1
|
Prochetto E, Borgna E, Jiménez-Cortegana C, Sánchez-Margalet V, Cabrera G. Myeloid-derived suppressor cells and vaccination against pathogens. Front Cell Infect Microbiol 2022; 12:1003781. [PMID: 36250061 PMCID: PMC9557202 DOI: 10.3389/fcimb.2022.1003781] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/15/2022] [Indexed: 12/01/2022] Open
Abstract
It is widely accepted that the immune system includes molecular and cellular components that play a role in regulating and suppressing the effector immune response in almost any process in which the immune system is involved. Myeloid-derived suppressor cells (MDSCs) are described as a heterogeneous population of myeloid origin, immature state, with a strong capacity to suppress T cells and other immune populations. Although the initial characterization of these cells was strongly associated with pathological conditions such as cancer and then with chronic and acute infections, extensive evidence supports that MDSCs are also involved in physiological/non-pathological settings, including pregnancy, neonatal period, aging, and vaccination. Vaccination is one of the greatest public health achievements and has reduced mortality and morbidity caused by many pathogens. The primary goal of prophylactic vaccination is to induce protection against a potential pathogen by mimicking, at least in a part, the events that take place during its natural interaction with the host. This strategy allows the immune system to prepare humoral and cellular effector components to cope with the real infection. This approach has been successful in developing vaccines against many pathogens. However, when the infectious agents can evade and subvert the host immune system, inducing cells with regulatory/suppressive capacity, the development of vaccines may not be straightforward. Notably, there is a long list of complex pathogens that can expand MDSCs, for which a vaccine is still not available. Moreover, vaccination against numerous bacteria, viruses, parasites, and fungi has also been shown to cause MDSC expansion. Increases are not due to a particular adjuvant or immunization route; indeed, numerous adjuvants and immunization routes have been reported to cause an accumulation of this immunosuppressive population. Most of the reports describe that, according to their suppressive nature, MDSCs may limit vaccine efficacy. Taking into account the accumulated evidence supporting the involvement of MDSCs in vaccination, this review aims to compile the studies that highlight the role of MDSCs during the assessment of vaccines against pathogens.
Collapse
Affiliation(s)
- Estefanía Prochetto
- Laboratorio de Tecnología Inmunológica, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe capital, Argentina
| | - Eliana Borgna
- Laboratorio de Tecnología Inmunológica, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe capital, Argentina
| | - Carlos Jiménez-Cortegana
- Clinical Laboratory, Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, Virgen Macarena University Hospital, University of Seville, Seville, Spain
| | - Víctor Sánchez-Margalet
- Clinical Laboratory, Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, Virgen Macarena University Hospital, University of Seville, Seville, Spain
| | - Gabriel Cabrera
- Laboratorio de Tecnología Inmunológica, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe capital, Argentina
- *Correspondence: Gabriel Cabrera,
| |
Collapse
|
2
|
Negi K, Bhaskar A, Dwivedi VP. Progressive Host-Directed Strategies to Potentiate BCG Vaccination Against Tuberculosis. Front Immunol 2022; 13:944183. [PMID: 35967410 PMCID: PMC9365942 DOI: 10.3389/fimmu.2022.944183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 06/21/2022] [Indexed: 11/13/2022] Open
Abstract
The pursuit to improve the TB control program comprising one approved vaccine, M. bovis Bacille Calmette-Guerin (BCG) has directed researchers to explore progressive approaches to halt the eternal TB pandemic. Mycobacterium tuberculosis (M.tb) was first identified as the causative agent of TB in 1882 by Dr. Robert Koch. However, TB has plagued living beings since ancient times and continues to endure as an eternal scourge ravaging even with existing chemoprophylaxis and preventive therapy. We have scientifically come a long way since then, but despite accessibility to the standard antimycobacterial antibiotics and prophylactic vaccine, almost one-fourth of humankind is infected latently with M.tb. Existing therapeutics fail to control TB, due to the upsurge of drug-resistant strains and increasing incidents of co-infections in immune-compromised individuals. Unresponsiveness to established antibiotics leaves patients with no therapeutic possibilities. Hence the search for an efficacious TB immunization strategy is a global health priority. Researchers are paving the course for efficient vaccination strategies with the radically advanced operation of core principles of protective immune responses against M.tb. In this review; we have reassessed the progression of the TB vaccination program comprising BCG immunization in children and potential stratagems to reinforce BCG-induced protection in adults.
