1
|
Wang X, Xu H. Residual Proviral Reservoirs: A High Risk for HIV Persistence and Driving Forces for Viral Rebound after Analytical Treatment Interruption. Viruses 2021; 13:335. [PMID: 33670027 PMCID: PMC7926539 DOI: 10.3390/v13020335] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/08/2021] [Accepted: 02/16/2021] [Indexed: 12/17/2022] Open
Abstract
Antiretroviral therapy (ART) has dramatically suppressed human immunodeficiency virus (HIV) replication and become undetectable viremia. However, a small number of residual replication-competent HIV proviruses can still persist in a latent state even with lifelong ART, fueling viral rebound in HIV-infected patient subjects after treatment interruption. Therefore, the proviral reservoirs distributed in tissues in the body represent a major obstacle to a cure for HIV infection. Given unavailable HIV vaccine and a failure to eradicate HIV proviral reservoirs by current treatment, it is crucial to develop new therapeutic strategies to eliminate proviral reservoirs for ART-free HIV remission (functional cure), including a sterilizing cure (eradication of HIV reservoirs). This review highlights recent advances in the establishment and persistence of HIV proviral reservoirs, their detection, and potential eradication strategies.
Collapse
Affiliation(s)
| | - Huanbin Xu
- Tulane National Primate Research Center, Division of Comparative Pathology, Tulane University School of Medicine, 18703 Three Rivers Road, Covington, LA 70433, USA;
| |
Collapse
|
2
|
X4-Tropic Latent HIV-1 Is Enriched in Peripheral Follicular Helper T Cells and Is Correlated with Disease Progression. J Virol 2020; 94:JVI.01219-19. [PMID: 31666372 DOI: 10.1128/jvi.01219-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 10/18/2019] [Indexed: 12/11/2022] Open
Abstract
Follicular helper T (TFH) cells have been shown to support productive human immunodeficiency virus type 1 (HIV-1) replication and to serve as a key component of the latent viral reservoir. However, the viral characteristics of this latent reservoir and the clinical relevance of this reservoir remain unclear. In this study, we assessed the tropic composition of latent viruses from peripheral TFH (pTFH), non-TFH memory, and naive CD4+ T cells from individuals with HIV-1 infections on suppressive combined antiretroviral therapy (cART). X4-tropic latent HIV-1 was preferentially enriched in pTFH cells compared to levels in the other two subsets. Interestingly, the ratio of X4-tropic latent HIV-1 in pTFH cells not only was robustly and inversely correlated with blood CD4+ T cell counts across patients but also was prognostic of CD4+ T cell recovery in individuals on long-term cART. Moreover, patients with higher X4-tropic latent HIV-1 ratios in pTFH cells showed greater risks of opportunistic coinfections. These findings reveal the characteristics of latent HIV-1 in TFH cells and suggest that the ratio of X4-tropic latent HIV-1 in pTFH cells is a valuable indicator for disease progression and cART efficacy.IMPORTANCE TFH cells have been shown to harbor a significant amount of latent HIV-1; however, the viral characteristics of this reservoir and its clinical relevance remain largely unknown. In this study, we demonstrate that X4-tropic latent HIV-1 is preferentially enriched in pTFH cells, which also accurately reflects the viral tropism shift. The ratio of X4-tropic proviruses in pTFH cells but not in other memory CD4+ T cell subsets is inversely and closely correlated with blood CD4+ T cell counts and CD4+ T cell recovery rates with cART. Our data suggest that the ratio of X4-tropic provirus in peripheral TFH cells can be easily measured and reflects disease progression and treatment outcomes during cART.
