, as candidates to reduce the need for antimicrobial therapy. Many studies have revealed that probiotics can avert and cure bacterial diarrhea by regulating the gut function and immune system of piglets. In this review, we focus on the major pathogenic bacteria causing piglet diarrhea, the research status of using probiotics to prevent and treat diarrhea, their possible mechanisms, and the safety issues related to the use of probiotics. Supplementation with probiotics is a possible alternative to antibiotics for the prevention or treatment of bacterial diarrhea in piglets. Furthermore, probiotics exert beneficial effects on feed efficiency and growth performance of piglets. Therefore, appropriate selection and strategies for the use of probiotics may have a positive effect on growth performance and also reduce diarrhea in piglets. This review provides useful information on probiotics for researchers, pig nutritionists, and the additive industry to support their use against bacterial diarrhea in piglets.
Collapse
Affiliation(s)
- Sudeb Saha
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai, 980-8572, Japan
- Department of Dairy Science, Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - Fu Namai
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai, 980-8572, Japan
- Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Tohoku University, Sendai, 980-8572, Japan
| | - Keita Nishiyama
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai, 980-8572, Japan
- Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Tohoku University, Sendai, 980-8572, Japan
| | - Julio Villena
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai, 980-8572, Japan.
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), 4000, Tucuman, CP, Argentina.
| | - Haruki Kitazawa
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai, 980-8572, Japan.
- Department of Dairy Science, Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet, 3100, Bangladesh.
| |
Collapse
|
2
|
Das O, Masid A, Chakraborty M, Gope A, Dutta S, Bhaumik M. Butyrate driven raft disruption trots off enteric pathogen invasion: possible mechanism of colonization resistance. Gut Pathog 2023; 15:19. [PMID: 37085870 PMCID: PMC10122309 DOI: 10.1186/s13099-023-00545-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 04/09/2023] [Indexed: 04/23/2023] Open
Abstract
The gut microbiome derived short chain fatty acids perform multitude of functions to maintain gut homeostasis. Here we studied how butyrate stymie enteric bacterial invasion in cell using a simplistic binary model. The surface of the mammalian cells is enriched with microdomains rich in cholesterol that are known as rafts and act as entry points for pathogens. We showed that sodium butyrate treated RAW264.7 cells displayed reduced membrane cholesterol and less cholera-toxin B binding coupled with increased membrane fluidity compared to untreated cells indicating that reduced membrane cholesterol caused disruption of lipid rafts. The implication of such cellular biophysical changes on the invasion of enteric pathogenic bacteria was assessed. Our study showed, in comparison to untreated cells, butyrate-treated cells significantly reduced the invasion of Shigella and Salmonella, and these effects were found to be reversed by liposomal cholesterol treatment, increasing the likelihood that the rafts' function against bacterial invasion. The credence of ex vivo studies found to be in concordance in butyrate fed mouse model as evident from the significant drift towards a protective phenotype against virulent enteric pathogen invasion as compared to untreated mice. To produce a cytokine balance towards anti-inflammation, butyrate-treated mice produced more of the gut tissue anti-inflammatory cytokine IL-10 and less of the pro-inflammatory cytokines TNF-α, IL-6, and IFN-γ. In histological studies of Shigella infected gut revealed a startling observation where number of neutrophils infiltration was noted which was correlated with the pathology and was essentially reversed by butyrate treatment. Our results ratchet up a new dimension of our understanding how butyrate imparts resistance to pathogen invasion in the gut.
Collapse
Affiliation(s)
- Oishika Das
- ICMR-National Institute of Cholera and Enteric Diseases, P-33 C.I. T Road, Beleghata, Kolkata, West Bengal, 700010, India
| | - Aaheli Masid
- ICMR-National Institute of Cholera and Enteric Diseases, P-33 C.I. T Road, Beleghata, Kolkata, West Bengal, 700010, India
| | - Mainak Chakraborty
- ICMR-National Institute of Cholera and Enteric Diseases, P-33 C.I. T Road, Beleghata, Kolkata, West Bengal, 700010, India
| | - Animesh Gope
- ICMR-National Institute of Cholera and Enteric Diseases, P-33 C.I. T Road, Beleghata, Kolkata, West Bengal, 700010, India
| | - Shanta Dutta
- ICMR-National Institute of Cholera and Enteric Diseases, P-33 C.I. T Road, Beleghata, Kolkata, West Bengal, 700010, India
| | - Moumita Bhaumik
- ICMR-National Institute of Cholera and Enteric Diseases, P-33 C.I. T Road, Beleghata, Kolkata, West Bengal, 700010, India.