Collapse
Affiliation(s)
| | | | - Ved Prakash Dwivedi
- Immunobiology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| |
Collapse
|
3
|
Dorhoi A, Kotzé LA, Berzofsky JA, Sui Y, Gabrilovich DI, Garg A, Hafner R, Khader SA, Schaible UE, Kaufmann SH, Walzl G, Lutz MB, Mahon RN, Ostrand-Rosenberg S, Bishai W, du Plessis N. Therapies for tuberculosis and AIDS: myeloid-derived suppressor cells in focus. J Clin Invest 2021; 130:2789-2799. [PMID: 32420917 DOI: 10.1172/jci136288] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The critical role of suppressive myeloid cells in immune regulation has come to the forefront in cancer research, with myeloid-derived suppressor cells (MDSCs) as a main oncology immunotherapeutic target. Recent improvement and standardization of criteria classifying tumor-induced MDSCs have led to unified descriptions and also promoted MDSC research in tuberculosis (TB) and AIDS. Despite convincing evidence on the induction of MDSCs by pathogen-derived molecules and inflammatory mediators in TB and AIDS, very little attention has been given to their therapeutic modulation or roles in vaccination in these diseases. Clinical manifestations in TB are consequences of complex host-pathogen interactions and are substantially affected by HIV infection. Here we summarize the current understanding and knowledge gaps regarding the role of MDSCs in HIV and Mycobacterium tuberculosis (co)infections. We discuss key scientific priorities to enable application of this knowledge to the development of novel strategies to improve vaccine efficacy and/or implementation of enhanced treatment approaches. Building on recent findings and potential for cross-fertilization between oncology and infection biology, we highlight current challenges and untapped opportunities for translating new advances in MDSC research into clinical applications for TB and AIDS.
Collapse
Affiliation(s)
- Anca Dorhoi
- Institute of Immunology, Friedrich-Loeffler-Institute, Greifswald-Insel Riems, Germany.,Faculty of Mathematics and Natural Sciences, University of Greifswald, Greifswald, Germany
| | - Leigh A Kotzé
- Centre for Tuberculosis Research, South African Medical Research Council, Cape Town, South Africa.,DST-NRF Centre of Excellence for Biomedical Tuberculosis Research (CBTBR) and.,Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Jay A Berzofsky
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Yongjun Sui
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | | | - Ankita Garg
- Department of Infectious Diseases, University of Georgia, Athens, Georgia, USA
| | - Richard Hafner
- Division of AIDS, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Shabaana A Khader
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Ulrich E Schaible
- Cellular Microbiology, Priority Program Infections.,Thematic Translation Unit Tuberculosis, German Center for Infection Research, and.,Leibniz Research Alliance INFECTIONS'21, Research Center Borstel, Borstel, Germany
| | - Stefan He Kaufmann
- Max Planck Institute for Infection Biology, Berlin, Germany.,Hagler Institute for Advanced Study, Texas A&M University, College Station, Texas, USA
| | - Gerhard Walzl
- Centre for Tuberculosis Research, South African Medical Research Council, Cape Town, South Africa.,DST-NRF Centre of Excellence for Biomedical Tuberculosis Research (CBTBR) and.,Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Manfred B Lutz
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Robert N Mahon
- Division of AIDS, Columbus Technologies & Services Inc., Contractor to National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Suzanne Ostrand-Rosenberg
- Department of Pathology and Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| | - William Bishai
- Center for Tuberculosis Research, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Nelita du Plessis
- Centre for Tuberculosis Research, South African Medical Research Council, Cape Town, South Africa.,DST-NRF Centre of Excellence for Biomedical Tuberculosis Research (CBTBR) and.,Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
4
|
Kriek M, Monyai K, Magcwebeba TU, Du Plessis N, Stoychev SH, Tabb DL. Interrogating Fractionation and Other Sources of Variability in Shotgun Proteomes Using Quality Metrics. Proteomics 2020; 20:e1900382. [PMID: 32415754 DOI: 10.1002/pmic.201900382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/04/2020] [Indexed: 12/14/2022]
Abstract