Collapse
|
3
|
The exhausted CD4+CXCR5+ T cells involve the pathogenesis of human tuberculosis disease. Int J Infect Dis 2018; 74:1-9. [DOI: 10.1016/j.ijid.2018.06.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 05/31/2018] [Accepted: 06/14/2018] [Indexed: 12/18/2022] Open
|
4
|
Xu H, Ziani W, Shao J, Doyle-Meyers LA, Russell-Lodrigue KE, Ratterree MS, Veazey RS, Wang X. Impaired Development and Expansion of Germinal Center Follicular Th Cells in Simian Immunodeficiency Virus-Infected Neonatal Macaques. THE JOURNAL OF IMMUNOLOGY 2018; 201:1994-2003. [PMID: 30104244 DOI: 10.4049/jimmunol.1800235] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 07/15/2018] [Indexed: 12/16/2022]
Abstract
Germinal center (GC) CD4+ follicular Th (Tfh) cells are critical for cognate B cell help in humoral immune responses to pathogenic infections. Although Tfh cells are expanded or depleted in HIV/SIV-infected adults, the effects of pediatric HIV/SIV infection on Tfh cells remain unclear. In this study, we examined changes in lymphoid follicle formation in lymph nodes focusing on GC Tfh cells, B cell development, and differentiation in SIV-infected neonatal rhesus macaques (Macaca mulatta) compared with age-matched cohorts. Our data showed that follicles and GCs of normal infants rapidly formed in the first few weeks of age, in parallel with increasing GC Tfh cells in various lymphoid tissues. In contrast, GC development and GC Tfh cells were markedly impaired in SIV-infected infants. There was a very low frequency of GC Tfh cells throughout SIV infection in neonates and subsequent infants, accompanied by high viremia, reduction of B cell proliferation/resting memory B cells, and displayed proinflammatory unresponsiveness. These findings indicate neonatal HIV/SIV infection compromises the development of GC Tfh cells, likely contributing to ineffective Ab responses, high viremia, and eventually rapid disease progression to AIDS.
Collapse
Affiliation(s)
- Huanbin Xu
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA 70433
| | - Widade Ziani
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA 70433
| | - Jiasheng Shao
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA 70433
| | - Lara A Doyle-Meyers
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA 70433
| | - Kasi E Russell-Lodrigue
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA 70433
| | - Marion S Ratterree
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA 70433
| | - Ronald S Veazey
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA 70433
| | - Xiaolei Wang
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA 70433
| |
Collapse
|
5
|
Gutiérrez-Rivas M, Jiménez-Sousa MÁ, Rallón N, Jiménez JL, Restrepo C, León A, Montero-Alonso M, González-García J, Muñoz-Fernández MÁ, Benito JM, Resino S. High Plasma Levels of sTNF-R1 and CCL11 Are Related to CD4+ T-Cells Fall in Human Immunodeficiency Virus Elite Controllers With a Sustained Virologic Control. Front Immunol 2018; 9:1399. [PMID: 29967620 PMCID: PMC6015886 DOI: 10.3389/fimmu.2018.01399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 06/05/2018] [Indexed: 01/01/2023] Open
Abstract
Our aim was to analyze the relationship between plasma inflammatory biomarkers and CD4+ T-cells evolution in human immunodeficiency virus (HIV) elite controllers (HIV-ECs) with a suppressed viremia. We carried out a retrospective study in 30 HIV-ECs classified into two groups: those showing no significant loss of CD4+ T-cells during the observation period (stable CD4+, n = 19) and those showing a significant decrease of CD4+ T-cells (decline CD4+, n = 11). Baseline plasma biomarkers were measured using a multiplex immunoassay: sTNF-R1, TRAIL, sFas (APO), sFasL, TNF-α, TNF-β, IL-8, IL-18, IL-6, IL-10, IP-10, MCP-1, MIP-1α, MIP-1β, RANTES, SDF1α, GRO-α, and CCL11. Baseline levels of sTNF-R1 and CCL11 and sTNF-R1/TNF-α ratio correlated with the slope of CD4+ T-cells (cells/μl/year) during follow-up [r = -0.370 (p = 0.043), r = -0.314 (p = 0.091), and r = -0.381 (p = 0.038); respectively]. HIV-ECs with declining CD4+ T-cells had higher baseline plasma levels of sTNF-R1 [1,500.7 (555.7; 2,060.7) pg/ml vs. 450.8 (227.9; 1,263.9) pg/ml; p = 0.018] and CCL11 [29.8 (23.5; 54.9) vs. 19.2 (17.8; 29.9) pg/ml; p = 0.041], and sTNF-R1/TNF-α ratio [84.7 (33.2; 124.2) vs. 25.9 (16.3; 75.1); p = 0.012] than HIV-1 ECs with stable CD4+ T-cells. The area under the receiver operating characteristic (ROC) curve [area under ROC curve (AUROC)] were 0.758 ± 0.093 (sTNF-R1), 0.727 ± 0.096 (CCL11), and 0.777 ± 0.087 (sTNF-R1/TNF-α). The cut-off of 75th percentile (high values) for these biomarkers had 71.4% positive predictive value and 73.9% negative predictive value for anticipating the evolution of CD4+ T-cells. In conclusion, the loss of CD4+ T-cells in HIV-ECs was associated with higher levels of two plasma inflammatory biomarkers (sTNF-R1 and CCL11), which were also reasonably accurate for the prediction of the CD4+ T-cells loss.