| |
Collapse
|
3
|
Ammendolia DA, Bement WM, Brumell JH. Plasma membrane integrity: implications for health and disease. BMC Biol 2021; 19:71. [PMID: 33849525 PMCID: PMC8042475 DOI: 10.1186/s12915-021-00972-y] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 02/01/2021] [Indexed: 12/12/2022] Open
Abstract
Plasma membrane integrity is essential for cellular homeostasis. In vivo, cells experience plasma membrane damage from a multitude of stressors in the extra- and intra-cellular environment. To avoid lethal consequences, cells are equipped with repair pathways to restore membrane integrity. Here, we assess plasma membrane damage and repair from a whole-body perspective. We highlight the role of tissue-specific stressors in health and disease and examine membrane repair pathways across diverse cell types. Furthermore, we outline the impact of genetic and environmental factors on plasma membrane integrity and how these contribute to disease pathogenesis in different tissues.
Collapse
Affiliation(s)
- Dustin A Ammendolia
- Cell Biology Program, Hospital for Sick Children, 686 Bay Street PGCRL, Toronto, ON, M5G 0A4, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A1, Canada
| | - William M Bement
- Center for Quantitative Cell Imaging and Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - John H Brumell
- Cell Biology Program, Hospital for Sick Children, 686 Bay Street PGCRL, Toronto, ON, M5G 0A4, Canada. .,Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A1, Canada. .,Institute of Medical Science, University of Toronto, Toronto, ON, M5S 1A1, Canada. .,SickKids IBD Centre, Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada.
| |
Collapse
|
4
|
Mo X, Zhang L, Liu Y, Wang X, Bai J, Lu K, Zou S, Dong H, Chen L. Three Proteins (Hpa2, HrpF and XopN) Are Concomitant Type III Translocators in Bacterial Blight Pathogen of Rice. Front Microbiol 2020; 11:1601. [PMID: 32793141 PMCID: PMC7390958 DOI: 10.3389/fmicb.2020.01601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 06/18/2020] [Indexed: 12/31/2022] Open
Abstract
Type III (T3) proteic effectors occupy most of the virulence determinants in eukaryote-pathogenic Gram-negative bacteria. During infection, bacteria may deploy a nanomachinery called translocon to deliver T3 effectors into host cells, wherein the effectors fulfill their pathological functions. T3 translocon is hypothetically assembled by bacterial translocators, which have been identified as one hydrophilic and two hydrophobic proteins in animal-pathogenic bacteria but remain unclear in plant pathogens. Now we characterize Hpa2, HrpF, and XopN proteins as concomitant T3 translocators in rice bacterial blight pathogen by analyzing pathological consequences of single, double, and triple gene knockout or genetic complementation. Based on these genetic analyses, Hpa2, HrpF, and XopN accordingly contribute to 46.9, 60.3, and 69.8% proportions of bacterial virulence on a susceptible rice variety. Virulence performances of Hpa2, HrpF, and XopN were attributed to their functions in essentially mediating from-bacteria-into-rice-cell translocation of PthXo1, the bacterial T3 effector characteristic of transcription factors targeting plant genes. On average, 61, 62, and 71% of PthXo1 translocation are provided correspondingly by Hpa2, HrpF, and XopN, while they cooperate to support PthXo1 translocation at a greater-than-95% extent. As a result, rice disease-susceptibility gene SWEET11, which is the regulatory target of PthXo1, is activated to confer bacterial virulence and induce the leaf blight disease in rice. Furthermore, the three translocators also undergo translocation, but only XopN is highly translocated to suppress rice defense responses, suggesting that different components of a T3 translocon deploy distinct virulence mechanisms in addition to the common function in mediating bacterial effector translocation.