The increasing amount of publicly available proteomics data creates opportunities for data scientists to investigate quality metrics in novel ways. QuaMeter IDFree is used to generate quality metrics from 665 RAW files and 97 WIFF files representing publicly available "shotgun" mass spectrometry datasets. These experiments are selected to represent Mycobacterium tuberculosis lysates, mouse MDSCs, and exosomes derived from human cell lines. Machine learning techniques are demonstrated to detect outliers within experiments and it is shown that quality metrics may be used to distinguish sources of variability among these experiments. In particular, the findings demonstrate that according to nested ANOVA performed on an SDS-PAGE shotgun principal component analysis, runs of fractions from the same gel regions cluster together rather than technical replicates, close temporal proximity, or even biological samples. This indicates that the individual fraction may have had a higher impact on the quality metrics than other factors. In addition, sample type, instrument type, mass analyzer, fragmentation technique, and digestion enzyme are identified as sources of variability. From a quality control perspective, the importance of study design and in particular, the run order, is illustrated in seeking ways to limit the impact of technical variability.
Collapse
Affiliation(s)
- Marina Kriek
- SATBBI (South African Tuberculosis Bioinformatics Initiative), Centre for Bioinformatics and Computational Biology, Stellenbosch University, Cape Town, 7505, South Africa.,DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, Cape Town, 7505, South Africa.,South African Medical Research Council Centre for Tuberculosis Research, Cape Town, 7505, South Africa.,Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, 7505, South Africa
| | - Koena Monyai
- Council for Scientific and Industrial Research, Pretoria, 0001, South Africa
| | - Tandeka U Magcwebeba
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, Cape Town, 7505, South Africa.,South African Medical Research Council Centre for Tuberculosis Research, Cape Town, 7505, South Africa.,Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, 7505, South Africa
| | - Nelita Du Plessis
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, Cape Town, 7505, South Africa.,South African Medical Research Council Centre for Tuberculosis Research, Cape Town, 7505, South Africa.,Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, 7505, South Africa
| | - Stoyan H Stoychev
- Council for Scientific and Industrial Research, Pretoria, 0001, South Africa
| | - David L Tabb
- SATBBI (South African Tuberculosis Bioinformatics Initiative), Centre for Bioinformatics and Computational Biology, Stellenbosch University, Cape Town, 7505, South Africa.,DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, Cape Town, 7505, South Africa.,South African Medical Research Council Centre for Tuberculosis Research, Cape Town, 7505, South Africa.,Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, 7505, South Africa
| |
Collapse
|
5
|
Magcwebeba T, Dorhoi A, du Plessis N. The Emerging Role of Myeloid-Derived Suppressor Cells in Tuberculosis. Front Immunol 2019; 10:917. [PMID: 31114578 PMCID: PMC6502992 DOI: 10.3389/fimmu.2019.00917] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 04/09/2019] [Indexed: 12/22/2022] Open
Abstract
Myeloid cells are crucial for the host control of a Mycobacterium tuberculosis (M.tb) infection, however the adverse role of specific myeloid subsets has increasingly been appreciated. The relevance of such cells in therapeutic strategies and predictive/prognostic algorithms is to promote interest in regulatory myeloid cells in tuberculosis (TB). Myeloid-derived suppressor cells (MDSC) are a heterogeneous collection of phagocytes comprised of monocytic- and polymorphonuclear cells that exhibit a potent suppression of innate- and adaptive immune responses. Accumulation of MDSC under pathological conditions associated with chronic inflammation, most notably cancer, has been well-described. Evidence supporting the involvement of MDSC in TB is increasing, yet their significance in this infection continues to be viewed with skepticism, primarily due to their complex nature and the lack of genetic evidence unequivocally discriminating these cells from other terminally differentiated myeloid populations. Here we highlight recent advances in MDSC characterization and summarize findings on the TB-induced hematopoietic shift associated with MDSC expansion. Lastly, the mechanisms of MDSC-mediated disease progression and future research avenues in the context of TB therapy and prophylaxis are discussed.
