1
|
Solaimani M, Hosseinzadeh S, Abasi M. Non-coding RNAs, a double-edged sword in breast cancer prognosis. Cancer Cell Int 2025; 25:123. [PMID: 40170036 PMCID: PMC11959806 DOI: 10.1186/s12935-025-03679-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 02/06/2025] [Indexed: 04/03/2025] Open
Abstract
Cancer is a rising issue worldwide, and numerous studies have focused on understanding the underlying reasons for its occurrence and finding proper ways to defeat it. By applying technological advances, researchers are continuously uncovering and updating treatments in cancer therapy. Their vast functions in the regulation of cell growth and proliferation and their significant role in the progression of diseases, including cancer. This review provides a comprehensive analysis of ncRNAs in breast cancer, focusing on long non-coding RNAs such as HOTAIR, MALAT1, and NEAT1, as well as microRNAs such as miR-21, miR-221/222, and miR-155. These ncRNAs are pivotal in regulating cell proliferation, metastasis, drug resistance, and apoptosis. Additionally, we discuss experimental approaches that are useful for studying them and highlight the advantages and challenges of each method. We then explain the results of these clinical trials and offer insights for future studies by discussing major existing gaps. On the basis of an extensive number of studies, this review provides valuable insights into the potential of ncRNAs in cancer therapy. Key findings show that even though the functions of ncRNAs are vast and undeniable in cancer, there are still complications associated with their therapeutic use. Moreover, there is an absence of sufficient experiments regarding their application in mouse models, which is an area to work on. By emphasizing the crucial role of ncRNAs, this review underscores the need for innovative approaches and further studies to explore their potential in cancer therapy.
Collapse
Affiliation(s)
- Maryam Solaimani
- Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran
| | - Sahar Hosseinzadeh
- Faculty of Pharmacy and Medical Biotechnology, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mozhgan Abasi
- Immunogenetics Research Center, Department of Tissue Engineering and Applied Cell Sciences, Faculty of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, PO Box: 48175/861, Sari, Iran.
| |
Collapse
|
2
|
Alizadeh M, Ghasemi H, Bazhan D, Mohammadi Bolbanabad N, Rahdan F, Arianfar N, Vahedi F, Khatami SH, Taheri-Anganeh M, Aiiashi S, Armand N. MicroRNAs in disease States. Clin Chim Acta 2025; 569:120187. [PMID: 39938625 DOI: 10.1016/j.cca.2025.120187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 02/08/2025] [Accepted: 02/08/2025] [Indexed: 02/14/2025]
Abstract
This review highlights the role of miRNAs in various diseases affecting major organ systems. miRNAs are small, non-coding RNA molecules that regulate numerous genes. Dysregulation of miRNAs is linked to many pathological conditions due to their involvement in gene silencing and cellular pathways. We discuss miRNA expression patterns, their physiological and pathological roles, and how changes in miRNA levels contribute to disease. Notably, miRNAs like miR-499 and miR-21 are implicated in heart failure and atherosclerosis. miRNA dysregulation is also associated with colorectal and gastric cancers, influencing tumorigenesis and chemoresistance. In neurological diseases, miRNAs exhibit diverse profiles that affect neurodevelopment and degeneration. Additionally, miRNAs modulate cell function in reproductive organs, impacting fertility and cancer progression. miRNAs such as miR-192 and miR-204 serve as biomarkers for nephropathy and acute kidney injury. These miRNAs are involved in skeletal muscle diseases, contributing to conditions like osteoporosis and sarcopenia. miRNAs function as oncogenes or tumor suppressors in cancer, highlighting their potential in diagnostics and therapy. Further research is needed to develop miRNA-based diagnostics and treatments.
Collapse
Affiliation(s)
- Mehdi Alizadeh
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hassan Ghasemi
- Research Center for Environmental Contaminants (RCEC), Abadan University of Medical Sciences, Abadan, Iran
| | - Donya Bazhan
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Fereshteh Rahdan
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Narges Arianfar
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farzaneh Vahedi
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Seyyed Hossein Khatami
- Student Research Committee, Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mortaza Taheri-Anganeh
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| | - Saleh Aiiashi
- Abadan University of Medical Sciences, Abadan, Iran.
| | - Nezam Armand
- Dietary Supplements and Probiotic Research Center, Alborz University of Medical Sciences, Karaj, Iran.
| |
Collapse
|
3
|
Hao Y, Yang Y, Zhao H, Chen Y, Zuo T, Zhang Y, Yu H, Cui L, Song X. Multi-omics in Allergic Rhinitis: Mechanism Dissection and Precision Medicine. Clin Rev Allergy Immunol 2025; 68:19. [PMID: 39964644 PMCID: PMC11836232 DOI: 10.1007/s12016-025-09028-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2025] [Indexed: 02/21/2025]
Abstract
Allergic rhinitis (AR) is a common chronic inflammatory airway disease caused by inhaled allergens, and its prevalence has increased in recent decades. AR not only causes nasal leakage, itchy nose, nasal congestion, sneezing, and allergic conjunctivitis but also induces asthma, as well as sleep disorders, anxiety, depression, memory loss, and other phenomena that seriously affect the patient's ability to study and work, lower their quality of life, and burden society. The current methods used to diagnose and treat AR are still far from ideal. Multi-omics technology can be used to comprehensively and systematically analyze the differentially expressed DNA, RNA, proteins, and metabolites and their biological functions in patients with AR. These capabilities allow for an in-depth understanding of the intrinsic pathogenic mechanism of AR, the ability to explore key cells and molecules that drive its progression, and to design personalized treatment for AR. This article summarizes the progress made in studying AR by use of genomics, epigenomics, transcriptomics, proteomics, metabolomics, and microbiomics in order to illustrate the important role of multi-omics technologies in facilitating the precise diagnosis and treatment of AR.
Collapse
Affiliation(s)
- Yan Hao
- Shandong University of Traditional Chinese Medicine, Jinan, 250000, Shandong, China
- Department of Otolaryngology Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, 264000, Shandong, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, 264000, Shandong, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, 264000, Shandong, China
| | - Yujuan Yang
- Qingdao Medical College, Qingdao University, Qingdao, 266000, Shandong, China
- Department of Otolaryngology Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, 264000, Shandong, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, 264000, Shandong, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, 264000, Shandong, China
| | - Hongfei Zhao
- Qingdao Medical College, Qingdao University, Qingdao, 266000, Shandong, China
- Department of Otolaryngology Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, 264000, Shandong, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, 264000, Shandong, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, 264000, Shandong, China
| | - Ying Chen
- Department of Otolaryngology Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, 264000, Shandong, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, 264000, Shandong, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, 264000, Shandong, China
- The 2Nd Medical College of Binzhou Medical University, Yantai, 264000, Shandong, China
| | - Ting Zuo
- Department of Otolaryngology Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, 264000, Shandong, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, 264000, Shandong, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, 264000, Shandong, China
- The 2Nd Medical College of Binzhou Medical University, Yantai, 264000, Shandong, China
| | - Yu Zhang
- Department of Otolaryngology Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, 264000, Shandong, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, 264000, Shandong, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, 264000, Shandong, China
| | - Hang Yu
- Qingdao Medical College, Qingdao University, Qingdao, 266000, Shandong, China
- Department of Otolaryngology Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, 264000, Shandong, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, 264000, Shandong, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, 264000, Shandong, China
| | - Limei Cui
- Department of Otolaryngology Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, 264000, Shandong, China.
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, 264000, Shandong, China.
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, 264000, Shandong, China.
| | - Xicheng Song
- Department of Otolaryngology Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, 264000, Shandong, China.
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, 264000, Shandong, China.
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, 264000, Shandong, China.
| |
Collapse
|
4
|
Alalhareth IS, Alyami SM, Alshareef AH, Ajeibi AO, Al Munjem MF, Elfifi AA, Alsharif MM, Alzahrani SA, Alqaad MA, Bakir MB, Abdel-Wahab BA. Cellular Epigenetic Targets and Epidrugs in Breast Cancer Therapy: Mechanisms, Challenges, and Future Perspectives. Pharmaceuticals (Basel) 2025; 18:207. [PMID: 40006021 PMCID: PMC11858621 DOI: 10.3390/ph18020207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 01/31/2025] [Accepted: 02/01/2025] [Indexed: 02/27/2025] Open
Abstract
Breast cancer is the most common malignancy affecting women, manifesting as a heterogeneous disease with diverse molecular characteristics and clinical presentations. Recent studies have elucidated the role of epigenetic modifications in the pathogenesis of breast cancer, including drug resistance and efflux characteristics, offering potential new diagnostic and prognostic markers, treatment efficacy predictors, and therapeutic agents. Key modifications include DNA cytosine methylation and the covalent modification of histone proteins. Unlike genetic mutations, reprogramming the epigenetic landscape of the cancer epigenome is a promising targeted therapy for the treatment and reversal of drug resistance. Epidrugs, which target DNA methylation and histone modifications, can provide novel options for the treatment of breast cancer by reversing the acquired resistance to treatment. Currently, the most promising approach involves combination therapies consisting of epidrugs with immune checkpoint inhibitors. This review examines the aberrant epigenetic regulation of breast cancer initiation and progression, focusing on modifications related to estrogen signaling, drug resistance, cancer progression, and the epithelial-mesenchymal transition (EMT). It examines existing epigenetic drugs for treating breast cancer, including agents that modify DNA, inhibitors of histone acetyltransferases, histone deacetylases, histone methyltransferases, and histone demethyltransferases. It also delves into ongoing studies on combining epidrugs with other therapies and addresses the upcoming obstacles in this field.
Collapse
Affiliation(s)
- Ibrahim S. Alalhareth
- College of Pharmacy, Najran University, Najran 66256, Saudi Arabia; (I.S.A.); (S.M.A.)
| | - Saleh M. Alyami
- College of Pharmacy, Najran University, Najran 66256, Saudi Arabia; (I.S.A.); (S.M.A.)
| | - Ali H. Alshareef
- Department of Pharmaceuticals Care, Ministry of Defense, Najran 66281, Saudi Arabia; (A.H.A.); (A.O.A.); (A.A.E.); (M.M.A.)
| | - Ahmed O. Ajeibi
- Department of Pharmaceuticals Care, Ministry of Defense, Najran 66281, Saudi Arabia; (A.H.A.); (A.O.A.); (A.A.E.); (M.M.A.)
| | - Manea F. Al Munjem
- King Khaled Hospital -Najran Health Cluster, Najran 66261, Saudi Arabia;
| | - Ahmad A. Elfifi
- Department of Pharmaceuticals Care, Ministry of Defense, Najran 66281, Saudi Arabia; (A.H.A.); (A.O.A.); (A.A.E.); (M.M.A.)
| | - Meshal M. Alsharif
- Department of Pharmaceuticals Care, Ministry of Defense, Najran 66281, Saudi Arabia; (A.H.A.); (A.O.A.); (A.A.E.); (M.M.A.)
| | - Seham A. Alzahrani
- Pharmacy Department, Khamis Mushait General Hospital, King Khalid Rd, Al Shifa, Khamis Mushait 62433, Saudi Arabia;
| | - Mohammed A. Alqaad
- Department of Pharmaceutical Care Services, Al Noor Specialized Hospital, Makkah Health, Cluster, Makkah 24241, Saudi Arabia;
| | - Marwa B. Bakir
- Department of Medical Education, College of Medicine, Najran University, Najran 1988, Saudi Arabia;
| | - Basel A. Abdel-Wahab
- Department of Pharmacology, College of Pharmacy, Najran University, Najran 1988, Saudi Arabia
| |
Collapse
|
5
|
Plakoula E, Kalampounias G, Alexis S, Verigou E, Kourakli A, Zafeiropoulou K, Symeonidis A. Prognostic Value of PSMB5 and Correlations with LC3II and Reactive Oxygen Species Levels in the Bone Marrow Mononuclear Cells of Bortezomib-Resistant Multiple Myeloma Patients. Curr Issues Mol Biol 2025; 47:32. [PMID: 39852147 PMCID: PMC11763810 DOI: 10.3390/cimb47010032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/03/2025] [Accepted: 01/04/2025] [Indexed: 01/26/2025] Open
Abstract
Proteasome inhibitors (PIs) constitute the most common type of induction treatment for multiple myeloma. Interactions between the proteasome, autophagy, and reactive oxygen species (ROS) have been shown in the past, thus emphasizing the need for a better understanding of the underlying pathophysiology. For this study, bone marrow mononuclear cells from 110 myeloma patients were collected at different disease stages. PSMB5 and LC3I/II protein levels were determined using Western blot, proteasome proteolytic activity (PPA) with spectrofluorometry, and ROS with flow cytometry. PSMB5 accumulation was found to diminish after PI treatment (p-value = 0.014), and the same pattern was observed in PPA (p-value < 0.001). Conversely, LC3II protein levels were elevated at both remission and relapse compared to baseline levels (p-value = 0.041). Patients with a baseline PSMB5 accumulation lower than 1.06 units had longer disease-free survival compared to those with values above 1.06 units (12.0 ± 6.7 vs. 36 ± 12.1 months; p-value < 0.001). Median ROS levels in plasma cells were significantly higher at relapse compared to both baseline and remission levels (p-value < 0.001), implying poor prognosis. Overall, post-treatment PSMB5 reduction could indicate a shift from proteasomal to autophagic degradation as a main proteostatic mechanism, thus explaining resistance. The elevated oxidative stress in PI-treated patients could possibly serve as an additional compensatory mechanism.
Collapse
Affiliation(s)
- Eva Plakoula
- Hematology Division, Department of Medicine, School of Health Sciences, University of Patras, 26504 Patras, Greece; (E.P.); (S.A.); (E.V.); (K.Z.)
| | - Georgios Kalampounias
- Division of Genetics, Cell Biology and Development, Department of Biology, School of Natural Sciences, University of Patras, 26504 Patras, Greece;
| | - Spyridon Alexis
- Hematology Division, Department of Medicine, School of Health Sciences, University of Patras, 26504 Patras, Greece; (E.P.); (S.A.); (E.V.); (K.Z.)
| | - Evgenia Verigou
- Hematology Division, Department of Medicine, School of Health Sciences, University of Patras, 26504 Patras, Greece; (E.P.); (S.A.); (E.V.); (K.Z.)
| | - Alexandra Kourakli
- Department of Hematology, OLYMPION General Hospital, Volou & Meilichou Str., 26443 Patras, Greece;
| | - Kalliopi Zafeiropoulou
- Hematology Division, Department of Medicine, School of Health Sciences, University of Patras, 26504 Patras, Greece; (E.P.); (S.A.); (E.V.); (K.Z.)
| | - Argiris Symeonidis
- Hematology Division, Department of Medicine, School of Health Sciences, University of Patras, 26504 Patras, Greece; (E.P.); (S.A.); (E.V.); (K.Z.)