Collapse
Affiliation(s)
- Xuyan Mo
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Liyuan Zhang
- College of Plant Protection, Shandong Agricultural University, Tai’an, China
- Crop Molecular Biology Research Group, State Key Laboratory of Crop Biology, Tai’an, China
| | - Yan Liu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Xuan Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Jiaqi Bai
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Kai Lu
- College of Plant Protection, Shandong Agricultural University, Tai’an, China
| | - Shenshen Zou
- College of Plant Protection, Shandong Agricultural University, Tai’an, China
- Crop Molecular Biology Research Group, State Key Laboratory of Crop Biology, Tai’an, China
| | - Hansong Dong
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- College of Plant Protection, Shandong Agricultural University, Tai’an, China
- Crop Molecular Biology Research Group, State Key Laboratory of Crop Biology, Tai’an, China
| | - Lei Chen
- College of Plant Protection, Shandong Agricultural University, Tai’an, China
- Crop Molecular Biology Research Group, State Key Laboratory of Crop Biology, Tai’an, China
| |
Collapse
|
5
|
Röder J, Hensel M. Presence of SopE and mode of infection result in increased
Salmonella
‐containing vacuole damage and cytosolic release during host cell infection by
Salmonella enterica. Cell Microbiol 2020; 22:e13155. [DOI: 10.1111/cmi.13155] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 12/15/2019] [Accepted: 12/16/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Jennifer Röder
- Abteilung MikrobiologieUniversitat Osnabruck Osnabrück Germany
| | - Michael Hensel
- Abteilung MikrobiologieUniversitat Osnabruck Osnabrück Germany
- CellNanOs – Center for Cellular Nanoanalytics, Fachbereich Biologie/ChemieUniversität Osnabrück Osnabrück Germany
| |
Collapse
|
6
|
Li P, Zhang L, Mo X, Ji H, Bian H, Hu Y, Majid T, Long J, Pang H, Tao Y, Ma J, Dong H. Rice aquaporin PIP1;3 and harpin Hpa1 of bacterial blight pathogen cooperate in a type III effector translocation. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:3057-3073. [PMID: 30921464 PMCID: PMC6598099 DOI: 10.1093/jxb/erz130] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 03/12/2019] [Indexed: 05/20/2023]
Abstract
Varieties of Gram-negative bacterial pathogens infect their eukaryotic hosts by deploying the type III translocon to deliver effector proteins into the cytosol of eukaryotic cells in which effectors execute their pathological functions. The translocon is hypothetically assembled by bacterial translocators in association with the assumed receptors situated on eukaryotic plasma membranes. This hypothesis is partially verified in the present study with genetic, biochemical, and pathological evidence for the role of a rice aquaporin, plasma membrane intrinsic protein PIP1;3, in the cytosolic import of the transcription activator-like effector PthXo1 from the bacterial blight pathogen. PIP1;3 interacts with the bacterial translocator Hpa1 at rice plasma membranes to control PthXo1 translocation from cells of a well-characterized strain of the bacterial blight pathogen into the cytosol of cells of a susceptible rice variety. An extracellular loop sequence of PIP1;3 and the α-helix motif of Hpa1 determine both the molecular interaction and its consequences with respect to the effector translocation and the bacterial virulence on the susceptible rice variety. Overall, these results provide multiple experimental avenues to support the hypothesis that interactions between bacterial translocators and their interactors at the target membrane are essential for bacterial effector translocation.