Collapse
Affiliation(s)
- Tandeka Magcwebeba
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, South African MRC Centre for Tuberculosis Research, DST and NRF Centre of Excellence for Biomedical TB Research, Stellenbosch University, Stellenbosch, South Africa
| | - Anca Dorhoi
- Institute of Immunology, Friedrich-Loeffler-Institut, Greifswald, Germany.,Faculty of Mathematics and Natural Sciences, University of Greifswald, Greifswald, Germany.,Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Nelita du Plessis
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, South African MRC Centre for Tuberculosis Research, DST and NRF Centre of Excellence for Biomedical TB Research, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
6
|
Vorkas CK, Wipperman MF, Li K, Bean J, Bhattarai SK, Adamow M, Wong P, Aubé J, Juste MAJ, Bucci V, Fitzgerald DW, Glickman MS. Mucosal-associated invariant and γδ T cell subsets respond to initial Mycobacterium tuberculosis infection. JCI Insight 2018; 3:121899. [PMID: 30282828 PMCID: PMC6237486 DOI: 10.1172/jci.insight.121899] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 08/29/2018] [Indexed: 01/01/2023] Open
Abstract
Innate immune responses that control early Mtb infection are poorly understood, but understanding these responses may inform vaccination and immunotherapy strategies. Innate T cells that respond to conserved bacterial ligands such as mucosal-associated invariant T (MAIT) and γδ T cells are prime candidates to mediate these early innate responses but have not been examined in subjects who have been recently exposed to Mtb. We recruited a cohort living in the same household with an active tuberculosis (TB) case and examined the abundance and functional phenotypes of 3 innate T cell populations reactive to M. tuberculosis: γδ T, invariant NK T (iNKT), and MAIT cells. Both MAIT and γδ T cells from subjects with Mtb exposure display ex vivo phenotypes consistent with recent activation. However, both MAIT and γδ T cell subsets have distinct response profiles, with CD4+ MAIT and γδ T cells accumulating after infection. Examination of exposed but uninfected contacts demonstrates that resistance to initial infection is accompanied by robust MAIT cell CD25 expression and granzyme B production coupled with a depressed CD69 and IFNγ response. Finally, we demonstrate that MAIT cell abundance and function correlate with the abundance of specific gut microbes, suggesting that responses to initial infection may be modulated by the intestinal microbiome.