- Department of Hematology, OLYMPION General Hospital, Volou & Meilichou Str., 26443 Patras, Greece;
| |
Collapse
|
6
|
Solé D, Kuschnir FC, Pastorino AC, Constantino CF, Galvão C, Chong E Silva DC, Baptistella E, Goudouris ES, Sakano E, Ejzenbaum F, Matsumoto FY, Mizoguchi FM, Aarestrup FM, Wandalsen GF, Chong Neto HJ, Brito de Oliveira JV, Lubianca Neto JF, Rizzo MCV, Silva Chavarria MLF, Urrutia-Pereira M, Filho NAR, de Paula Motta Rubini N, Mion O, Piltcher OB, Ramos RT, Francesco RD, Roithmann R, Anselmo-Lima WT, Romano FR, de Mello Júnior JF. V Brazilian Consensus on Rhinitis - 2024. Braz J Otorhinolaryngol 2025; 91:101500. [PMID: 39388827 PMCID: PMC11497470 DOI: 10.1016/j.bjorl.2024.101500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 08/17/2024] [Indexed: 10/12/2024] Open
Abstract
Since we published the "IV Brazilian Consensus on Rhinitis", in2017, several advances have been achieved and have enabled a further understanding of the different aspects of "Rhinitis". This new guideline, developed jointly by ASBAI, SBP and SBORL, represents a relevant milestone in the updated and integrated management of the different forms of the disease, and it aims to unify evidence-based approaches to improve the diagnosis and treatment of this common and often underestimated condition. The document covers a wide range of topics, including clear definitions of the different phenotypes and endotypes of rhinitis, risk factors, updated diagnostic criteria, and recommended methods for clinical and laboratory investigation. We stress the importance of detailed clinical history and objective assessment, as well as tools for control and assessing severity tools an accurate diagnostic approach to the disease. Regarding treatment, it emphasizes the treatment customization, considering the severity of symptoms, the presence of comorbidities and the impact on the patient's quality of life. We discuss different drug treatment, in addition to non-pharmacological measures, such as environmental control and specific immunotherapy; and the possible role of immunobiological agents. Furthermore, the consensus addresses issues related to patient education, prevention and management of special situations, such as rhinitis in children, in pregnant women and in the elderly. In short, the "V Brazilian Consensus on Rhinitis" represents a comprehensive and updated guide for healthcare professionals involved in the diagnosis and management of rhinitis, aiming to improve patients' quality of life through an integrated and evidence-based approach.
Collapse
Affiliation(s)
- Dirceu Solé
- Universidade Federal de São Paulo, Escola Paulista de Medicina, São Paulo, SP, Brazil; Sociedade Brasileira de Pediatria, Rio de Janeiro, RJ, Brazil
| | - Fábio Chigres Kuschnir
- Associação Brasileira de Alergia e Imunologia, São Paulo, SP, Brazil; Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Antônio Carlos Pastorino
- Sociedade Brasileira de Pediatria, Rio de Janeiro, RJ, Brazil; Universidade de São Paulo, São Paulo, SP, Brazil
| | - Clóvis F Constantino
- Sociedade Brasileira de Pediatria, Rio de Janeiro, RJ, Brazil; Universidade de Santo Amaro, São Paulo, SP, Brazil
| | - Clóvis Galvão
- Associação Brasileira de Alergia e Imunologia, São Paulo, SP, Brazil; Universidade de São Paulo, São Paulo, SP, Brazil
| | - Débora Carla Chong E Silva
- Sociedade Brasileira de Pediatria, Rio de Janeiro, RJ, Brazil; Universidade Federal do Paraná́, Curitiba, PR, Brazil
| | - Eduardo Baptistella
- Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial, São Paulo, SP, Brazil
| | - Ekaterini Simões Goudouris
- Sociedade Brasileira de Pediatria, Rio de Janeiro, RJ, Brazil; Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Eulália Sakano
- Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial, São Paulo, SP, Brazil; Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Fábio Ejzenbaum
- Sociedade Brasileira de Pediatria, Rio de Janeiro, RJ, Brazil; Faculdade de Ciências Médicas da Santa Casa de São Paulo, São Paulo, SP, Brazil
| | - Fausto Yoshio Matsumoto
- Universidade Federal de São Paulo, Escola Paulista de Medicina, São Paulo, SP, Brazil; Sociedade Brasileira de Pediatria, Rio de Janeiro, RJ, Brazil
| | - Flavio Massao Mizoguchi
- Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial, São Paulo, SP, Brazil
| | - Fernando Monteiro Aarestrup
- Associação Brasileira de Alergia e Imunologia, São Paulo, SP, Brazil; Universidade Federal de Juiz de Fora, Juiz de Fora, MG, Brazil
| | - Gustavo F Wandalsen
- Universidade Federal de São Paulo, Escola Paulista de Medicina, São Paulo, SP, Brazil; Sociedade Brasileira de Pediatria, Rio de Janeiro, RJ, Brazil
| | - Herberto José Chong Neto
- Sociedade Brasileira de Pediatria, Rio de Janeiro, RJ, Brazil; Universidade Federal do Paraná́, Curitiba, PR, Brazil
| | | | - José Faibes Lubianca Neto
- Sociedade Brasileira de Pediatria, Rio de Janeiro, RJ, Brazil; Fundação Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | | | | | - Marilyn Urrutia-Pereira
- Associação Brasileira de Alergia e Imunologia, São Paulo, SP, Brazil; Universidade Federal do Pampa, Uruguaiana, RS, Brazil
| | - Nelson Augusto Rosário Filho
- Associação Brasileira de Alergia e Imunologia, São Paulo, SP, Brazil; Universidade Federal do Paraná́, Curitiba, PR, Brazil
| | - Norma de Paula Motta Rubini
- Associação Brasileira de Alergia e Imunologia, São Paulo, SP, Brazil; Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Olavo Mion
- Universidade de São Paulo, São Paulo, SP, Brazil; Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial, São Paulo, SP, Brazil
| | - Otávio Bejzman Piltcher
- Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial, São Paulo, SP, Brazil; Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazi
| | - Regina Terse Ramos
- Sociedade Brasileira de Pediatria, Rio de Janeiro, RJ, Brazil; Universidade Federal da Bahia, Salvador, BA, Brazil
| | - Renata Di Francesco
- Sociedade Brasileira de Pediatria, Rio de Janeiro, RJ, Brazil; Universidade de São Paulo, São Paulo, SP, Brazil
| | - Renato Roithmann
- Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial, São Paulo, SP, Brazil; Universidade Luterana do Brasil, Canos, RS, Brazil
| | - Wilma Terezinha Anselmo-Lima
- Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial, São Paulo, SP, Brazil; Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Ribeirão Preto, SP, Brazil
| | - Fabrizio Ricci Romano
- Universidade de São Paulo, São Paulo, SP, Brazil; Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial, São Paulo, SP, Brazil
| | - João Ferreira de Mello Júnior
- Universidade de São Paulo, São Paulo, SP, Brazil; Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial, São Paulo, SP, Brazil.
| |
Collapse
|
7
|
Nanoudis S, Yavropoulou MP, Tsachouridou O, Pikilidou M, Pilalas D, Kotsa K, Skoura L, Zebekakis P, Metallidis S. Circulating MicroRNAs Related to Arterial Stiffness in Adults with HIV Infection. Viruses 2024; 16:1945. [PMID: 39772253 PMCID: PMC11680088 DOI: 10.3390/v16121945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 12/15/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
People with HIV (PWH) have an elevated risk of cardiovascular disease compared to those without HIV. This study aimed to investigate the relative serum expression of microRNAs (miRNAs) associated with arterial stiffness, a significant marker of cardiovascular disease. A total of 36 male PWH and 36 people without HIV, matched for age, body mass index, pack years, and dyslipidemia, were included in the study. Participants with a history of hypertension, diabetes mellitus, cardiovascular disease, cancer, or intravenous drug use were excluded. Markers of arterial stiffness, including carotid-femoral pulse wave velocity (cfPWV) and augmentation index adjusted to 75 beats per minute (AIx@75), were measured via applanation tonometry. We analyzed the relative expression of 11 circulating miRNAs using real-time PCR: let-7b-5p, miR-19b-3p, miR-21-5p, miR-29a-3p, miR-126-3p, miR-130a-3p, miR-145-5p, miR-181b-5p, miR-221-3p, miR-222-3p, and miR-223-3p. cfPWV was significantly higher in PWH compared to people without HIV (9.3 vs. 8.6 m/s, p = 0.019), while AIx@75, peripheral, and aortic blood pressures did not differ among groups. The relative expression of circulating miRNAs was significantly higher in PWH compared to controls for let-7b-5p (fold change: 5.24, p = 0.027), miR-21-5p (fold change: 3.41, p < 0.001), miR-126-3p (fold change: 1.23, p = 0.019), and miR-222-3p (fold change: 3.31, p = 0.002). Conversely, the relative expression of circulating miR-19b-3p was significantly lower in PWH (fold change: 0.61, p = 0.049). Among HIV-related factors, the nadir CD4+T-cell count of <200 cells/mm3 was independently associated with the relative expression of circulating let-7b-5p (β = 0.344, p = 0.049), while current non-nucleoside reverse transcriptase inhibitor (NNRTI) treatment was independently associated with the relative expression of circulating miR-126-3p (β = 0.389, p = 0.010). No associations were found between the duration of HIV infection or the duration of ART and the serum miRNA expression. This study highlights a distinct circulating miRNA profile in PWH with higher cfPWV compared to those without HIV, which may contribute to increased arterial stiffness.
Collapse
Affiliation(s)
- Sideris Nanoudis
- 1st Internal Medicine Department, AHEPA University Hospital, School of Medicine, Aristotle University of Thessaloniki, 55436 Thessaloniki, Greece; (S.N.); (M.P.Y.); (M.P.); (D.P.); (K.K.); (P.Z.); (S.M.)
| | - Maria P. Yavropoulou
- 1st Internal Medicine Department, AHEPA University Hospital, School of Medicine, Aristotle University of Thessaloniki, 55436 Thessaloniki, Greece; (S.N.); (M.P.Y.); (M.P.); (D.P.); (K.K.); (P.Z.); (S.M.)
| | - Olga Tsachouridou
- 1st Internal Medicine Department, AHEPA University Hospital, School of Medicine, Aristotle University of Thessaloniki, 55436 Thessaloniki, Greece; (S.N.); (M.P.Y.); (M.P.); (D.P.); (K.K.); (P.Z.); (S.M.)
| | - Maria Pikilidou
- 1st Internal Medicine Department, AHEPA University Hospital, School of Medicine, Aristotle University of Thessaloniki, 55436 Thessaloniki, Greece; (S.N.); (M.P.Y.); (M.P.); (D.P.); (K.K.); (P.Z.); (S.M.)
| | - Dimitrios Pilalas
- 1st Internal Medicine Department, AHEPA University Hospital, School of Medicine, Aristotle University of Thessaloniki, 55436 Thessaloniki, Greece; (S.N.); (M.P.Y.); (M.P.); (D.P.); (K.K.); (P.Z.); (S.M.)
| | - Kalliopi Kotsa
- 1st Internal Medicine Department, AHEPA University Hospital, School of Medicine, Aristotle University of Thessaloniki, 55436 Thessaloniki, Greece; (S.N.); (M.P.Y.); (M.P.); (D.P.); (K.K.); (P.Z.); (S.M.)
| | - Lemonia Skoura
- Department of Microbiology, AHEPA University Hospital, School of Medicine, Aristotle University of Thessaloniki, 55436 Thessaloniki, Greece;
| | - Pantelis Zebekakis
- 1st Internal Medicine Department, AHEPA University Hospital, School of Medicine, Aristotle University of Thessaloniki, 55436 Thessaloniki, Greece; (S.N.); (M.P.Y.); (M.P.); (D.P.); (K.K.); (P.Z.); (S.M.)
| | - Symeon Metallidis
- 1st Internal Medicine Department, AHEPA University Hospital, School of Medicine, Aristotle University of Thessaloniki, 55436 Thessaloniki, Greece; (S.N.); (M.P.Y.); (M.P.); (D.P.); (K.K.); (P.Z.); (S.M.)
| |
Collapse
|
8
|
Vakili S, Behrooz AB, Whichelo R, Fernandes A, Emwas AH, Jaremko M, Markowski J, Los MJ, Ghavami S, Vitorino R. Progress in Precision Medicine for Head and Neck Cancer. Cancers (Basel) 2024; 16:3716. [PMID: 39518152 PMCID: PMC11544984 DOI: 10.3390/cancers16213716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/24/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
This paper presents a comprehensive comparative analysis of biomarkers for head and neck cancer (HNC), a prevalent but molecularly diverse malignancy. We detail the roles of key proteins and genes in tumourigenesis and progression, emphasizing their diagnostic, prognostic, and therapeutic relevance. Our bioinformatic validation reveals crucial genes such as AURKA, HMGA2, MMP1, PLAU, and SERPINE1, along with microRNAs (miRNA), linked to HNC progression. OncomiRs, including hsa-miR-21-5p, hsa-miR-31-5p, hsa-miR-221-3p, hsa-miR-222-3p, hsa-miR-196a-5p, and hsa-miR-200c-3p, drive tumourigenesis, while tumour-suppressive miRNAs like hsa-miR-375 and hsa-miR-145-5p inhibit it. Notably, hsa-miR-155-3p correlates with survival outcomes in addition to the genes RAI14, S1PR5, OSBPL10, and METTL6, highlighting its prognostic potential. Future directions should focus on leveraging precision medicine, novel therapeutics, and AI integration to advance personalized treatment strategies to optimize patient outcomes in HNC care.
Collapse
Affiliation(s)
- Sanaz Vakili
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0J9, Canada; (S.V.); (A.B.B.); (R.W.)
| | - Amir Barzegar Behrooz
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0J9, Canada; (S.V.); (A.B.B.); (R.W.)
| | - Rachel Whichelo
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0J9, Canada; (S.V.); (A.B.B.); (R.W.)