Collapse
Affiliation(s)
- Ping Li
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Liyuan Zhang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
- Department of Plant Pathology, Shandong Agricultural University, Taian, Shandong Province, China
| | - Xuyan Mo
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Hongtao Ji
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
- Department of Biology, Jiangsu Formal University, Xuzhou, Jiangsu Province, China
| | - Huijie Bian
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Yiqun Hu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Taha Majid
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Juying Long
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Hao Pang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Yuan Tao
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Jinbiao Ma
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Hansong Dong
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
- Department of Plant Pathology, Shandong Agricultural University, Taian, Shandong Province, China
- Correspondence:
| |
Collapse
|
7
|
Zhang L, Chen L, Dong H. Plant Aquaporins in Infection by and Immunity Against Pathogens - A Critical Review. FRONTIERS IN PLANT SCIENCE 2019; 10:632. [PMID: 31191567 PMCID: PMC6546722 DOI: 10.3389/fpls.2019.00632] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 04/26/2019] [Indexed: 05/18/2023]
Abstract
Plant aquaporins (AQPs) of the plasma membrane intrinsic protein (PIP) family face constant risk of hijack by pathogens aiming to infect plants. PIPs can also be involved in plant immunity against infection. This review will utilize two case studies to discuss biochemical and structural mechanisms that govern the functions of PIPs in the regulation of plant infection and immunity. The first example concerns the interaction between rice Oryza sativa and the bacterial blight pathogen Xanthomonas oryzae pv. oryzae (Xoo). To infect rice, Xoo uses the type III (T3) secretion system to secrete the proteic translocator Hpa1, and Hpa1 subsequently mediates the translocation of T3 effectors secreted by this system. Once shifted from bacteria into rice cells, effectors exert virulent or avirulent effects depending on the susceptibility of the rice varieties. The translocator function of Hpa1 requires cooperation with OsPIP1;3, the rice interactor of Hpa1. This role of OsPIP1;3 is related to regulatory models of effector translocation. The regulatory models have been proposed as, translocon-dependent delivery, translocon-independent pore formation, and effector endocytosis with membrane protein/lipid trafficking. The second case study includes the interaction of Hpa1 with the H2O2 transport channel AtPIP1;4, and the associated consequence for H2O2 signal transduction of immunity pathways in Arabidopsis thaliana, a non-host of Xoo. H2O2 is generated in the apoplast upon induction by a pathogen or microbial pattern. H2O2 from this source translocates quickly into Arabidopsis cells, where it interacts with pathways of intracellular immunity to confer plant resistance against diseases. To expedite H2O2 transport, AtPIP1;4 must adopt a specific conformation in a number of ways, including channel width extension through amino acid interactions and selectivity for H2O2 through amino acid protonation and tautomeric reactions. Both topics will reference relevant studies, conducted on other organisms and AQPs, to highlight possible mechanisms of T3 effector translocation currently under debate, and highlight the structural basis of AtPIP1;4 in H2O2 transport facilitated by gating and trafficking regulation.
Collapse
Affiliation(s)
- Liyuan Zhang
- Plant Immunity Research Group, National Key Laboratory of Crop Science, Department of Plant Pathology, Shandong Agricultural University, Tai’an, China
| | - Lei Chen
- Plant Immunity Research Group, National Key Laboratory of Crop Science, Department of Plant Pathology, Shandong Agricultural University, Tai’an, China
| | - Hansong Dong
- Plant Immunity Research Group, National Key Laboratory of Crop Science, Department of Plant Pathology, Shandong Agricultural University, Tai’an, China
- Plant Immunity Laboratory, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
8
|
Ca2+ signals triggered by bacterial pathogens and microdomains. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:1838-1845. [DOI: 10.1016/j.bbamcr.2018.08.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 08/08/2018] [Accepted: 08/10/2018] [Indexed: 12/15/2022]
|
9
|
Multitalented EspB of enteropathogenic Escherichia coli (EPEC) enters cells autonomously and induces programmed cell death in human monocytic THP-1 cells. Int J Med Microbiol 2018; 308:387-404. [PMID: 29550166 DOI: 10.1016/j.ijmm.2018.03.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 03/06/2018] [Accepted: 03/11/2018] [Indexed: 12/26/2022] Open
Abstract
Enteropathogenic Escherichia coli (EPEC) subvert host cell signaling pathways by injecting effector proteins via a Type 3 Secretion System (T3SS). The T3SS-dependent EspB protein is a multi-functional effector protein, which contributes to adherence and translocator pore formation and after injection exhibits several intracellular activities. In addition, EspB is also secreted into the environment. Effects of secreted EspB have not been reported thus far. As a surrogate for secreted EspB we employed recombinant EspB (rEspB) derived from the prototype EPEC strain E2348/69 and investigated the interactions of the purified protein with different human epithelial and immune cells including monocytic THP-1 cells, macrophages, dendritic cells, U-937, epithelial T84, Caco-2, and HeLa cells. To assess whether these proteins might exert a cytotoxic effect we monitored the release of lactate dehydrogenase (LDH) as well as propidium iodide (PI) uptake. For comparison, we also investigated several homologs of EspB such as IpaD of Shigella, and SipC, SipD, SseB, and SseD of Salmonella as purified recombinant proteins. Interestingly, cytotoxicity was only observed in THP-1 cells and macrophages, whereas epithelial cells remained unaffected. Cell fractionation and immune fluorescence experiments showed that rEspB enters cells autonomously, which suggests that EspB might qualify as a novel cell-penetrating effector protein (CPE). Using specific organelle tracers and inhibitors of signaling pathways we found that rEspB destroys the mitochondrial membrane potential - an indication of programmed cell death induction in THP-1 cells. Here we show that EspB not only constitutes an essential part of the T3SS-nanomachine and contributes to the arsenal of injected effector proteins but, furthermore, that secreted (recombinant) EspB autonomously enters host cells and selectively induces cell death in immune cells.