Collapse
Affiliation(s)
- Charles Kyriakos Vorkas
- Division of Infectious Diseases, Weill Cornell Medicine (WCM), New York, New York, USA
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York, USA
| | - Matthew F. Wipperman
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York, USA
- Clinical and Translational Science Center, WCM, New York, New York, USA
| | - Kelin Li
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - James Bean
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York, USA
| | - Shakti K. Bhattarai
- Department of Bioengineering, University of Massachusetts, Dartmouth, North Dartmouth, Massachusetts, USA
| | - Matthew Adamow
- Immune Monitoring Core Facility, Ludwig Center for Cancer Immunotherapy, Sloan Kettering Institute, MSKCC, New York, New York, USA
| | - Phillip Wong
- Immune Monitoring Core Facility, Ludwig Center for Cancer Immunotherapy, Sloan Kettering Institute, MSKCC, New York, New York, USA
| | - Jeffrey Aubé
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | - Vanni Bucci
- Department of Bioengineering, University of Massachusetts, Dartmouth, North Dartmouth, Massachusetts, USA
| | - Daniel W. Fitzgerald
- Division of Infectious Diseases, Weill Cornell Medicine (WCM), New York, New York, USA
- GHESKIO Centers, Port-au-Prince, Haiti
- Center for Global Health, WCM, New York, New York, USA
| | - Michael S. Glickman
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York, USA
- Division of Infectious Diseases, MSKCC, New York, New York, USA
| |
Collapse
|
7
|
Adjuvant Potential of Poly-α-l-Glutamine from the Cell Wall of Mycobacterium tuberculosis. Infect Immun 2018; 86:IAI.00537-18. [PMID: 30104212 DOI: 10.1128/iai.00537-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 08/05/2018] [Indexed: 12/14/2022] Open
Abstract
Novel adjuvants are in demand for improving the efficacy of human vaccines. The immunomodulatory properties of Mycobacterium tuberculosis cell wall components have been highlighted in the formulation of complete Freund's adjuvant (CFA). We have explored the adjuvant potential of poly-α-l-glutamine (PLG), a lesser-known constituent of the pathogenic mycobacterial cell wall. Immune parameters indicated that the adjuvant potency of PLG was statistically comparable to that of CFA and better than that of alum in the context of H1 antigen (Ag85B and ESAT-6 fusion). At 1 mg/dose, PLG augmented the immune response of Ag85B, BP26, and protective antigen (PA) by increasing serum antibodies and cytokines in the culture supernatant of antigen-stimulated splenocytes. PLG modulated the humoral response of vaccine candidate ESAT-6, eliciting significantly higher levels of total IgG and isotypes (IgG1, IgG2a, and IgG2b). Additionally, the splenocytes from PLG-adjuvanted mice displayed a robust increase in the Th1-specific gamma interferon, tumor necrosis factor alpha, interleukin-2 (IL-2), Th2-specific IL-6 and IL-10, and Th17-specific IL-17A cytokines upon antigenic stimulation. PLG improved the protective efficacy of ESAT-6 by reducing bacillary load in the lung and spleen as well as granuloma formation, and it helped in maintaining vital health parameters of mice challenged with M. tuberculosis The median survival time of PLG-adjuvanted mice was 205 days, compared to 146 days for dimethyl-dioctadecyl ammonium bromide-monophosphoryl lipid A (DDA-MPL)-vaccinated groups and 224 days for Mycobacterium bovis BCG-vaccinated groups. PLG enhanced the efficiency of the ESAT-6 vaccine to the level of BCG and better than that of DDA-MPL (P < 0.05), with no ill effect in C57BL/6J mice. Our results propose that PLG is a promising adjuvant candidate for advanced experimentation.