- Department of Medical Sciences, Institute of Biomedicine—iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Alexandra Fernandes
- Guelph College of Biological Science, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Abdul-Hamid Emwas
- Core Lab of NMR, King Abdullah University of Science and Technology (KAUST), Thuwal, Makkah 23955-6900, Saudi Arabia;
| | - Mariusz Jaremko
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Makkah 23955-6900, Saudi Arabia;
| | - Jarosław Markowski
- Department of Laryngology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-027 Katowice, Poland;
| | - Marek J. Los
- Biotechnology Center, Silesian University of Technology, 44-100 Gliwice, Poland;
| | - Saeid Ghavami
- Academy of Silesia, Faculty of Medicine, Rolna 43, 40-555 Katowice, Poland
- Paul Albrechtsen Research Institute, Cancer Care Manitoba, Winnipeg, MB R3E 0V9, Canada
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
| | - Rui Vitorino
- Guelph College of Biological Science, University of Guelph, Guelph, ON N1G 2W1, Canada;
- LAQV/REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
- UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, 4099-002 Porto, Portugal
| |
Collapse
|
9
|
Terré M, Arís A, Garcia-Fruitós E, Fàbregas F, Bach A. Micro RNA profiles in colostrum exosomes obtained from primiparous or multiparous dairy cows. Front Vet Sci 2024; 11:1463342. [PMID: 39545260 PMCID: PMC11561390 DOI: 10.3389/fvets.2024.1463342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/04/2024] [Indexed: 11/17/2024] Open
Abstract
Colostrum is rich in membranous vesicles of endocytic origin named exosomes, with proteins, lipids, RNA, and/or DNA cargos which can play different roles in physiological processes. Like other colostrum bioactive compounds, exosomes could be also influenced by individual characteristics. The objective of the study was to characterize miRNA cargo of colostrum exosomes from primiparous and multiparous cows in different farms. Twenty-seven colostrum samples of clinically healthy Holstein cows (11 primiparous and 16 multiparous) from 3 different farms were obtained and frozen. After thawing, exosomes were isolated following an ultracentrifugation protocol, and characterized morphologically. Particle size distribution and western immunoblotting were also analyzMaed. After RNA extraction, miRNAs were sequenced and analyzed to assess potential differences in profiles between primiparous and multiparous cows from different farms. Fourteen miRNA were upregulated and 11 miRNAs downregulated in primiparous compared with multiparous cows. Most of the miRNA differences between primiparous and multiparous cows regulate the gene expression of factors involved in mammary gland development and differentiation, and lipogenesis. In addition, miRNAs from one of the farms showed 8 miRNAs downregulated and 12 upregulated compared with the other 2 farms, independently of parity. Differences in miRNA between farms were mainly associated with immune and inflammatory-related genes. In conclusion, miRNA cargos of bovine colostrum exosomes differ in primiparous and multiparous cows, and some on-farm practices might also determine the content and activity of miRNA in colostrum exosomes.
Collapse
Affiliation(s)
- Marta Terré
- Department of Ruminant Production, IRTA, Caldes de Montbui, Spain
| | - Anna Arís
- Department of Ruminant Production, IRTA, Caldes de Montbui, Spain
| | | | | | - Alex Bach
- Department of Animal and Veterinary Sciences, University of Lleida, Lleida, Spain
- ICREA, Institut de Recerca i Estudis Avançats, Barcelona, Spain
| |
Collapse
|
10
|
Darmadi D, Aminov Z, Hjazi A, R R, Kazmi SW, Mustafa YF, Hosseen B, Sharma A, Alubiady MHS, Al-Abdeen SHZ. Investigation of the regulation of EGF signaling by miRNAs, delving into the underlying mechanism and signaling pathways in cancer. Exp Cell Res 2024; 442:114267. [PMID: 39313176 DOI: 10.1016/j.yexcr.2024.114267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/19/2024] [Accepted: 09/21/2024] [Indexed: 09/25/2024]
Abstract
The EGF receptors (EGFRs) signaling pathway is essential for tumorigenesis and progression of cancer. Emerging evidence suggests that miRNAs are essential regulators of EGF signaling, influencing various pathway components and tumor behavior. This article discusses the underlying mechanisms and clinical implications of miRNA-mediated regulation of EGF signaling in cancer. miRNAs utilize multiple mechanisms to exert their regulatory effects on EGF signaling. They can target EGF ligands, including EGF and TGF-directly, inhibiting their expression and secretion. In addition, miRNAs can modulate EGF signaling indirectly by targeting EGF receptors, downstream signaling molecules, and transcription factors implicated in regulating the EGF pathway. These miRNAs can disrupt the delicate equilibrium of EGF signaling, resulting in aberrant activation and fostering tumor cell proliferation, survival, angiogenesis, and metastasis. The dysregulation of the expression of specific miRNAs has been linked to clinical outcomes in numerous types of cancer. Specific profiles of miRNA expression have been identified as prognostic markers, reflecting tumor characteristics, invasiveness, metastatic potential, and therapeutic response. These miRNAs can serve as potential therapeutic targets for interventions that modulate EGF signaling and improve patient outcomes. Understanding the intricate relationship between miRNAs and EGF signaling in cancer can transform cancer diagnosis, prognosis, and treatment. The identification of specific miRNAs involved in the regulation of the EGF pathway opens the door to the development of targeted therapies and personalized medicine approaches. In addition, miRNA-based interventions promise to overcome therapeutic resistance and improve the efficacy of existing treatments. miRNAs are crucial regulators of EGF signaling in cancer, affecting tumor behavior and clinical outcomes. Further research is required to decipher the complex network of miRNA-mediated EGF signaling regulation and translate these findings into clinically applicable strategies for enhanced cancer treatment.
Collapse
Affiliation(s)
- Darmadi Darmadi
- Department of Internal Medicine, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia.
| | - Zafar Aminov
- Department of Public Health and Healthcare Management, Samarkand State Medical University, 18 Amir Temur Street, Samarkand, Uzbekistan.
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia.
| | - Roopashree R
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India.
| | - Syeda Wajida Kazmi
- Chandigarh Pharmacy College, Chandigarh Group of Colleges, Jhanjeri, Mohali, 140307, Punjab, India.
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, 41001, Iraq.
| | - Beneen Hosseen
- Medical Laboratory Technique College, the Islamic University, Najaf, Iraq; Medical Laboratory Technique College, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq; Medical Laboratory Technique College, the Islamic University of Babylon, Babylon, Iraq.
| | - Abhishek Sharma
- Department of Medicine, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India.
| | | | | |
Collapse
|
11
|
Lee J, Lee MS, Kim Y. Effects of Green Tea and Java Pepper Mixture on Gut Microbiome and Colonic MicroRNA-221/222 in Mice with Dextran Sulfate Sodium-Induced Colitis. Prev Nutr Food Sci 2024; 29:279-287. [PMID: 39371512 PMCID: PMC11450278 DOI: 10.3746/pnf.2024.29.3.279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 10/08/2024] Open
Abstract
In this study, we aimed to investigate the regulatory effects of a green tea and java pepper mixture (GTP) on the gut microbiome and microRNA (miR)-221/222 expression in mice with dextran sulfate sodium (DSS)-induced colitis. Male C57BL/6J mice were divided into four groups: DSS-, DSS+, GTP50, and GTP100. In the GTP50 and GTP100 groups, GTP was orally administered to mice at doses of 50 and 100 mg/kg body weight, respectively, every day for 2 weeks, and colitis was induced in the DSS+, GTP50, and GTP100 groups by adding 3% DSS to their drinking water for 1 week. GTP was found to mitigate the severity of inflammation and the damage to goblet cells caused by DSS-induced colitis. The results showed that compared with the DSS- group, the relative abundance of Bacteroidetes was increased and that of Proteobacteria and Candidatus Melainabacteria was decreased in the GTP100 group. The ratio of Firmicutes to Bacteroidetes was also reduced in the GTP100 group. However, GTP administration did not modulate the microbial diversity. GTP administration upregulated the mRNA and protein levels of occludin and zonula occludens 1. In addition, GTP effectively downregulated the expression of miR-221 and miR-222. Overall, GTP altered the gut microbiota composition and downregulated colonic miR-221/222 expression in mice with DSS-induced colitis.
Collapse
Affiliation(s)
- Jumi Lee
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Korea
- Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Korea
| | - Mak-Soon Lee
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Korea
| | - Yangha Kim
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Korea
- Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
12
|
Wang R, Liang J, Wang Q, Zhang Y, Lu Y, Zhan X, Wang S, Gu Q. m6A mRNA methylation-mediated MAPK signaling modulates the nasal mucosa inflammatory response in allergic rhinitis. Front Immunol 2024; 15:1344995. [PMID: 39011034 PMCID: PMC11246857 DOI: 10.3389/fimmu.2024.1344995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 06/10/2024] [Indexed: 07/17/2024] Open
Abstract
Background Allergic rhinitis (AR) is a complex disease in which gene-environment interactions contribute to its pathogenesis. Epigenetic modifications, such as N6-methyladenosine (m6A) modification of mRNA, play important roles in regulating gene expression in multiple physiological and pathological processes. However, the function of m6A modification in AR and the inflammatory response is poorly understood. Methods We used the ovalbumin (OVA) and aluminum hydroxide to induce an AR mouse model. Nasal symptoms, histopathology, and serum cytokines were examined. We performed combined m6A and RNA sequencing to analyze changes in m6A modification profiles. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and methylated RNA immunoprecipitation sequencing qPCR (MeRIP-qPCR) were used to verify differential methylation of mRNAs and the m6A methylation level. Knockdown or inhibition of Alkbh5 in nasal mucosa of mice was mediated by lentiviral infection or IOX1 treatment. Results We showed that m6A was enriched in a group of genes involved in MAPK signaling pathway. Moreover, we identified a MAPK pathway involving Map3k8, Erk2, and Nfκb1 that may play a role in the disrupted inflammatory response associated with nasal inflammation. The m6A eraser, Alkbh5, was highly expressed in the nasal mucosa of AR model mice. Furthermore, knockdown of Alkbh5 expression by lentiviral infection resulted in high MAPK pathway activity and a significant nasal mucosa inflammatory response. Our findings indicate that ALKBH5-mediated m6A dysregulation likely contributes to a nasal inflammatory response via the MAPK pathway. Conclusion Together, our data show that m6A dysregulation mediated by ALKBH5, is likely to contribute to inflammation of the nasal mucosa via the MAPK signaling pathway, suggesting that ALKBH5 is a potential biomarker for AR treatment.
Collapse
Affiliation(s)
- Ruikun Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Children's Hospital, Capital Institute of Pediatrics, Beijing, China
- Capital Institute of Pediatrics, Peking University Teaching Hospital, Beijing, China
| | - Jieqiong Liang
- Department of Otorhinolaryngology Head and Neck Surgery, Children's Hospital, Capital Institute of Pediatrics, Beijing, China
| | - Qian Wang
- Graduate School of Peking Union Medical College, Capital Institute of Pediatrics, Beijing, China
| | - Yiming Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, Children's Hospital, Capital Institute of Pediatrics, Beijing, China
| | - Yingxia Lu
- Department of Otorhinolaryngology Head and Neck Surgery, Children's Hospital, Capital Institute of Pediatrics, Beijing, China
| | - Xiaojun Zhan
- Department of Otorhinolaryngology Head and Neck Surgery, Children's Hospital, Capital Institute of Pediatrics, Beijing, China
| | - Shan Wang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
| | - Qinglong Gu
- Department of Otorhinolaryngology Head and Neck Surgery, Children's Hospital, Capital Institute of Pediatrics, Beijing, China
| |
Collapse
|
13
|
Usha Satheesan S, Chowdhury S, Kolthur-Seetharam U. Metabolic and circadian inputs encode anticipatory biogenesis of hepatic fed microRNAs. Life Sci Alliance 2024; 7:e202302180. [PMID: 38408795 PMCID: PMC10897495 DOI: 10.26508/lsa.202302180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 02/13/2024] [Accepted: 02/13/2024] [Indexed: 02/28/2024] Open
Abstract
Starvation and refeeding are mostly unanticipated in the wild in terms of duration, frequency, and nutritional value of the refed state. Notwithstanding this, organisms mount efficient and reproducible responses to restore metabolic homeostasis. Hence, it is intuitive to invoke expectant molecular mechanisms that build anticipatory responses to enable physiological toggling during fed-fast cycles. In this regard, we report anticipatory biogenesis of oscillatory hepatic microRNAs that peak during a fed state and inhibit starvation-responsive genes. Our results clearly demonstrate that the levels of primary and precursor microRNA transcripts increase during a fasting state, in anticipation of a fed response. We delineate the importance of both metabolic and circadian cues in orchestrating hepatic fed microRNA homeostasis in a physiological setting. Besides illustrating metabo-endocrine control, our findings provide a mechanistic basis for the overarching influence of starvation on anticipatory biogenesis. Importantly, by using pharmacological agents that are widely used in clinics, we point out the high potential of interventions to restore homeostasis of hepatic microRNAs, whose deregulated expression is otherwise well established to cause metabolic diseases.
Collapse
Affiliation(s)
- Sandra Usha Satheesan
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Shreyam Chowdhury
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Ullas Kolthur-Seetharam
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
- Tata Institute of Fundamental Research- Hyderabad (TIFR-H), Hyderabad, India
| |
Collapse
|
14
|
Sriharikrishnaa S, John FE, Bairy M, Shetty S, Suresh PS, Kabekkodu SP. A comprehensive review on the functional role of miRNA clusters in cervical cancer. Epigenomics 2024; 16:493-511. [PMID: 38511231 DOI: 10.2217/epi-2023-0244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024] Open
Abstract
Cervical cancer (CC) poses a significant health threat in women globally. MicroRNA clusters (MCs), comprising multiple miRNA-encoding genes, are pivotal in gene regulation. Various factors, including circular RNA and DNA methylation, govern MC expression. Dysregulated MC expression correlates strongly with CC development via promoting the acquisition of cancer hallmarks. Certain MCs show promise for diagnosis, prognosis and therapy selection due to their distinct expression patterns in normal, premalignant and tumor tissues. This review explains the regulation and biological functions of MCs and highlights the clinical relevance of abnormal MC expression in CC.