Collapse
Affiliation(s)
- Mónica Gutiérrez-Rivas
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Spain
| | - María Ángeles Jiménez-Sousa
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Spain
| | - Norma Rallón
- Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain.,Hospital Universitario Rey Juan Carlos, Móstoles, Spain
| | - José Luis Jiménez
- Plataforma de Laboratorio, Hospital General Universitario "Gregorio Marañón", Madrid, Spain.,Sección Inmunología, Laboratory InmunoBiología Molecular, Hospital General Universitario "Gregorio Marañón", Madrid, Spain
| | - Clara Restrepo
- Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain.,Hospital Universitario Rey Juan Carlos, Móstoles, Spain
| | - Agathe León
- Servicio de Enfermedades Infecciosas, Hospital Clinic-IDIBAPS, Barcelona, Spain
| | - Marta Montero-Alonso
- Unidad de Enfermedades Infecciosas, Hospital Universitario y Politécnico "La Fe", Valencia, Spain
| | | | - María Ángeles Muñoz-Fernández
- Sección Inmunología, Laboratory InmunoBiología Molecular, Hospital General Universitario "Gregorio Marañón", Madrid, Spain.,Instituto de Investigación Sanitaria del Gregorio Marañón, Madrid, Spain
| | - José Miguel Benito
- Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain.,Hospital Universitario Rey Juan Carlos, Móstoles, Spain
| | - Salvador Resino
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Spain
| | | |
Collapse
|
6
|
Wang X, Xu H. Potential Epigenetic Regulation in the Germinal Center Reaction of Lymphoid Tissues in HIV/SIV Infection. Front Immunol 2018; 9:159. [PMID: 29449847 PMCID: PMC5799247 DOI: 10.3389/fimmu.2018.00159] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 01/18/2018] [Indexed: 01/08/2023] Open
Abstract
The production of high-affinity and broadly neutralizing antibodies plays a key role in the defense against pathogens. These antibody responses require effective germinal center (GC) reaction within anatomical niches of GCs, where follicular helper T (Tfh) cells provide cognate help to B cells for T cell-dependent antibody responses. Emerging evidences indicate that GC reaction in normal state and perhaps establishment of latent Tfh cell reservoir in HIV/SIV infection are tightly regulated by epigenetic histone modifications, which are responsible for activating or silencing chromatin. A better understanding of the mechanisms behind GC responses at cellular and molecular levels thus provides necessary knowledge for vaccination and immunotherapy. In this review, we discussed the epigenetic regulation of GC responses, especially for GC B and Tfh cell under normal state or HIV/SIV infection.
Collapse
Affiliation(s)
- Xiaolei Wang
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA, United States
| | - Huanbin Xu
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA, United States
| |
Collapse
|
7
|
Jiao YM, Yang HG, Huang HH, Tu B, Xing SJ, Mao L, Xia W, He R, Zhang JY, Xu RN, Jin L, Shi M, Xu Z, Qin EQ, Wang XC, Wu H, Ye L, Wang FS. Dichotomous Roles of Programmed Cell Death 1 on HIV-Specific CXCR5 + and CXCR5 - CD8 + T Cells during Chronic HIV Infection. Front Immunol 2017; 8:1786. [PMID: 29312314 PMCID: PMC5732951 DOI: 10.3389/fimmu.2017.01786] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Accepted: 11/29/2017] [Indexed: 12/31/2022] Open
Abstract
Background CXCR5+CD8+ T cells have been demonstrated to play an important role in the control of chronic viral replication; however, the relationship between CXCR5+CD8+ T cells, HIV disease progression, and programmed cell death 1 (PD-1) expression profile on CXCR5+CD8+ T cells during HIV infection remain poorly understood. Methods We enrolled a total of 101 HIV patients, including 62 typical progressors, 26 complete responders (CRs), and 13 immune non-responders (INRs). Flow cytometric analysis, immunohistochemical staining, and relative function (i.e., cytokine secretion and PD-1 blockade) assays were performed to analyze the properties of CXCR5+CD8+ T cells. Results HIV-specific CXCR5+CD8+ T cells in the peripheral blood and distribution of CXCR5+CD8+ T cells in the lymph node (LN) were negatively correlated with disease progression during chronic HIV infection. PD-1 was highly expressed on CXCR5+CD8+ T cells and positively associated with peripheral CD4+ T cell counts. Functionally, IFN-γ and TNF-α production of CXCR5+CD8+ T cells were reduced by PD-1 pathway blockade, but the production of IFN-γ and TNF-α from CXCR5-CD8+ T cells increased in response to TCR stimulation. Interestingly, PD-1 expression was constantly retained on CXCR5+CD8+ T cells while significantly decreased on CXCR5-CD8+ T cells after successful antiretroviral treatment in chronic HIV-infected patients. Conclusion PD-1+CXCR5+CD8+ T cells are functional cytotoxic T cells during chronic HIV infection. PD-1+CXCR5+CD8+ T cells may represent a novel therapeutic strategy for the disease.