Collapse
|
8
|
Naftalin CM, Verma R, Gurumurthy M, Hee KH, Lu Q, Yeo BCM, Tan KH, Lin W, Yu B, Seng KY, Lee LSU, Paton NI. Adjunctive use of celecoxib with anti-tuberculosis drugs: evaluation in a whole-blood bactericidal activity model. Sci Rep 2018; 8:13491. [PMID: 30202030 PMCID: PMC6131161 DOI: 10.1038/s41598-018-31590-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 08/22/2018] [Indexed: 12/31/2022] Open
Abstract
COX-2 inhibition may be of benefit in the treatment of tuberculosis (TB) through a number of pathways including efflux pump inhibition (increasing intracellular TB drug levels) and diverse effects on inflammation and the immune response. We investigated celecoxib (a COX-2 inhibitor) alone and with standard anti-tuberculosis drugs in the whole-blood bactericidal activity (WBA) model. Healthy volunteers took a single dose of celecoxib (400 mg), followed (after 1 week) by a single dose of either rifampicin (10 mg/kg) or pyrazinamide (25 mg/kg), followed (after 2 or 7 days respectively) by the same anti-tuberculosis drug with celecoxib. WBA was measured at intervals until 8 hours post-dose (by inoculating blood samples with Mycobacterium tuberculosis and estimating the change in bacterial colony forming units after 72 hours incubation). Celecoxib had no activity alone in the WBA assay (cumulative WBA over 8 hours post-dose: 0.03 ± 0.01ΔlogCFU, p = 1.00 versus zero). Celecoxib did not increase cumulative WBA of standard TB drugs (mean cumulative WBA −0.10 ± 0.13ΔlogCFU versus −0.10 ± 0.12ΔlogCFU for TB drugs alone versus TB drugs and celecoxib; mean difference −0.01, 95% CI −0.02 to 0.00; p = 0.16). The lack of benefit of celecoxib suggests that efflux pump inhibition or eicosanoid pathway-related responses are of limited importance in mycobacterial killing in the WBA assay.
Collapse
Affiliation(s)
- Claire M Naftalin
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| | - Rupangi Verma
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Meera Gurumurthy
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Kim Hor Hee
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Qingshu Lu
- Singapore Clinical Research Institute, Singapore, Singapore
| | - Benjamin Chaik Meng Yeo
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Kin Hup Tan
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Wenwei Lin
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Buduo Yu
- Investigational Medicine Unit, National University Health System, Singapore, Singapore
| | - Kok Yong Seng
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Lawrence Soon-U Lee
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Nicholas I Paton
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
9
|
The exhausted CD4+CXCR5+ T cells involve the pathogenesis of human tuberculosis disease. Int J Infect Dis 2018; 74:1-9. [DOI: 10.1016/j.ijid.2018.06.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 05/31/2018] [Accepted: 06/14/2018] [Indexed: 12/18/2022] Open
|
10
|
Zöller M, Zhao K, Kutlu N, Bauer N, Provaznik J, Hackert T, Schnölzer M. Immunoregulatory Effects of Myeloid-Derived Suppressor Cell Exosomes in Mouse Model of Autoimmune Alopecia Areata. Front Immunol 2018; 9:1279. [PMID: 29951053 PMCID: PMC6008552 DOI: 10.3389/fimmu.2018.01279] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Accepted: 05/22/2018] [Indexed: 01/28/2023] Open
Abstract
The treatment of autoimmune diseases still poses a major challenge, frequently relying on non-specific immunosuppressive drugs. Current efforts aim at reestablishing self tolerance using immune cells with suppressive activity like the regulatory T cells (Treg) or the myeloid-derived suppressor cells (MDSC). We have demonstrated therapeutic efficacy of MDSC in mouse Alopecia Areata (AA). In the same AA model, we now asked whether MDSC exosomes (MDSC-Exo) can replace MDSC. MDSC-Exo from bone marrow cells (BMC) cultures of healthy donors could substantially facilitate treatment. With knowledge on MDSC-Exo being limited, their suitability needs to be verified in advance. Protein marker profiles suggest comparability of BMC- to ex vivo collected inflammatory MDSC/MDSC-Exo in mice with a chronic contact dermatitis, which is a therapeutic option in AA. Proteome analyses substantiated a large overlap of function-relevant molecules in MDSC and MDSC-Exo. Furthermore, MDSC-Exo are taken up by T cells, macrophages, NK, and most avidly by Treg and MDSC-Exo uptake exceeds binding of MDSC themselves. In AA mice, MDSC-Exo preferentially target skin-draining lymph nodes and cells in the vicinity of remnant hair follicles. MDSC-Exo uptake is accompanied by a strong increase in Treg, reduced T helper proliferation, mitigated cytotoxic activity, and a slight increase in lymphocyte apoptosis. Repeated MDSC-Exo application in florid AA prevented progression and sufficed for partial hair regrowth. Deep sequencing of lymphocyte mRNA from these mice revealed a significant increase in immunoregulatory mRNA, including FoxP3 and arginase 1. Downregulated mRNA was preferentially engaged in prohibiting T cell hyperreactivity. Taken together, proteome analysis provided important insights into potential MDSC-Exo activities, these Exo preferentially homing into AA-affected organs. Most importantly, changes in leukocyte mRNA seen after treatment of AA mice with MDSC-Exo sustainably supports the strong impact on the adaptive and the non-adaptive immune system, with Treg expansion being a dominant feature. Thus, MDSC-Exo could potentially serve as therapeutic agents in treating AA and other autoimmune diseases.