Collapse
|
10
|
Büttner D. Behind the lines-actions of bacterial type III effector proteins in plant cells. FEMS Microbiol Rev 2018; 40:894-937. [PMID: 28201715 PMCID: PMC5091034 DOI: 10.1093/femsre/fuw026] [Citation(s) in RCA: 182] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/31/2016] [Accepted: 07/03/2016] [Indexed: 01/30/2023] Open
Abstract
Pathogenicity of most Gram-negative plant-pathogenic bacteria depends on the type III secretion (T3S) system, which translocates bacterial effector proteins into plant cells. Type III effectors modulate plant cellular pathways to the benefit of the pathogen and promote bacterial multiplication. One major virulence function of type III effectors is the suppression of plant innate immunity, which is triggered upon recognition of pathogen-derived molecular patterns by plant receptor proteins. Type III effectors also interfere with additional plant cellular processes including proteasome-dependent protein degradation, phytohormone signaling, the formation of the cytoskeleton, vesicle transport and gene expression. This review summarizes our current knowledge on the molecular functions of type III effector proteins with known plant target molecules. Furthermore, plant defense strategies for the detection of effector protein activities or effector-triggered alterations in plant targets are discussed.
Collapse
Affiliation(s)
- Daniela Büttner
- Genetics Department, Institute of Biology, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
11
|
Miller KA, Chaand M, Gregoire S, Yoshida T, Beck LA, Ivanov AI, Dziejman M. Characterization of V. cholerae T3SS-dependent cytotoxicity in cultured intestinal epithelial cells. Cell Microbiol 2016; 18:1857-1870. [PMID: 27302486 DOI: 10.1111/cmi.12629] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 06/01/2016] [Indexed: 12/22/2022]
Abstract
AM-19226 is a pathogenic, non-O1/non-O139 serogroup strain of Vibrio cholerae that uses a Type 3 Secretion System (T3SS) mediated mechanism to colonize host tissues and disrupt homeostasis, causing cholera. Co-culturing the Caco2-BBE human intestinal epithelial cell line with AM-19226 in the presence of bile results in rapid mammalian cell death that requires a functional T3SS. We examined the role of bile, sought to identify the mechanism, and evaluated the contributions of T3SS translocated effectors in in vitro cell death. Our results suggest that Caco2-BBE cytotoxicity does not proceed by apoptotic or necrotic mechanisms, but rather displays characteristics consistent with osmotic lysis. Cell death was preceded by disassembly of epithelial junctions and reorganization of the cortical membrane skeleton, although neither cell death nor cell-cell disruption required VopM or VopF, two effectors known to alter actin dynamics. Using deletion strains, we identified a subset of AM-19226 Vops that are required for host cell death, which were previously assigned roles in protein translocation and colonization, suggesting that they function other than to promote cytotoxicity. The collective results therefore suggest that cooperative Vop activities are required to achieve cytotoxicity in vitro, or alternatively, that translocon pores destabilize the membrane in a bile dependent manner.
Collapse
Affiliation(s)
- Kelly A Miller
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Mudit Chaand
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Stacy Gregoire
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Takeshi Yoshida
- Department of Dermatology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Lisa A Beck
- Department of Dermatology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Andrei I Ivanov
- Gastroenterology and Hepatology Division, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Michelle Dziejman
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| |
Collapse
|