Collapse
Affiliation(s)
- Srinath Sriharikrishnaa
- Department of Cell & Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Femi E John
- Department of Cell & Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Medha Bairy
- Department of Cell & Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Sachin Shetty
- Department of Cell & Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Padmanaban S Suresh
- Department of Bioscience and Engineering, National Institute of Technology Calicut, Kerala, India
| | - Shama P Kabekkodu
- Department of Cell & Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| |
Collapse
|
15
|
Jegathesan Y, Stephen PP, Sati ISEE, Narayanan P, Monif M, Kamarudin MNA. MicroRNAs in adult high-grade gliomas: Mechanisms of chemotherapeutic resistance and their clinical relevance. Biomed Pharmacother 2024; 172:116277. [PMID: 38377734 DOI: 10.1016/j.biopha.2024.116277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/11/2024] [Accepted: 02/13/2024] [Indexed: 02/22/2024] Open
Abstract
Notorious for its high mortality rate, the current standard treatment for high-grade gliomas remains a challenge. This is largely due to the complex heterogeneity of the tumour coupled with dysregulated molecular mechanisms leading to the development of drug resistance. In recent years, microRNAs (miRNAs) have been considered to provide important information about the pathogenesis and prognostication of gliomas. miRNAs have been shown to play a specific role in promoting oncogenesis and regulating resistance to anti-glioma therapeutic agents through diverse cellular mechanisms. These include regulation of apoptosis, alterations in drug efflux pathways, enhanced activation of oncogenic signalling pathways, Epithelial-Mesenchymal Transition-like process (EMT-like) and a few others. With this knowledge, upregulation or inhibition of selected miRNAs can be used to directly affect drug resistance in glioma cells. Moreover, the clinical use of miRNAs in glioma management is becoming increasingly valuable. This comprehensive review delves into the role of miRNAs in drug resistance in high-grade gliomas and underscores their clinical significance. Our analysis has identified a distinct cluster of oncogenic miRNAs (miR-9, miR-21, miR-26a, miR-125b, and miR-221/222) and tumour suppressive miRNAs (miR-29, miR-23, miR-34a-5p, miR 181b-5p, miR-16-5p, and miR-20a) that consistently emerge as key players in regulating drug resistance across various studies. These miRNAs have demonstrated significant clinical relevance in the context of resistance to anti-glioma therapies. Additionally, the clinical significance of miRNA analysis is emphasised, including their potential to serve as clinical biomarkers for diagnosing, staging, evaluating prognosis, and assessing treatment response in gliomas.
Collapse
Affiliation(s)
- Yugendran Jegathesan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor 47500, Malaysia; Taiping Hospital, Jalan Taming Sari, Perak, Taiping 34000, Malaysia
| | - Pashaun Paveen Stephen
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor 47500, Malaysia; Coffs Harbour Health Campus, Coffs Harbour, NSW 2450, Australia
| | - Isra Saif Eldin Eisa Sati
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor 47500, Malaysia
| | - Prakrithi Narayanan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor 47500, Malaysia
| | - Mastura Monif
- Department of Neuroscience, Central Clinical School, Monash University, VIC, Melbourne, Australia; Department of Physiology, The University of Melbourne, Melbourne, VIC, Australia; Department of Neurology, The Royal Melbourne Hospital, Melbourne, VIC, Australia; Department of Neurology, The Alfred, Melbourne, VIC, Australia
| | - Muhamad Noor Alfarizal Kamarudin
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor 47500, Malaysia.
| |
Collapse
|
16
|
Zhang Y, Sun M, Xie J, Chen J, Huang T, Duan WJ, Chen JX, Chen J, Dai Z, Li M. Dual-Signal Amplification Strategy Based on Catalytic Hairpin Assembly and APE1-Assisted Amplification for High-Contrast miRNA Imaging in Living Cells. Anal Chem 2024; 96:910-916. [PMID: 38171356 DOI: 10.1021/acs.analchem.3c05013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Early tumor diagnosis is crucial to successful treatment. Earlier studies have shown that microRNA is a biomarker for early tumor diagnosis. The development of highly sensitive miRNA detection methods, especially in living cells, plays an indispensable role for early diagnosis and treatment of tumor. Although the catalytic hairpin assembly (CHA)-based miRNA analysis strategy is commonly used for disease diagnosis, further application of CHA is hindered due to its low amplification efficiency and low tumor recognition contrast. To address these limitations, we propose a dual-signal amplification strategy based on CHA and APE1-assisted amplification, enabling highly sensitive and high-contrast miRNA imaging. The miR-221 was selected as a target model. This dual-signal amplification strategy has exhibited high amplification efficiency, which could analyze miRNA as low as 21 fM. This strategy also exhibited high specificity, which could distinguish target miRNA and nontarget with single-base differences. Moreover, this method showed significant potential for practical application, as it could successfully distinguish the expression difference of miR-221 in the plasma samples of normal people and patients. Most importantly, the expression level of the APE1 enzyme in tumor cells is higher than that in normal cells, allowing this strategy to sensitively and specifically image miRNA within tumor cells. This proposed method has also been successfully used to indicate fluctuations of intracellular miRNA and to distinguish miRNA expression between normal cells and cancer cells with high contrast. We anticipate that this method will provide fresh insights and can be a powerful tool for tumor diagnosis and treatment based on miRNA analysis.
Collapse
Affiliation(s)
- Ya Zhang
- Center of Clinical Laboratory, The First Affiliated Hospital of Jinan University, Guangzhou 510632, P.R. China
| | - Mengxu Sun
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, P.R. China
| | - Juan Xie
- Center of Clinical Laboratory, The First Affiliated Hospital of Jinan University, Guangzhou 510632, P.R. China
| | - Jing Chen
- Center of Clinical Laboratory, The First Affiliated Hospital of Jinan University, Guangzhou 510632, P.R. China
| | - Ting Huang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, P.R. China
| | - Wen-Jun Duan
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, P.R. China
| | - Jin-Xiang Chen
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, P.R. China
| | - Jun Chen
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, P.R. China
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Qingdao University of Science and Technology, Qingdao 266042, P.R. China
| | - Zong Dai
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen 518107, P.R. China
| | - Minmin Li
- Center of Clinical Laboratory, The First Affiliated Hospital of Jinan University, Guangzhou 510632, P.R. China
| |
Collapse
|
17
|
Suleiman AA, Al-Chalabi R, Shaban SA. Integrative role of small non-coding RNAs in viral immune response: a systematic review. Mol Biol Rep 2024; 51:107. [PMID: 38227137 DOI: 10.1007/s11033-023-09141-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 12/11/2023] [Indexed: 01/17/2024]
Abstract
Various viruses cause viral infection, and these viruses have different microscopic sizes, genetic material, and morphological forms. Due to a viral infection, the host body induces defense mechanisms that activate the innate and adaptive immune system. sncRNAs are involved in various biological processes and play an essential role in antiviral response in viruses including ZIKV, HCV, DENV, SARS-CoV, and West Nile virus, and regulate the complex interactions between the viruses and host cells. This review discusses the role of miRNAs, siRNAs, piRNAs, and tiRNAs in antiviral response. Cellular miRNAs bind with virus mRNA and perform their antiviral response in multiple viruses. However, the chemical modifications of miRNA necessary to avoid nuclease attack, which is then involved with intracellular processing, have proven challenging for therapeutic replacement of miRNAs. siRNAs have significant antiviral responses by targeting any gene of interest along the correct nucleotide of targeting mRNA. Due to this ability, siRNAs have valuable characteristics in antiviral response for therapeutic purposes. Additionally, the researchers noted the involvement of piRNAs and tiRNAs in the antiviral response, yet their findings were deemed insignificant.
Collapse
Affiliation(s)
| | | | - Semaa A Shaban
- Biology Department, College of Sciences, Tikrit University, Tikrit, Iraq
| |
Collapse
|
18
|
Jimbu L, Mesaros O, Joldes C, Neaga A, Zaharie L, Zdrenghea M. MicroRNAs Associated with a Bad Prognosis in Acute Myeloid Leukemia and Their Impact on Macrophage Polarization. Biomedicines 2024; 12:121. [PMID: 38255226 PMCID: PMC10813737 DOI: 10.3390/biomedicines12010121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/24/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
MicroRNAs (miRNAs) are short, non-coding ribonucleic acids (RNAs) associated with gene expression regulation. Since the discovery of the first miRNA in 1993, thousands of miRNAs have been studied and they have been associated not only with physiological processes, but also with various diseases such as cancer and inflammatory conditions. MiRNAs have proven to be not only significant biomarkers but also an interesting therapeutic target in various diseases, including cancer. In acute myeloid leukemia (AML), miRNAs have been regarded as a welcome addition to the limited therapeutic armamentarium, and there is a vast amount of data on miRNAs and their dysregulation. Macrophages are innate immune cells, present in various tissues involved in both tissue repair and phagocytosis. Based on their polarization, macrophages can be classified into two groups: M1 macrophages with pro-inflammatory functions and M2 macrophages with an anti-inflammatory action. In cancer, M2 macrophages are associated with tumor evasion, metastasis, and a poor outcome. Several miRNAs have been associated with a poor prognosis in AML and with either the M1 or M2 macrophage phenotype. In the present paper, we review miRNAs with a reported negative prognostic significance in cancer with a focus on AML and analyze their potential impact on macrophage polarization.
Collapse
Affiliation(s)
- Laura Jimbu
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Babes Str., 400012 Cluj-Napoca, Romania; (O.M.); (C.J.); (A.N.); (L.Z.); (M.Z.)
- Department of Hematology, Ion Chiricuta Oncology Institute, 34-36 Republicii Str., 400015 Cluj-Napoca, Romania
| | - Oana Mesaros
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Babes Str., 400012 Cluj-Napoca, Romania; (O.M.); (C.J.); (A.N.); (L.Z.); (M.Z.)
- Department of Hematology, Ion Chiricuta Oncology Institute, 34-36 Republicii Str., 400015 Cluj-Napoca, Romania
| | - Corina Joldes
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Babes Str., 400012 Cluj-Napoca, Romania; (O.M.); (C.J.); (A.N.); (L.Z.); (M.Z.)
| | - Alexandra Neaga
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Babes Str., 400012 Cluj-Napoca, Romania; (O.M.); (C.J.); (A.N.); (L.Z.); (M.Z.)
| | - Laura Zaharie
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Babes Str., 400012 Cluj-Napoca, Romania; (O.M.); (C.J.); (A.N.); (L.Z.); (M.Z.)
- Department of Hematology, Ion Chiricuta Oncology Institute, 34-36 Republicii Str., 400015 Cluj-Napoca, Romania
| | - Mihnea Zdrenghea
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Babes Str., 400012 Cluj-Napoca, Romania; (O.M.); (C.J.); (A.N.); (L.Z.); (M.Z.)
- Department of Hematology, Ion Chiricuta Oncology Institute, 34-36 Republicii Str., 400015 Cluj-Napoca, Romania
| |
Collapse
|
19
|
Nelaturi P, Kademani SP, Nallagangula KS, Ravikumar S. Role of MicroRNAs in Alcohol-Related Liver Disease. ALCOHOLISM TREATMENT QUARTERLY 2024; 42:115-137. [DOI: 10.1080/07347324.2023.2256756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Affiliation(s)
- Prabhudas Nelaturi
- Multi-Disciplinary Centre for Biomedical Research, Aarupadai Veedu Medical College and Hospital, Vinayaka Mission’s Research Foundation (Deemed to be University), Puducherry, India
| | - Sangeetha P Kademani
- Multi-Disciplinary Centre for Biomedical Research, Aarupadai Veedu Medical College and Hospital, Vinayaka Mission’s Research Foundation (Deemed to be University), Puducherry, India
| | | | - Sambandam Ravikumar
- Multi-Disciplinary Centre for Biomedical Research, Aarupadai Veedu Medical College and Hospital, Vinayaka Mission’s Research Foundation (Deemed to be University), Puducherry, India
| |
Collapse
|
20
|
Pal A, Ojha A, Ju J. Functional and Potential Therapeutic Implication of MicroRNAs in Pancreatic Cancer. Int J Mol Sci 2023; 24:17523. [PMID: 38139352 PMCID: PMC10744132 DOI: 10.3390/ijms242417523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/01/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
The alarmingly low five-year survival rate for pancreatic cancer presents a global health challenge, contributing to about 7% of all cancer-related deaths. Late-stage diagnosis and high heterogeneity are the biggest hurdles in treating pancreatic cancer. Thus, there is a pressing need to discover novel biomarkers that could help in early detection as well as improve therapeutic strategies. MicroRNAs (miRNAs), a class of short non-coding RNA, have emerged as promising candidates with regard to both diagnostics and therapeutics. Dysregulated miRNAs play pivotal roles in accelerating tumor growth and metastasis, orchestrating tumor microenvironment, and conferring chemoresistance in pancreatic cancer. The differential expression profiles of miRNAs in pancreatic cancer could be utilized to explore novel therapeutic strategies. In this review, we also covered studies on recent advancements in various miRNA-based therapeutics such as restoring miRNAs with a tumor-suppressive function, suppressing miRNA with an oncogenic function, and combination with chemotherapeutic drugs. Despite several challenges in terms of specificity and targeted delivery, miRNA-based therapies hold the potential to revolutionize the treatment of pancreatic cancer by simultaneously targeting multiple signaling pathways.
Collapse
Affiliation(s)
- Amartya Pal
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; (A.P.); (A.O.)
- Graduate Program in Molecular and Cellular Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Anushka Ojha
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; (A.P.); (A.O.)
- Graduate Program in Molecular and Cellular Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Jingfang Ju
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; (A.P.); (A.O.)
- The Northport Veteran’s Administration Medical Center, Northport, NY 11768, USA
| |
Collapse
|
21
|
Gentile AM, Lhamyani S, Mengual-Mesa M, García-Fuentes E, Bermúdez-Silva FJ, Rojo-Martínez G, Clemente-Postigo M, Rodriguez-Cañete A, Olveira G, El Bekay R. MiR-221-3p/222-3p Cluster Expression in Human Adipose Tissue Is Related to Obesity and Type 2 Diabetes. Int J Mol Sci 2023; 24:17449. [PMID: 38139277 PMCID: PMC10744326 DOI: 10.3390/ijms242417449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/05/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
The progression of obesity and type 2 diabetes (T2D) is intricately linked with adipose tissue (AT) angiogenesis. Despite an established network of microRNAs (miRNAs) regulating AT function, the specific role of angiogenic miRNAs remains less understood. The miR-221/222 cluster has recently emerged as being associated with antiangiogenic activity. However, no studies have explored its role in human AT amidst the concurrent development of obesity and T2D. Therefore, this study aims to investigate the association between the miR-221-3p/222-3p cluster in human AT and its regulatory network with obesity and T2D. MiR-221-3p/222-3p and their target gene (TG) expression levels were quantified through qPCR in visceral (VAT) and subcutaneous (SAT) AT from patients (n = 33) categorized based on BMI as normoweight (NW) and obese (OB) and by glycemic status as normoglycemic (NG) and type 2 diabetic (T2D) subjects. In silico analyses of miR-221-3p/222-3p and their TGs were conducted to identify pertinent signaling pathways. The results of a multivariate analysis, considering the simultaneous expression of miR-221-3p and miR-222-3p as dependent variables, revealed statistically significant distinctions when accounting for variables such as tissue depot, obesity, sex, and T2D as independent factors. Furthermore, both miRNAs and their TGs exhibited differential expression patterns based on obesity severity, glycemic status, sex, and type of AT depot. Our in silico analysis indicated that miR-221-3p/222-3p cluster TGs predominantly participate in angiogenesis, WNT signaling, and apoptosis pathways. In conclusion, these findings underscore a promising avenue for future research, emphasizing the miR-221-3p/222-3p cluster and its associated regulatory networks as potential targets for addressing obesity and related metabolic disorders.