Collapse
Affiliation(s)
- Margot Zöller
- Tumor Cell Biology, Department of Surgery, University Hospital of Heidelberg, Heidelberg, Germany
| | - Kun Zhao
- Tumor Cell Biology, Department of Surgery, University Hospital of Heidelberg, Heidelberg, Germany
| | - Natalia Kutlu
- Tumor Cell Biology, Department of Surgery, University Hospital of Heidelberg, Heidelberg, Germany
| | - Nathalie Bauer
- Tumor Cell Biology, Department of Surgery, University Hospital of Heidelberg, Heidelberg, Germany
| | - Jan Provaznik
- Gene Core Unit, EMBL Heidelberg, Heidelberg, Germany
| | - Thilo Hackert
- Pancreas Section, Department of Surgery, University Hospital of Heidelberg, Heidelberg, Germany
| | - Martina Schnölzer
- Functional Proteome Analysis, German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
11
|
Schwamborn K. Back to the future – Is the drug repositioning concept applicable to vaccines? Vaccine 2018; 36:2743-2744. [DOI: 10.1016/j.vaccine.2018.04.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 04/06/2018] [Accepted: 04/09/2018] [Indexed: 11/28/2022]
|
12
|
Zöller M. Janus-Faced Myeloid-Derived Suppressor Cell Exosomes for the Good and the Bad in Cancer and Autoimmune Disease. Front Immunol 2018; 9:137. [PMID: 29456536 PMCID: PMC5801414 DOI: 10.3389/fimmu.2018.00137] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 01/16/2018] [Indexed: 12/22/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of immature myeloid cells originally described to hamper immune responses in chronic infections. Meanwhile, they are known to be a major obstacle in cancer immunotherapy. On the other hand, MDSC can interfere with allogeneic transplant rejection and may dampen autoreactive T cell activity. Whether MDSC-Exosomes (Exo) can cope with the dangerous and potentially therapeutic activities of MDSC is not yet fully explored. After introducing MDSC and Exo, it will be discussed, whether a blockade of MDSC-Exo could foster the efficacy of immunotherapy in cancer and mitigate tumor progression supporting activities of MDSC. It also will be outlined, whether application of native or tailored MDSC-Exo might prohibit autoimmune disease progression. These considerations are based on the steadily increasing knowledge on Exo composition, their capacity to distribute throughout the organism combined with selectivity of targeting, and the ease to tailor Exo and includes open questions that answers will facilitate optimizing protocols for a MDSC-Exo blockade in cancer as well as for strengthening their therapeutic efficacy in autoimmune disease.