Collapse
Affiliation(s)
- Yan-Mei Jiao
- Treatment and Research Center for Infectious Diseases, Beijing 302 Hospital, Beijing, China
| | - Hong-Ge Yang
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Hui-Huang Huang
- Treatment and Research Center for Infectious Diseases, Beijing 302 Hospital, Beijing, China
| | - Bo Tu
- Treatment and Research Center for Infectious Diseases, Beijing 302 Hospital, Beijing, China
| | - Shao-Jun Xing
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Lin Mao
- Yunnan Provincial Hospital of Infectious Diseases, Kunming, China
| | - Wei Xia
- Center for Infectious Diseases, Beijing You'an Hospital, Capital Medical University, Beijing, China
| | - Ran He
- Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Ji-Yuan Zhang
- Treatment and Research Center for Infectious Diseases, Beijing 302 Hospital, Beijing, China
| | - Ruo-Nan Xu
- Treatment and Research Center for Infectious Diseases, Beijing 302 Hospital, Beijing, China
| | - Lei Jin
- Treatment and Research Center for Infectious Diseases, Beijing 302 Hospital, Beijing, China
| | - Ming Shi
- Treatment and Research Center for Infectious Diseases, Beijing 302 Hospital, Beijing, China
| | - Zhe Xu
- Treatment and Research Center for Infectious Diseases, Beijing 302 Hospital, Beijing, China
| | - En-Qiang Qin
- Treatment and Research Center for Infectious Diseases, Beijing 302 Hospital, Beijing, China
| | - Xi-Cheng Wang
- Yunnan Provincial Hospital of Infectious Diseases, Kunming, China
| | - Hao Wu
- Center for Infectious Diseases, Beijing You'an Hospital, Capital Medical University, Beijing, China
| | - Lilin Ye
- Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Fu-Sheng Wang
- Treatment and Research Center for Infectious Diseases, Beijing 302 Hospital, Beijing, China
| |
Collapse
|
8
|
Peripheral T follicular helper Cells Make a Difference in HIV Reservoir Size between Elite Controllers and Patients on Successful cART. Sci Rep 2017; 7:16799. [PMID: 29196729 PMCID: PMC5711909 DOI: 10.1038/s41598-017-17057-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 11/21/2017] [Indexed: 01/24/2023] Open
Abstract
HIV latency is the main barrier to HIV eradication. Peripheral T follicular helper (pTfh) cells have a prominent role in HIV persistence. Herein, we analyzed the HIV reservoir size within memory CD4+ T-cell subsets in patients with HIV replication control. Twenty HIV-infected patients with suppressed HIV replication were included, with 10 elite controllers (EC) and 10 treated (TX) individuals. The HIV reservoir size was analyzed in resting memory CD4+ T-cells (Trm), pTfh, and non-pTfh cells using an ultrasensitive digital-droplet-PCR assay. Inter-group and intra-group differences were tested using non-parametric tests. Compared with the TX patients, the EC patients had smaller HIV reservoir not only in Trm but also in pTfh and non-pTfh subsets of memory CD4+ T-cells. The largest differences were observed in pTfh cells (p = 0.025). The pTfh and non-pTfh cells harbored similar levels of HIV-DNA in the EC (p = 0.60) and TX patients (p = 0.17); however, the contribution to HIV-DNA levels in memory CD4+ T-cells varied among the pTfh and non-pTfh subsets in both groups of patients. The EC patients showed smaller HIV reservoir in memory CD4+ cells, especially in the pTfh subset, a population of cells with a pivotal role in the antiviral immune response, suggesting a potential link between low levels of infection in pTfh cells and the ability of the EC patients to spontaneously control HIV replication.
Collapse
|