Collapse
Affiliation(s)
- Adriana-Mariel Gentile
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29580 Málaga, Spain; (A.-M.G.); (S.L.); (E.G.-F.); (F.-J.B.-S.); (G.R.-M.); (G.O.)
- Clinical Unit of Endocrinology and Nutrition, University Regional Hospital of Málaga, 29009 Málaga, Spain
| | - Said Lhamyani
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29580 Málaga, Spain; (A.-M.G.); (S.L.); (E.G.-F.); (F.-J.B.-S.); (G.R.-M.); (G.O.)
- Clinical Unit of Endocrinology and Nutrition, University Regional Hospital of Málaga, 29009 Málaga, Spain
- Spanish Biomedical Research Center in Physiopathology of Obesity and Nutrition (CIBERObn), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - María Mengual-Mesa
- Andalucía Tech, Faculty of Health Sciences, Department of Systems and Automation Engineering, School of Industrial Engineering, Universidad de Málaga, Teatinos Campus, 29071 Málaga, Spain;
| | - Eduardo García-Fuentes
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29580 Málaga, Spain; (A.-M.G.); (S.L.); (E.G.-F.); (F.-J.B.-S.); (G.R.-M.); (G.O.)
- Unidad de Gestión Clínica de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III, 28029 Málaga, Spain
| | - Francisco-Javier Bermúdez-Silva
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29580 Málaga, Spain; (A.-M.G.); (S.L.); (E.G.-F.); (F.-J.B.-S.); (G.R.-M.); (G.O.)
- Clinical Unit of Endocrinology and Nutrition, University Regional Hospital of Málaga, 29009 Málaga, Spain
- The Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Gemma Rojo-Martínez
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29580 Málaga, Spain; (A.-M.G.); (S.L.); (E.G.-F.); (F.-J.B.-S.); (G.R.-M.); (G.O.)
- Clinical Unit of Endocrinology and Nutrition, University Regional Hospital of Málaga, 29009 Málaga, Spain
- The Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Mercedes Clemente-Postigo
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, 29010 Málaga, Spain
- Institute of Biomedical Research in Málaga (IBIMA)-Bionand Platform, 29590 Málaga, Spain
- Department of Cell Biology, Genetics, and Physiology, Faculty of Science, University of Málaga, 29010 Málaga, Spain
| | - Alberto Rodriguez-Cañete
- Unidad de Gestión Clínica de Cirugía General, Digestiva y Trasplantes, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain;
| | - Gabriel Olveira
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29580 Málaga, Spain; (A.-M.G.); (S.L.); (E.G.-F.); (F.-J.B.-S.); (G.R.-M.); (G.O.)
- Clinical Unit of Endocrinology and Nutrition, University Regional Hospital of Málaga, 29009 Málaga, Spain
- The Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Departamento de Medicina y Cirugía, Universidad de Málaga, 29010 Málaga, Spain
| | - Rajaa El Bekay
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29580 Málaga, Spain; (A.-M.G.); (S.L.); (E.G.-F.); (F.-J.B.-S.); (G.R.-M.); (G.O.)
- Clinical Unit of Endocrinology and Nutrition, University Regional Hospital of Málaga, 29009 Málaga, Spain
- Spanish Biomedical Research Center in Physiopathology of Obesity and Nutrition (CIBERObn), Instituto de Salud Carlos III, 28029 Madrid, Spain
- IBIMA-Plataforma Bionand, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
| |
Collapse
|
22
|
Malik N, Kundu A, Gupta Y, Irshad K, Arora M, Goswami S, Mahajan S, Sarkar C, Suri V, Suri A, Chattopadhyay P, Sinha S, Chosdol K. Protumorigenic role of the atypical cadherin FAT1 by the suppression of PDCD10 via RelA/miR221-3p/222-3p axis in glioblastoma. Mol Carcinog 2023; 62:1817-1831. [PMID: 37606187 DOI: 10.1002/mc.23617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 07/18/2023] [Accepted: 07/28/2023] [Indexed: 08/23/2023]
Abstract
The atypical cadherin FAT1 function either as a pro or antitumorigenic in tumors of different tissue origins. Our group previously demonstrated the protumorigenic nature of FAT1 signaling in glioblastoma (GBM). In this study, we investigated how FAT1 influences the expression of clustered oncomiRs (miR-221-3p/miR-222-3p) and their downstream effects in GBM. Through several experiments involving the measurement of specific gene/microRNA expression, gene knockdowns, protein and cellular assays, we have demonstrated a novel oncogenic signaling pathway mediated by FAT1 in glioma. These results have been verified using antimiRs and miR-mimic assays. Initially, in glioma-derived cell lines (U87MG and LN229), we observed FAT1 as a novel up-regulator of the transcription factor NFκB-RelA. RelA then promotes the expression of the clustered-oncomiRs, miR-221-3p/miR-222-3p, which in turn suppresses the expression of the tumor suppressor gene (TSG), PDCD10 (Programmed cell death protein10). The suppression of PDCD10, and other known TSG targets (PTEN/PUMA), by miR-221-3p/miR-222-3p, leads to increased clonogenicity, migration, and invasion of glioma cells. Consistent with our in-vitro findings, we observed a positive expression correlation of FAT1 and miR-221-3p, and an inverse correlation of FAT1 and the miR-targets (PDCD10/PTEN/PUMA), in GBM tissue-samples. These findings were also supported by publicly available GBM databases (The Cancer Genome Atlas [TCGA] and The Repository of Molecular Brain Neoplasia Data [Rembrandt]). Patients with tumors displaying high levels of FAT1 and miR-221-3p expression (50% and 65% respectively) experienced shorter overall survival. Similar results were observed in the TCGA-GBM database. Thus, our findings show a novel FAT1/RelA/miR-221/miR-222 oncogenic-effector pathway that downregulates the TSG, PDCD10, in GBM, which could be targeted therapeutically in a specific manner.
Collapse
Affiliation(s)
- Nargis Malik
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Archismita Kundu
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Yakhlesh Gupta
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Khushboo Irshad
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Manvi Arora
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Sanjeev Goswami
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Swati Mahajan
- Neuropathology Laboratory, All India Institute of Medical Sciences, New Delhi, India
| | - Chitra Sarkar
- Neuropathology Laboratory, All India Institute of Medical Sciences, New Delhi, India
| | - Vaishali Suri
- Neuropathology Laboratory, All India Institute of Medical Sciences, New Delhi, India
| | - Ashish Suri
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi, India
| | | | - Subrata Sinha
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Kunzang Chosdol
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
23
|
Li Y, Shi X, Jia E, Qin S, Yu F. Extracellular vesicle biomarkers for prostate cancer diagnosis: A systematic review and meta-analysis. Urol Oncol 2023; 41:440-453. [PMID: 37914569 DOI: 10.1016/j.urolonc.2023.08.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/24/2023] [Accepted: 08/29/2023] [Indexed: 11/03/2023]
Abstract
Extracellular vesicle (EV) biomarkers have promising diagnostic and screening capabilities for several cancers, and growing evidence indicates that EV biomarkers can be used as diagnostic markers for prostate cancer (CaP). However, data on the diagnostic accuracy of EV biomarkers for CaP diagnosis are conflicting. We performed a systematic review and meta-analysis, aimed to summarize the diagnostic performance of EV biomarkers for CaP. We systematically searched PubMed, Medline, and Web of Science from inception to 12 September 2022 for studies that assessed the diagnostic accuracy of EV biomarkers for CaP. We summarized the pooled sensitivity and specificity calculated using a random-effects model. We identified 19 studies involving 976 CaP patients and 676 noncancerous controls; one study conducted independent validation tests. Ten studies emphasized EV RNAs, 6 on EV proteins, and 9 on biomarker panels. MiR-141, miR-221, and PSMA were the most frequently reported RNAs and proteins for CaP diagnosis. For individual RNAs and proteins, the pooled sensitivity and specificity were 70% (95% CI: 68%-71%), 79% (95% CI: 77%-80%), 85% (95% CI: 81%-87%), and 83% (95% CI: 80%-86%), respectively. The pooled sensitivity and specificity of the EV panels were 84% (95% CI: 82%-86%) and 86% (95% CI: 84%-88%), respectively. The studies may have been somewhat limited by the EV isolation and detection techniques. EV biomarkers showed promising diagnostic capability for CaP. Addressing deficiencies in EV isolation and detection techniques has important implications for the application of these novel noninvasive biomarkers in clinical practice.
Collapse
Affiliation(s)
- Yang Li
- Department of Urology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xianquan Shi
- Department of Ultrasound, Beijing Friendship Hospital of Capital Medical University, Beijing, China
| | - Erna Jia
- Department of Gastroenterology and Hepatology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Shaoyou Qin
- Department of Gastroenterology and Hepatology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Fan Yu
- Department of Gastroenterology and Hepatology, China-Japan Union Hospital of Jilin University, Changchun, China.
| |
Collapse
|
24
|
Mardente S, Romeo MA, Asquino A, Po A, Gilardini Montani MS, Cirone M. HHV-6A Infection of Papillary Thyroid Cancer Cells Induces Several Effects Related to Cancer Progression. Viruses 2023; 15:2122. [PMID: 37896899 PMCID: PMC10612057 DOI: 10.3390/v15102122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
Recent studies have shown that thyrocytes are permissive to HHV-6A infection and that the virus may contribute to the pathogenesis of autoimmune thyroiditis. Thyroid autoimmune diseases increase the risk of papillary cancer, which is not surprising considering that chronic inflammation activates pathways that are also pro-oncogenic. Moreover, in this condition, cell proliferation is stimulated as an attempt to repair tissue damage caused by the inflammatory process. Interestingly, it has been reported that the well-differentiated papillary thyroid carcinoma (PTC), the less aggressive form of thyroid tumor, may progress to the more aggressive follicular thyroid carcinoma (FTC) and eventually to the anaplastic thyroid carcinoma (ATC), and that to such progression contributes the presence of an inflammatory/immune suppressive tumor microenvironment. In this study, we investigated whether papillary tumor cells (BCPAP) could be infected by human herpes virus-6A (HHV-6A), and if viral infection could induce effects related to cancer progression. We found that the virus dysregulated the expression of several microRNAs, such as miR-155, miR-9, and the miR-221/222 cluster, which are involved in different steps of carcinogenesis, and increased the secretion of pro-inflammatory cytokines, particularly IL-6, which may also sustain thyroid tumor cell growth and promote cancer progression. Genomic instability and the expression of PTEN, reported to act as an oncogene in mutp53-carrying cells such as BCPAP, also increased following HHV-6A-infection. These findings suggest that a ubiquitous herpesvirus such as HHV-6A, which displays a marked tropism for thyrocytes, could be involved in the progression of PTC towards more aggressive forms of thyroid tumor.
Collapse
Affiliation(s)
- Stefania Mardente
- Department of Experimental Medicine, Sapienza University, 00161 Rome, Italy; (S.M.); (M.A.R.); (A.A.); (M.S.G.M.)
| | - Maria Anele Romeo
- Department of Experimental Medicine, Sapienza University, 00161 Rome, Italy; (S.M.); (M.A.R.); (A.A.); (M.S.G.M.)
| | - Angela Asquino
- Department of Experimental Medicine, Sapienza University, 00161 Rome, Italy; (S.M.); (M.A.R.); (A.A.); (M.S.G.M.)
| | - Agnese Po
- Department of Molecular Medicine, Sapienza University, 00161 Rome, Italy;
| | | | - Mara Cirone
- Department of Experimental Medicine, Sapienza University, 00161 Rome, Italy; (S.M.); (M.A.R.); (A.A.); (M.S.G.M.)
| |
Collapse
|
25
|
Álvarez-Hilario LG, Salmerón-Bárcenas EG, Ávila-López PA, Hernández-Montes G, Aréchaga-Ocampo E, Herrera-Goepfert R, Albores-Saavedra J, Manzano-Robleda MDC, Saldívar-Cerón HI, Martínez-Frías SP, Thompson-Bonilla MDR, Vargas M, Hernández-Rivas R. Circulating miRNAs as Noninvasive Biomarkers for PDAC Diagnosis and Prognosis in Mexico. Int J Mol Sci 2023; 24:15193. [PMID: 37894871 PMCID: PMC10607652 DOI: 10.3390/ijms242015193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/20/2023] [Accepted: 10/08/2023] [Indexed: 10/29/2023] Open
Abstract
Among malignant neoplasms, pancreatic ductal adenocarcinoma (PDAC) has one of the highest fatality rates due to its late detection. Therefore, it is essential to discover a noninvasive, early, specific, and sensitive diagnostic method. MicroRNAs (miRNAs) are attractive biomarkers because they are accessible, highly specific, and sensitive. It is crucial to find miRNAs that could be used as possible biomarkers because PDAC is the eighth most common cause of cancer death in Mexico. With the help of microRNA microarrays, differentially expressed miRNAs (DEmiRNAs) were found in PDAC tissues. The presence of these DEmiRNAs in the plasma of Mexican patients with PDAC was determined using RT-qPCR. Receiver operating characteristic curve analysis was performed to determine the diagnostic capacity of these DEmiRNAs. Gene Expression Omnibus datasets (GEO) were employed to verify our results. The Prisma V8 statistical analysis program was used. Four DEmiRNAs in plasma from PDAC patients and microarray tissues were found. Serum samples from patients with PDAC were used to validate their overexpression in GEO databases. We discovered a new panel of the two miRNAs miR-222-3p and miR-221-3p that could be used to diagnose PDAC, and when miR-221-3p and miR-222-3p were overexpressed, survival rates decreased. Therefore, miR-222-3p and miR-221-3p might be employed as noninvasive indicators for the diagnosis and survival of PDAC in Mexican patients.