Collapse
Affiliation(s)
- Margot Zöller
- Tumor Cell Biology, University Hospital of Surgery, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
13
|
Hoffmann E, Machelart A, Song OR, Brodin P. Proteomics of Mycobacterium Infection: Moving towards a Better Understanding of Pathogen-Driven Immunomodulation. Front Immunol 2018; 9:86. [PMID: 29441067 PMCID: PMC5797607 DOI: 10.3389/fimmu.2018.00086] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 01/11/2018] [Indexed: 12/11/2022] Open
Abstract
Intracellular bacteria are responsible for many infectious diseases in humans and have developed diverse mechanisms to interfere with host defense pathways. In particular, intracellular vacuoles are an essential niche used by pathogens to alter cellular and organelle functions, which facilitate replication and survival. Mycobacterium tuberculosis (Mtb), the pathogen causing tuberculosis in humans, is not only able to modulate its intraphagosomal fate by blocking phagosome maturation but has also evolved strategies to successfully prevent clearance by immune cells and to establish long-term survival in the host. Mass spectrometry (MS)-based proteomics allows the identification and quantitative analysis of complex protein mixtures and is increasingly employed to investigate host–pathogen interactions. Major challenges are limited availability and purity of pathogen-containing compartments as well as the asymmetric ratio in protein abundance when comparing bacterial and host proteins during the infection. Recent advances in purification techniques and MS technology helped to overcome previous difficulties and enable the detailed proteomic characterization of infected host cells and their pathogen-containing vacuoles. Here, we summarize current findings of the proteomic analysis of Mycobacterium-infected host cells and highlight progress that has been made to study the protein composition of mycobacterial vacuoles. Current investigations focus on the pathogenicity during Mtb infection, which will allow to better understand pathogen-induced changes and immunomodulation of infected host cells. Consequently, future research in this field will have important implications on host response, pathogen survival, and persistence, induced adaptive immunity and metabolic changes of immune cells promoting the development of novel host-directed therapies in tuberculosis.
Collapse
Affiliation(s)
- Eik Hoffmann
- CNRS, INSERM, CHU Lille, U1019, UMR8204, Centre d'Infection et d'Immunité de Lille (CIIL), Institut Pasteur de Lille, Université de Lille, Lille, France
| | - Arnaud Machelart
- CNRS, INSERM, CHU Lille, U1019, UMR8204, Centre d'Infection et d'Immunité de Lille (CIIL), Institut Pasteur de Lille, Université de Lille, Lille, France
| | - Ok-Ryul Song
- CNRS, INSERM, CHU Lille, U1019, UMR8204, Centre d'Infection et d'Immunité de Lille (CIIL), Institut Pasteur de Lille, Université de Lille, Lille, France
| | - Priscille Brodin
- CNRS, INSERM, CHU Lille, U1019, UMR8204, Centre d'Infection et d'Immunité de Lille (CIIL), Institut Pasteur de Lille, Université de Lille, Lille, France
| |
Collapse
|
14
|
Mahon RN, Hafner R. Applying Precision Medicine and Immunotherapy Advances from Oncology to Host-Directed Therapies for Infectious Diseases. Front Immunol 2017; 8:688. [PMID: 28706516 PMCID: PMC5489679 DOI: 10.3389/fimmu.2017.00688] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 05/29/2017] [Indexed: 12/11/2022] Open
Abstract
To meet the challenges of increasing antimicrobial resistance, the infectious disease community needs innovative therapeutics. Precision medicine and immunotherapies are transforming cancer therapeutics by targeting the regulatory signaling pathways that are involved not only in malignancies but also in the metabolic and immunologic function of the tumor microenvironment. Infectious diseases target many of the same regulatory pathways as they modulate host metabolic functions for their own nutritional requirements and to impede host immunity. These similarities and the advances made in precision medicine and immuno-oncology that are relevant for the current development of host-directed therapies (HDTs) to treat infectious diseases are discussed. To harness this potential, improvements in drug screening methods and development of assays that utilize the research tools including high throughput multiplexes already developed by oncology are essential. A multidisciplinary approach that brings together immunologists, infectious disease specialists, and oncologists will be necessary to fully develop the potential of HDTs.
Collapse
Affiliation(s)
- Robert N Mahon
- Division of AIDS, Columbus Technologies, Inc., Contractor to National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Richard Hafner
- Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|