Collapse
Affiliation(s)
- Lissuly Guadalupe Álvarez-Hilario
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de Mexico C.P. 07360, Mexico; (L.G.Á.-H.); (E.G.S.-B.); (P.A.Á.-L.); (H.I.S.-C.); (M.V.)
| | - Eric Genaro Salmerón-Bárcenas
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de Mexico C.P. 07360, Mexico; (L.G.Á.-H.); (E.G.S.-B.); (P.A.Á.-L.); (H.I.S.-C.); (M.V.)
| | - Pedro Antonio Ávila-López
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de Mexico C.P. 07360, Mexico; (L.G.Á.-H.); (E.G.S.-B.); (P.A.Á.-L.); (H.I.S.-C.); (M.V.)
| | - Georgina Hernández-Montes
- Coordinación de la Investigación Científica, Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de Mexico C.P. 14080, Mexico;
| | - Elena Aréchaga-Ocampo
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana, Unidad Cuajimalpa, Ciudad de Mexico C.P. 05300, Mexico;
| | - Roberto Herrera-Goepfert
- Departamento de Patología, Instituto Nacional de Cancerología, Ciudad de Mexico C.P. 14080, Mexico;
| | - Jorge Albores-Saavedra
- Departamento de Patología, Medica Sur Clínica y Fundación, Ciudad de Mexico C.P. 14050, Mexico;
| | | | - Héctor Iván Saldívar-Cerón
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de Mexico C.P. 07360, Mexico; (L.G.Á.-H.); (E.G.S.-B.); (P.A.Á.-L.); (H.I.S.-C.); (M.V.)
| | - Sandra Paola Martínez-Frías
- Departamento de Infectología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Avenida Vasco de Quiroga No.15, Colonia Belisario Domínguez Sección XVI, Ciudad de Mexico C.P. 14080, Mexico
| | | | - Miguel Vargas
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de Mexico C.P. 07360, Mexico; (L.G.Á.-H.); (E.G.S.-B.); (P.A.Á.-L.); (H.I.S.-C.); (M.V.)
| | - Rosaura Hernández-Rivas
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de Mexico C.P. 07360, Mexico; (L.G.Á.-H.); (E.G.S.-B.); (P.A.Á.-L.); (H.I.S.-C.); (M.V.)
| |
Collapse
|
26
|
Ahmadi SM, Amirkhanloo S, Yazdian-Robati R, Ebrahimi H, Pirhayati FH, Almalki WH, Ebrahimnejad P, Kesharwani P. Recent advances in novel miRNA mediated approaches for targeting breast cancer. J Drug Target 2023; 31:777-793. [PMID: 37480323 DOI: 10.1080/1061186x.2023.2240979] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/18/2023] [Accepted: 05/05/2023] [Indexed: 07/24/2023]
Abstract
Breast cancer (BC) is considered one of the most frequent cancers among woman worldwide. While conventional therapy has been successful in treating many cases of breast cancer, drug resistance, heterogenicity, tumour features and recurrence, invasion, metastasis and the presence of breast cancer stem cells can hinder the effect of treatments, and can reduce the quality of life of patients. MicroRNAs (miRNAs) are short non-coding RNA molecules that play a crucial role in the development and progression of breast cancer. Several studies have reported that aberrant expression of specific miRNAs is associated with the pathogenesis of breast cancer. However, miRNAs are emerging as potential biomarkers and therapeutic targets for breast cancer. Understanding their role in breast cancer biology could help develop more effective treatments for this disease. The present study discusses the biogenesis and function of miRNAs, as well as miRNA therapy approaches for targeting and treating breast cancer cells.
Collapse
Affiliation(s)
- Seyedeh Melika Ahmadi
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Shervin Amirkhanloo
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Rezvan Yazdian-Robati
- Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hossein Ebrahimi
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | | | - Waleed H Almalki
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Pedram Ebrahimnejad
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
- Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| |
Collapse
|
27
|
Patellongi I, Amiruddin A, Massi MN, Islam AA, Pratama MY, Sutandyo N, Latar NH, Faruk M. Circulating miR-221/222 expression as microRNA biomarker predicting tamoxifen treatment outcome: a case-control study. Ann Med Surg (Lond) 2023; 85:3806-3815. [PMID: 37554919 PMCID: PMC10406100 DOI: 10.1097/ms9.0000000000001061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 07/02/2023] [Indexed: 08/10/2023] Open
Abstract
The high mortality rate in breast cancer (BC) patients is generally due to metastases resistant to systemic therapy. Two causes of systemic therapy resistance in BC patients are circulating miRNAs-221 and miR-222, leading to improved BC cell proliferation, survival, and reduced cell apoptosis. This study investigated the miRNA expression changes associated with cancer cell resistance to tamoxifen therapy and is expected to be clinically meaningful before providing endocrine therapy to luminal-type BC patients who express them. Methods This case-control research included individuals with the luminal subtype of BC who had received tamoxifen medication for around one year. Furthermore, the case group contained 15 individuals with local recurrence or metastases, while the control group comprised 19 patients without local recurrence or metastases. Plasma miR-221/222 quantification was performed with real-time PCR using transcript-specific primers. Results A significant difference was found in circulating miR-221 expression between cases and controls (P=0.005) but not in miR-222 expression (P=0.070). There were no significant differences between miR-221/222 expression, progesterone receptor, Ki67 protein levels, lymphovascular invasion, and stage. However, receiver operator characteristic curve analyses showed miR-221/222 expressions predictive of tamoxifen resistance (P=0.030) with a sensitivity of 60.00 and a specificity of 83.33%. Conclusion The use of circulating miR-221/222 expression can predict relapse as well as resistance to tamoxifen treatment in BC patients, and their testing is recommended for luminal subtype BC patients who will undergo tamoxifen therapy to determine their risk of tamoxifen resistance early, increasing treatment effectiveness.
Collapse
Affiliation(s)
| | | | | | | | | | - Noorwati Sutandyo
- Department of Medical Hematology-Oncology, Dharmais Hospital National Cancer Center, Jakarta, Indonesia
| | - Nani H.M. Latar
- Endocrine and Breast Surgery Unit, Department of Surgery, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Center, Kuala Lumpur, Malaysia
| | - Muhammad Faruk
- Department of Surgery, Faculty of Medicine, Universitas Hasanuddin, Makassar
| |
Collapse
|
28
|
Yehia AM, Elsakka EGE, Abulsoud AI, Abdelmaksoud NM, Elshafei A, Elkhawaga SY, Ismail A, Mokhtar MM, El-Mahdy HA, Hegazy M, Elballal MS, Mohammed OA, El-Husseiny HM, Midan HM, El-Dakroury WA, Zewail MB, Abdel Mageed SS, Moustafa YM, Mostafa RM, Elkady MA, Doghish AS. Decoding the role of miRNAs in multiple myeloma pathogenesis: A focus on signaling pathways. Pathol Res Pract 2023; 248:154715. [PMID: 37517169 DOI: 10.1016/j.prp.2023.154715] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 08/01/2023]
Abstract
Multiple myeloma (MM) is a cancer of plasma cells that has been extensively studied in recent years, with researchers increasingly focusing on the role of microRNAs (miRNAs) in regulating gene expression in MM. Several non-coding RNAs have been demonstrated to regulate MM pathogenesis signaling pathways. These pathways might regulate MM development, apoptosis, progression, and therapeutic outcomes. They are Wnt/β-catenin, PI3K/Akt/mTOR, P53 and KRAS. This review highlights the impending role of miRNAs in MM signaling and their relationship with MM therapeutic interventions.
Collapse
Affiliation(s)
- Amr Mohamed Yehia
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Elsayed G E Elsakka
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt; Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Nourhan M Abdelmaksoud
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Ahmed Elshafei
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Samy Y Elkhawaga
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Ahmed Ismail
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Mahmoud Mohamed Mokhtar
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Hesham A El-Mahdy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| | - Maghawry Hegazy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Osama A Mohammed
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt; Department of Clinical Pharmacology, Faculty of Medicine, Bisha University, Bisha 61922, Saudi Arabia
| | - Hussein M El-Husseiny
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Elqaliobiya 13736, Egypt; Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Heba M Midan
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Moataz B Zewail
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Sherif S Abdel Mageed
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Yasser M Moustafa
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | | | - Mohamed A Elkady
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| |
Collapse
|
29
|
Liu Y, Li J, Li J, Yan H, Qiao B, Wang Y, Hu Y, Sun C. The predictive value of MiR-221 in cancer chemoresistance: a systematic review and meta-analysis. Expert Rev Anticancer Ther 2023; 23:883-895. [PMID: 37272651 DOI: 10.1080/14737140.2023.2219451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 04/17/2023] [Indexed: 06/06/2023]
Abstract
BACKGROUND Many studies have reported that microRNA-221 (miR-221) is abnormally expressed in various cancers, and there has not been a study to systematically analyze the association between miR-221 and chemoresistance in different cancers. METHODS We systematically searched PubMed, Web of Science, Ovid, and Cochrane for relevant studies. The pooled odds ratios (ORs) and hazard ratios (HRs) with 95% confidence intervals (CIs) were used to estimate. RESULTS A total of 30 studies with 1670 patients were enrolled in our study. Thirteen cancer types have been studied, and traditional chemotherapy, targeted drugs, endocrine therapy, chemoradiotherapy, and other treatments were used. High miR-221 expression was associated with poor chemotherapy response in most studies, and the meta-analysis confirmed this result (OR = 3.64, 95%CI: 1.73-7.62, p = 0.001). Besides, the higher level of miR-221 was related to shorter overall survival (OS) (HR = 2.16, 95%CI: 1.47-3.16, p < 0.001) and progression-free survival (PFS) (HR = 1.81, 95%CI: 1.51-2.16, p < 0.001) in patients after chemotherapy. CONCLUSION Our results highlight that high miR-221 expression has possible associations with chemoresistance and poor prognosis in multiple cancers. Further studies are needed to discover the molecular mechanisms underlying these associations to provide a solid evidence base for it being used as biomarkers of response to chemotherapeutic interventions in cancer.
Collapse
Affiliation(s)
- Yuxi Liu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingwen Li
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junying Li
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Han Yan
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bing Qiao
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yadan Wang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Collaborative Innovation Center of Hematology, Huazhong University of Science and Technology, Wuhan, China
| | - Chunyan Sun
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Collaborative Innovation Center of Hematology, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
30
|
Wong GY, Millar AA. Target Landscape of Conserved Plant MicroRNAs and the Complexities of Their Ancient MicroRNA-Binding Sites. PLANT & CELL PHYSIOLOGY 2023; 64:604-621. [PMID: 36943747 DOI: 10.1093/pcp/pcad019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/02/2023] [Accepted: 03/19/2023] [Indexed: 06/16/2023]
Abstract
In plants, microRNA (miRNA)-target interactions (MTIs) require high complementarity, a feature from which bioinformatic programs have predicted numerous and diverse targets for any given miRNA, promoting the idea of complex miRNA networks. Opposing this is a hypothesis of constrained miRNA specificity, in which functional MTIs are restricted to the few targets whose required expression output is compatible with the expression of the miRNA. To explore these opposing views, the bioinformatic pipeline Targets Ranked Using Experimental Evidence was applied to strongly conserved miRNAs to identity their high-evidence (HE) targets across species. For each miRNA family, HE targets predominantly consisted of homologs from one conserved target gene family (primary family). These primary families corresponded to the known canonical miRNA-target families, validating the approach. Very few additional HE target families were identified (secondary family), and if so, they were likely functionally related to the primary family. Many primary target families contained highly conserved nucleotide sequences flanking their miRNA-binding sites that were enriched in HE homologs across species. A number of these flanking sequences are predicted to form conserved RNA secondary structures that preferentially base pair with the miRNA-binding site, implying that these sites are highly structured. Our findings support a target landscape view that is dominated by the conserved primary target families, with a minority of either secondary target families or non-conserved targets. This is consistent with the constrained hypothesis of functional miRNA specificity, which potentially in part is being facilitated by features beyond complementarity.
Collapse
Affiliation(s)
- Gigi Y Wong
- Division of Plant Science, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| | - Anthony A Millar
- Division of Plant Science, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
31
|
Singh DD, Kim Y, Choi SA, Han I, Yadav DK. Clinical Significance of MicroRNAs, Long Non-Coding RNAs, and CircRNAs in Cardiovascular Diseases. Cells 2023; 12:1629. [PMID: 37371099 DOI: 10.3390/cells12121629] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/17/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Based on recent research, the non-coding genome is essential for controlling genes and genetic programming during development, as well as for health and cardiovascular diseases (CVDs). The microRNAs (miRNAs), lncRNAs (long ncRNAs), and circRNAs (circular RNAs) with significant regulatory and structural roles make up approximately 99% of the human genome, which does not contain proteins. Non-coding RNAs (ncRNA) have been discovered to be essential novel regulators of cardiovascular risk factors and cellular processes, making them significant prospects for advanced diagnostics and prognosis evaluation. Cases of CVDs are rising due to limitations in the current therapeutic approach; most of the treatment options are based on the coding transcripts that encode proteins. Recently, various investigations have shown the role of nc-RNA in the early diagnosis and treatment of CVDs. Furthermore, the development of novel diagnoses and treatments based on miRNAs, lncRNAs, and circRNAs could be more helpful in the clinical management of patients with CVDs. CVDs are classified into various types of heart diseases, including cardiac hypertrophy (CH), heart failure (HF), rheumatic heart disease (RHD), acute coronary syndrome (ACS), myocardial infarction (MI), atherosclerosis (AS), myocardial fibrosis (MF), arrhythmia (ARR), and pulmonary arterial hypertension (PAH). Here, we discuss the biological and clinical importance of miRNAs, lncRNAs, and circRNAs and their expression profiles and manipulation of non-coding transcripts in CVDs, which will deliver an in-depth knowledge of the role of ncRNAs in CVDs for progressing new clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Desh Deepak Singh
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur 303002, India
| | - Youngsun Kim
- Department of Obstetrics and Gynecology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Seung Ah Choi
- Division of Pediatric Neurosurgery, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul 08826, Republic of Korea
| | - Ihn Han
- Plasma Bioscience Research Center, Applied Plasma Medicine Center, Department of Plasma Biodisplay, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Dharmendra Kumar Yadav
- Department of Pharmacy, Gachon Institute of Pharmaceutical Science, College of Pharmacy, Gachon University, Incheon 21924, Republic of Korea
| |
Collapse
|
32
|
Wang X, Lin J, Wang Z, Li Z, Wang M. Possible therapeutic targets for NLRP3 inflammasome-induced breast cancer. Discov Oncol 2023; 14:93. [PMID: 37300757 DOI: 10.1007/s12672-023-00701-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Inflammation plays a major role in the development and progression of breast cancer(BC). Proliferation, invasion, angiogenesis, and metastasis are all linked to inflammation and tumorigenesis. Furthermore, tumor microenvironment (TME) inflammation-mediated cytokine releases play a critical role in these processes. By recruiting caspase-1 through an adaptor apoptosis-related spot protein, inflammatory caspases are activated by the triggering of pattern recognition receptors on the surface of immune cells. Toll-like receptors, NOD-like receptors, and melanoma-like receptors are not triggered. It activates the proinflammatory cytokines interleukin (IL)-1β and IL-18 and is involved in different biological processes that exert their effects. The Nod-Like Receptor Protein 3 (NLRP3) inflammasome regulates inflammation by mediating the secretion of proinflammatory cytokines and interacting with other cellular compartments through the inflammasome's central role in innate immunity. NLRP3 inflammasome activation mechanisms have received much attention in recent years. Inflammatory diseases including enteritis, tumors, gout, neurodegenerative diseases, diabetes, and obesity are associated with abnormal activation of the NLRP3 inflammasome. Different cancer diseases have been linked to NLRP3 and its role in tumorigenesis may be the opposite. Tumors can be suppressed by it, as has been seen primarily in the context of colorectal cancer associated with colitis. However, cancers such as gastric and skin can also be promoted by it. The inflammasome NLRP3 is associated with breast cancer, but there are few specific reviews. This review focuses on the structure, biological characteristics and mechanism of inflammasome, the relationship between NLRP3 in breast cancer Non-Coding RNAs, MicroRNAs and breast cancer microenvironment, especially the role of NLRP3 in triple-negative breast cancer (TNBC). And the potential strategies of using NLRP3 inflammasome to target breast cancer, such as NLRP3-based nanoparticle technology and gene target therapy, are reviewed.
Collapse
Affiliation(s)
- Xixi Wang
- Department of General Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China
| | - Junyi Lin
- Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, 442000, China
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, China
| | - Zhe Wang
- Department of General Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China
| | - Zhi Li
- Department of General Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China.
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200333, China.
- Hubei Clinical Research Center for Precise Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan, China.
| | - Minghua Wang
- Department of General Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China.
| |
Collapse
|
33
|
Feng W, Zhong XQ, Zheng XX, Liu QP, Liu MY, Liu XB, Lin CS, Xu Q. The Underlying Mechanism of Duanteng Yimu Decoction in Inhibiting Synovial Hyperplasia in Rheumatoid Arthritis. J Immunol Res 2023; 2023:2340538. [PMID: 37252680 PMCID: PMC10225272 DOI: 10.1155/2023/2340538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 04/19/2023] [Accepted: 05/13/2023] [Indexed: 05/31/2023] Open
Abstract
Dysregulation of microRNAs (miRNAs) is associated with the pathogenesis of rheumatoid arthritis (RA). Our previous studies confirmed that Duanteng Yimu decoction (DTYMT) effectively inhibits RA fibroblast-like synoviocyte (FLS) proliferation. In this study, we investigated the influence of DTYMT on miR-221 in RA individuals. Hematoxylin-eosin (HE) staining was performed to assess histopathological alterations in collagen-induced arthritis (CIA) mice. The expression of miR-221-3p and TLR4 in PBMC, FLS, and cartilage was measured by RT-qPCR. In the in vitro experiments, DTYMT-containing serum was incubated with FLS-transfected miR-221 mimic or inhibitor. CCK-8 was performed to determine FLS proliferation, and the secretion of IL-1β, IL-6, IL-18, and TNF-α was quantified by ELISA assay. In addition, the regulation of miR-221 expression on FLS apoptosis was assessed using flow cytometry. Finally, western blot was employed to reflect TLR4/MyD88 protein levels. HE results showed that DTYMT effectively reduced synovial hyperplasia in the joints of CIA mice. RT-qPCR assay of FLS and cartilage of the model group showed that miR-221-3p and TLR4 significantly increased compared with those in the normal group. All outcomes were improved by DTYMT. The miR-221 mimic reversed the inhibitory effect of DTYMT-containing serum on FLS proliferation, the release of IL-1β, IL-18, IL-6, and TNF-α, and FLS apoptosis, as well as TLR4/MyD88 protein levels. The results showed that miR-221 promotes the activity of RA-FLS by activating TLR4/MyD88 signaling, and DTYMT treats RA by reducing miR-221 in CIA mice.
Collapse
Affiliation(s)
- Wei Feng
- The First Clinical Medicine School, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- Department of Rheumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Xiao-Qin Zhong
- The First Clinical Medicine School, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- Department of Rheumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Xue-Xia Zheng
- The First Clinical Medicine School, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- Department of Rheumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Qing-Ping Liu
- The First Clinical Medicine School, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- Department of Rheumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Min-Ying Liu
- The First Clinical Medicine School, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- Department of Rheumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Xiao-Bao Liu
- The First Clinical Medicine School, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- Department of Rheumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Chang-Song Lin
- The First Clinical Medicine School, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- Department of Rheumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Qiang Xu
- The First Clinical Medicine School, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- Department of Rheumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| |
Collapse
|
34
|
Deny M, Popotas A, Hanssens L, Lefèvre N, Arroba Nuñez LA, Ouafo GS, Corazza F, Casimir G, Chamekh M. Sex-biased expression of selected chromosome x-linked microRNAs with potent regulatory effect on the inflammatory response in children with cystic fibrosis: A preliminary pilot investigation. Front Immunol 2023; 14:1114239. [PMID: 37077918 PMCID: PMC10106689 DOI: 10.3389/fimmu.2023.1114239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 03/22/2023] [Indexed: 04/05/2023] Open
Abstract
Previous studies have reported sex disparity in cystic fibrosis (CF) disease, with females experiencing more pulmonary exacerbations and frequent microbial infections resulting in shorter survival expectancy. This concerns both pubertal and prepubertal females, which is in support to the prominent role of gene dosage rather than the hormonal status. The underlying mechanisms are still poorly understood. The X chromosome codes for a large number of micro-RNAs (miRNAs) that play a crucial role in the post-transcriptional regulation of several genes involved in various biological processes, including inflammation. However, their level of expression in CF males and females has not been sufficiently explored. In this study, we compared in male and female CF patients the expression of selected X-linked miRNAs involved in inflammatory processes. Cytokine and chemokine profiles were also evaluated at both protein and transcript levels and cross-analyzed with the miRNA expression levels. We observed increased expression of miR-223-3p, miR-106a-5p, miR-221-3p and miR-502-5p in CF patients compared to healthy controls. Interestingly, the overexpression of miR-221-3p was found to be significantly higher in CF girls than in CF boys and this correlates positively with IL-1β. Moreover, we found a trend toward lower expression in CF girls than in CF boys of suppressor of cytokine signaling 1 (SOCS1) and the ubiquitin-editing enzyme PDLIM2, two mRNA targets of miR-221-3p that are known to inhibit the NF-κB pathway. Collectively, this clinical study highlights a sex-bias in X-linked miR-221-3p expression in blood cells and its potential contribution to sustaining a higher inflammatory response in CF girls.
Collapse
Affiliation(s)
- Maud Deny
- Inflammation Unit, Laboratory of Pediatric Research, Faculty of Medicine, Université Libre de Bruxelles (ULB), Brussels, Belgium
- Université Libre de Bruxelles (ULB) Center for Research in Immunology (U-CRI), Brussels, Belgium
| | - Alexandros Popotas
- Inflammation Unit, Laboratory of Pediatric Research, Faculty of Medicine, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Laurence Hanssens
- Institut de Mucoviscidose – Unité Pédiatrique, Hôpital Universitaire des Enfants Reine Fabiola, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Nicolas Lefèvre
- Inflammation Unit, Laboratory of Pediatric Research, Faculty of Medicine, Université Libre de Bruxelles (ULB), Brussels, Belgium
- Institut de Mucoviscidose – Unité Pédiatrique, Hôpital Universitaire des Enfants Reine Fabiola, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Luis Alexis Arroba Nuñez
- Inflammation Unit, Laboratory of Pediatric Research, Faculty of Medicine, Université Libre de Bruxelles (ULB), Brussels, Belgium
- Université Libre de Bruxelles (ULB) Center for Research in Immunology (U-CRI), Brussels, Belgium
| | - Ghislaine Simo Ouafo
- Inflammation Unit, Laboratory of Pediatric Research, Faculty of Medicine, Université Libre de Bruxelles (ULB), Brussels, Belgium
- Université Libre de Bruxelles (ULB) Center for Research in Immunology (U-CRI), Brussels, Belgium
| | - Francis Corazza
- Laboratoire de Médecine Translationnelle, Centre Hospitalier Universitaire Brugmann, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Georges Casimir
- Inflammation Unit, Laboratory of Pediatric Research, Faculty of Medicine, Université Libre de Bruxelles (ULB), Brussels, Belgium
- Institut de Mucoviscidose – Unité Pédiatrique, Hôpital Universitaire des Enfants Reine Fabiola, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Mustapha Chamekh
- Inflammation Unit, Laboratory of Pediatric Research, Faculty of Medicine, Université Libre de Bruxelles (ULB), Brussels, Belgium
- Université Libre de Bruxelles (ULB) Center for Research in Immunology (U-CRI), Brussels, Belgium
- *Correspondence: Mustapha Chamekh,
| |
Collapse
|
35
|
Yang M, Zhang Y, Li M, Liu X, Darvishi M. The various role of microRNAs in breast cancer angiogenesis, with a special focus on novel miRNA-based delivery strategies. Cancer Cell Int 2023; 23:24. [PMID: 36765409 PMCID: PMC9912632 DOI: 10.1186/s12935-022-02837-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/20/2022] [Indexed: 02/12/2023] Open
Abstract
After skin malignancy, breast cancer is the most widely recognized cancer detected in women in the United States. Breast cancer (BCa) can happen in all kinds of people, but it's much more common in women. One in four cases of cancer and one in six deaths due to cancer are related to breast cancer. Angiogenesis is an essential factor in the growth of tumors and metastases in various malignancies. An expanded level of angiogenesis is related to diminished endurance in BCa patients. This function assumes a fundamental part inside the human body, from the beginning phases of life to dangerous malignancy. Various factors, referred to as angiogenic factors, work to make a new capillary. Expanding proof demonstrates that angiogenesis is managed by microRNAs (miRNAs), which are small non-coding RNA with 19-25 nucleotides. MiRNA is a post-transcriptional regulator of gene expression that controls many critical biological processes. Endothelial miRNAs, referred to as angiomiRs, are probably concerned with tumor improvement and angiogenesis via regulation of pro-and anti-angiogenic factors. In this article, we reviewed therapeutic functions of miRNAs in BCa angiogenesis, several novel delivery carriers for miRNA-based therapeutics, as well as CRISPR/Cas9 as a targeted therapy in breast cancer.
Collapse
Affiliation(s)
- Min Yang
- College of Traditional Chinese Medicine, Jilin Agricultural Science and Technology University, Jilin, 132101 China
| | - Ying Zhang
- College of Traditional Chinese Medicine, Jilin Agricultural Science and Technology University, Jilin, 132101 China
| | - Min Li
- College of Traditional Chinese Medicine, Jilin Agricultural Science and Technology University, Jilin, 132101 China
| | - Xinglong Liu
- College of Traditional Chinese Medicine, Jilin Agricultural Science and Technology University, Jilin, 132101 China
| | - Mohammad Darvishi
- Infectious Diseases and Tropical Medicine Research Center (IDTMRC), Department of Aerospace and Subaquatic Medicine, AJA University of Medical Sciences, Tehran, Iran
| |
Collapse
|
36
|
(Stămat) LRB, Dinescu S, Costache M. Regulation of Inflammasome by microRNAs in Triple-Negative Breast Cancer: New Opportunities for Therapy. Int J Mol Sci 2023; 24:ijms24043245. [PMID: 36834660 PMCID: PMC9963301 DOI: 10.3390/ijms24043245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/28/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
During the past decade, researchers have investigated the molecular mechanisms of breast cancer initiation and progression, especially triple-negative breast cancer (TNBC), in order to identify specific biomarkers that could serve as feasible targets for innovative therapeutic strategies development. TNBC is characterized by a dynamic and aggressive nature, due to the absence of estrogen, progesterone and human epidermal growth factor 2 receptors. TNBC progression is associated with the dysregulation of nucleotide-binding oligomerization domain-like receptor and pyrin domain-containing protein 3 (NLRP3) inflammasome, followed by the release of pro-inflammatory cytokines and caspase-1 dependent cell death, termed pyroptosis. The heterogeneity of the breast tumor microenvironment triggers the interest of non-coding RNAs' involvement in NLRP3 inflammasome assembly, TNBC progression and metastasis. Non-coding RNAs are paramount regulators of carcinogenesis and inflammasome pathways, which could help in the development of efficient treatments. This review aims to highlight the contribution of non-coding RNAs that support inflammasome activation and TNBC progression, pointing up their potential for clinical applications as biomarkers for diagnosis and therapy.
Collapse
Affiliation(s)
| | - Sorina Dinescu
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania
- Research Institute of the University of Bucharest, 050663 Bucharest, Romania
- Correspondence:
| | - Marieta Costache
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania
- Research Institute of the University of Bucharest, 050663 Bucharest, Romania
| |
Collapse
|
37
|
MicroRNA and Messenger RNA Expression Profiles in Canine Mammary Gland Tumor. Int J Mol Sci 2023; 24:ijms24032618. [PMID: 36768939 PMCID: PMC9917093 DOI: 10.3390/ijms24032618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/16/2023] [Accepted: 01/27/2023] [Indexed: 02/03/2023] Open
Abstract
Canine mammary gland tumor (CMT) is the most frequently diagnosed neoplasm in intact female dogs. As prognosis depends on the malignancy of tumors and metastasis levels, early and accurate diagnosis are crucial for prolongation of life expectancy. The genetic similarity of dogs with humans in addition to environmental and physiological similarities make them ideal models for the study of cancer. In this study, we analyzed differentially expressed microRNAs followed by RNA-Seq to investigate the alterations in mRNA levels based on the malignancy (benign, malignant) and the biopsy locations (tumors, surrounding normal tissues). We identified multiple breast cancer-related genes regardless of malignancy. We found cfa-miR-503 to be the only miRNA that showed altered expression in response to malignancy in CMTs. Although further validation is needed, cfa-miR-503 could be used as a potential diagnostic biomarker as well as a potential RNA-based anti-tumor drug in malignant CMTs.
Collapse
|
38
|
Breast cancer tumor microenvironment affects Treg/IL-17-producing Treg/Th17 cell axis: Molecular and therapeutic perspectives. Mol Ther Oncolytics 2023; 28:132-157. [PMID: 36816749 PMCID: PMC9922830 DOI: 10.1016/j.omto.2023.01.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The tumor microenvironment (TME) comprises a variety of immune cells, among which T cells exert a prominent axial role in tumor development or anti-tumor responses in patients with breast cancer (BC). High or low levels of anti-inflammatory cytokines, such as transforming growth factor β, in the absence or presence of proinflammatory cytokines, such as interleukin-6 (IL-6), delineate the fate of T cells toward either regulatory T (Treg) or T helper 17 (Th17) cells, respectively. The transitional state of RORγt+Foxp3+ Treg (IL-17-producing Treg) resides in the middle of this reciprocal polarization, which is known as Treg/IL-17-producing Treg/Th17 cell axis. TME secretome, including microRNAs, cytokines, and extracellular vesicles, can significantly affect this axis. Furthermore, immune checkpoint inhibitors may be used to reconstruct immune cells; however, some of these novel therapies may favor tumor development. Therefore, understanding secretory and cell-associated factors involved in their differentiation or polarization and functions may be targeted for BC management. This review discusses microRNAs, cytokines, and extracellular vesicles (as secretome), as well as transcription factors and immune checkpoints (as cell-associated factors), which influence the Treg/IL-17-producing Treg/Th17 cell axis in BC. Furthermore, approved or ongoing clinical trials related to the modulation of this axis in the TME of BC are described to broaden new horizons of promising therapeutic approaches.
Collapse
|
39
|
Huang CC, Yang PK, Huang YS, Chen SU, Yang YS, Chen MJ. The role of circulating miRNAs in mechanism of action and prediction of therapeutic responses of metformin in polycystic ovarian syndrome. Fertil Steril 2023; 119:858-868. [PMID: 36627014 DOI: 10.1016/j.fertnstert.2022.12.045] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/30/2022] [Accepted: 12/31/2022] [Indexed: 01/09/2023]
Abstract
OBJECTIVE To study the involvement of microribonucleic acids (miRNAs) in the pathogenesis of chronic anovulation and mechanism of metformin treatment in polycystic ovary syndrome (PCOS). DESIGN Case-control and prospective validation cohort study. SETTING Tertiary university hospital. PATIENT(S) A total of 146 patients with PCOS and chronic anovulation and 20 non-PCOS controls were enrolled. Patients who resumed ovulation after metformin treatment (MET-OV) and remained anovulatory after metformin treatment (MET-AO) were assigned to MET-OV and MET-AO groups, respectively. INTERVENTION(S) All patients with PCOS received metformin treatment for 6 months. MAIN OUTCOME MEASURE(S) Baseline and chronological changes in the plasma levels of 14 miRNAs (miR-21, 93, 132, 193b, 221, 222, 223, 27a, 125b, 200b, 212, 320a, 429, and 483) selected by literature review, anthropometric data, and hormonal as well as metabolic profiles were measured. Predictive modeling based on baseline circulatory miRNA levels and clinical parameters was performed to predict ovulation recovery after metformin treatment. RESULT(S) No significant differences were observed in the baseline hormonal and metabolic profiles between the MET-OV and MET-AO groups. However, the expression of miR-27a, miR-93, and miR-222 was significantly higher in the MET-OV group than that for the MET-AO and control groups. After 6 months of metformin treatment, the levels of insulin, luteinizing hormone, and 6 circulating miRNAs (miR-21, 27a, 93, 221, 222, and 223) and homeostatic model assessment for insulin resistance decreased significantly in the MET-OV group, but remained unchanged in the MET-AO group. The area under curve, sensitivity, and specificity of the adjusted prediction model, based on miRNA levels and clinical parameters using logistic regression analysis for predicting ovulatory response after metformin treatment, were 0.807, 0.892, and 0.632, respectively. CONCLUSION(S) The present study demonstrated a distinct pattern of baseline expression and chronological changes in the levels of several circulatory miRNAs between the MET-OV and MET-AO groups, suggesting that aberrantly overexpressed diabetogenic miRNAs are involved in the pathophysiology of chronic anovulation in PCOS, and their down-regulation might contribute toward the therapeutic effects of metformin. This could provide new insights into the mechanism of action and applicability of individualized metformin therapy in women with PCOS.
Collapse
Affiliation(s)
- Chu-Chun Huang
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Po-Kai Yang
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yi-Shuang Huang
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shee-Uan Chen
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu-Shih Yang
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Obstetrics and Gynecology, Fu Jen Catholic University Hospital, New Taipei, Taiwan
| | - Mei-Jou Chen
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan; Livia Shangyu Wan Chair Professor of Obstetrics and Gynecology, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
40
|
Chan GCK, Than WH, Kwan BCH, Lai KB, Chan RCK, Teoh JYC, Ng JKC, Chow KM, Cheng PMS, Law MC, Leung CB, Li PKT, Szeto CC. Adipose and Plasma microRNAs miR-221 and 222 Associate with Obesity, Insulin Resistance, and New Onset Diabetes after Peritoneal Dialysis. Nutrients 2022; 14:nu14224889. [PMID: 36432575 PMCID: PMC9699429 DOI: 10.3390/nu14224889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/08/2022] [Accepted: 11/15/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND The correlation between microRNA, obesity, and glycemic intolerance in patients on peritoneal dialysis (PD) is unknown. We aimed to measure the adipose and plasma miR-221 and -222 levels, and to evaluate their association with adiposity, glucose intolerance, and new onset diabetes mellitus (NODM) after the commencement of PD. METHODS We prospectively recruited incident adult PD patients. miR-221 and -222 were measured from adipose tissue and plasma obtained during PD catheter insertion. These patients were followed for 24 months, and the outcomes were changes in adiposity, insulin resistance, and NODM after PD. RESULTS One hundred and sixty-five patients were recruited. Patients with pre-existing DM had higher adipose miR-221 (1.1 ± 1.2 vs. 0.7 ± 0.9-fold, p = 0.02) and -222 (1.9 ± 2.0 vs. 1.2 ± 1.3-fold, p = 0.01). High adipose miR-221 and -222 levels were associated with a greater increase in waist circumference (miR-221: beta 1.82, 95% CI 0.57-3.07, p = 0.005; miR-222: beta 1.35, 95% CI 0.08-2.63, p = 0.038), Homeostatic Model Assessment for Insulin Resistance (HOMA) index (miR-221: beta 8.16, 95% CI 2.80-13.53, p = 0.003; miR-222: beta 6.59, 95% CI 1.13-12.05, p = 0.018), and insulin requirements (miR-221: beta 0.05, 95% CI 0.006-0.09, p = 0.02; miR-222: beta 0.06, 95% CI 0.02-0.11, p = 0.002) after PD. The plasma miR-222 level predicted the onset of NODM (OR 8.25, 95% CI 1.35-50.5, p = 0.02). CONCLUSION miR-221 and -222 are associated with the progression of obesity, insulin resistance, and NODM after PD.
Collapse
Affiliation(s)
- Gordon Chun Kau Chan
- Carol & Richard Yu Peritoneal Dialysis Research Centre, Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Hong Kong 999077, China
- Correspondence: ; Tel.: +852-3505-1729; Fax: +852-2637-3852
| | - Win Hlaing Than
- Carol & Richard Yu Peritoneal Dialysis Research Centre, Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Hong Kong 999077, China
- Li Ka Shing Institute of Health Sciences (LiHS), Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Bonnie Ching Ha Kwan
- Carol & Richard Yu Peritoneal Dialysis Research Centre, Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Ka Bik Lai
- Carol & Richard Yu Peritoneal Dialysis Research Centre, Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Ronald Cheong Kin Chan
- Department of Anatomical & Cellular Pathology, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Jeremy Yuen Chun Teoh
- S.H. Ho Urology Centre, Department of Surgery, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Jack Kit Chung Ng
- Carol & Richard Yu Peritoneal Dialysis Research Centre, Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Kai Ming Chow
- Carol & Richard Yu Peritoneal Dialysis Research Centre, Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Phyllis Mei Shan Cheng
- Carol & Richard Yu Peritoneal Dialysis Research Centre, Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Man Ching Law
- Carol & Richard Yu Peritoneal Dialysis Research Centre, Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Chi Bon Leung
- Carol & Richard Yu Peritoneal Dialysis Research Centre, Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Philip Kam Tao Li
- Carol & Richard Yu Peritoneal Dialysis Research Centre, Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Cheuk Chun Szeto
- Carol & Richard Yu Peritoneal Dialysis Research Centre, Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Hong Kong 999077, China
- Li Ka Shing Institute of Health Sciences (LiHS), Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong 999077, China
| |
Collapse
|
41
|
Davies M, Davey MG, Miller N. The Potential of MicroRNAs as Clinical Biomarkers to Aid Ovarian Cancer Diagnosis and Treatment. Genes (Basel) 2022; 13:2054. [PMID: 36360295 PMCID: PMC9690044 DOI: 10.3390/genes13112054] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/24/2022] [Accepted: 11/04/2022] [Indexed: 07/30/2023] Open
Abstract
Ovarian cancer is a commonly diagnosed malignancy in women. When diagnosed at an early stage, survival outcomes are favourable for the vast majority, with up to 90% of ovarian cancer patients being free of disease at 5 years follow-up. Unfortunately, ovarian cancer is typically diagnosed at an advanced stage due to the majority of patients remaining asymptomatic until the cancer has metastasised, resulting in poor outcomes for the majority. While the molecular era has facilitated the subclassification of the disease into distinct clinical subtypes, ovarian cancer remains managed and treated as a single disease entity. MicroRNAs (miRNAs) are small (19-25 nucleotides), endogenous molecules which are integral to regulating gene expression. Aberrant miRNA expression profiles have been described in several cancers, and have been implicated to be useful biomarkers which may aid cancer diagnostics and treatment. Several preliminary studies have identified candidate tumour suppressor and oncogenic miRNAs which may be involved in the development and progression of ovarian cancer, highlighting their candidacy as oncological biomarkers; understanding the mechanisms by which these miRNAs regulate the key processes involved in oncogenesis can improve our overall understanding of cancer development and identify novel biomarkers and therapeutic targets. This review highlights the potential role of miRNAs which may be utilised to aid diagnosis, estimate prognosis and enhance therapeutic strategies in the management of primary ovarian cancer.
Collapse
|
42
|
Klicka K, Grzywa TM, Klinke A, Mielniczuk A, Wejman J, Ostrowska J, Gondek A, Włodarski PK. Decreased expression of miR-23b is associated with poor survival of endometrial cancer patients. Sci Rep 2022; 12:18824. [PMID: 36335210 PMCID: PMC9637218 DOI: 10.1038/s41598-022-22306-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 10/12/2022] [Indexed: 11/07/2022] Open
Abstract
Endometrial cancer (EC) is one of the most common types of cancer of the female reproductive system. EC is classified into two types (EC1 and EC2). MiRNAs are single-stranded RNA molecules that regulate gene expression posttranscriptionally. They have aberrant expression profiles in cancer, including EC. This study aimed to assess the level of expression of a panel of 16 miRNAs in both types of EC and healthy endometrium (HE). A total of 45 patients were enrolled into the study, 18 patients diagnosed with EC1, 12 diagnosed with EC2, and 15 HE controls. Tumor tissues or healthy endometrial tissues were dissected from archival formalin-fixed paraffin-embedded (FFPE) using laser capture microdissection (LCM). RNA was isolated from collected material and the expression of selected miRNAs was determined using the real-time qPCR. We found that miR-23b, miR-125b-5p, miR-199a-3p, miR-221-3p, and miR-451a were downregulated in EC in comparison to HE. Moreover, the expression of miR-34a-5p and miR-146-5p was higher in EC1 compared to EC2. Analysis of The Cancer Genome Atlas (TCGA) database confirmed decreased levels of miR-23b, miR-125b-5p, and miR-199a-3p in EC. Decreased miR-23b expression was associated with worse survival of EC patients.
Collapse
Affiliation(s)
- Klaudia Klicka
- grid.13339.3b0000000113287408Department of Methodology, Medical University of Warsaw, 02-097 Warsaw, Poland ,grid.13339.3b0000000113287408Doctoral School, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Tomasz M. Grzywa
- grid.13339.3b0000000113287408Department of Methodology, Medical University of Warsaw, 02-097 Warsaw, Poland ,grid.13339.3b0000000113287408Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland ,grid.13339.3b0000000113287408Laboratory of Experimental Medicine, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Alicja Klinke
- grid.13339.3b0000000113287408Department of Methodology, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Aleksandra Mielniczuk
- grid.13339.3b0000000113287408Department of Methodology, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Jarosław Wejman
- grid.414852.e0000 0001 2205 7719Department of Pathology, Medical Center of Postgraduate Education, 01-826 Warsaw, Poland
| | - Joanna Ostrowska
- grid.414852.e0000 0001 2205 7719Department of Pathology, Medical Center of Postgraduate Education, 01-826 Warsaw, Poland
| | - Agata Gondek
- grid.13339.3b0000000113287408Department of Methodology, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Paweł K. Włodarski
- grid.13339.3b0000000113287408Department of Methodology, Medical University of Warsaw, 02-097 Warsaw, Poland
| |
Collapse
|
43
|
MicroRNA-122 mimic/microRNA-221 inhibitor combination as a novel therapeutic tool against hepatocellular carcinoma. Noncoding RNA Res 2022; 8:126-134. [DOI: 10.1016/j.ncrna.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 11/22/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022] Open
|
44
|
Shao X, Zheng Y, Huang Y, Li G, Zou W, Shi L. Hsa-miR-221-3p promotes proliferation and migration in HER2-positive breast cancer cells by targeting LASS2 and MBD2. Histol Histopathol 2022; 37:1099-1112. [PMID: 35734966 DOI: 10.14670/hh-18-483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Human epidermal growth factor receptor (HER2)-positive breast cancers account for nearly 20% of all breast cancer cases and microRNAs (miRNAs) play crucial roles in disease progression. The study was aimed to explore the role of miR-221-3p in HER2-positive breast cancer. METHODS Differentially expressed miRNAs were identified by high-throughput sequencing. Quantitative real-time PCR was used to evaluate mRNA levels of corresponding genes. CKK8 and transwell assays were performed to evaluate cell viability and migration. The translation binding was assessed by luciferase assay. RESULTS Hsa-miR-221-3p was highly upregulated in HER2-positive breast cancer samples, particularly in patients with advanced or metastatic disease, as compared to healthy controls. miR-221-3p upregulation using mimics promoted cell proliferation and migration in HER2-positive cell lines, whereas miR-221-3p suppression had the opposite effect. Additionally, miR-221-3p mimics reduced the expression levels of LASS2 and MBD2 in HER2-positive breast cancer cells; conversely, miR-221-3p inhibition upregulated LASS2 and MBD2. miR-221-3p inhibited the translation of LASS2 and MBD2 by directly binding to their 3'-untranslated regions. Forced expression of LASS2 and MBD2 significantly attenuated the ability of miR-221-3p mimics to enhance cell growth and migration in HER2-positive but not in HER2-negative breast cancer cells. In HER-2-positive breast cancer patients, the levels of miR-221-3p were negatively correlated with the mRNA levels of LASS2 and MBD2. CONCLUSIONS Upregulation of hsa-miR-221-3 in HER2-positive breast cancer contributes to cancer cell proliferation and migration by directly targeting the tumor suppressors LASS2 and MBD2. Therefore, the hsa-miR-221-3 may serve as a promising and actionable therapeutic target in HER2-positive breast cancer.
Collapse
Affiliation(s)
- Xiying Shao
- Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences, Zhejiang, PR China.,Department of Breast Medical Oncology, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang, PR China.,Department of Breast Medical Oncology, Zhejiang Cancer Hospital, Zhejiang, PR China
| | - Yabing Zheng
- Department of Breast Medical Oncology, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang, PR China.,Department of Breast Medical Oncology, Zhejiang Cancer Hospital, Zhejiang, PR China.,Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences, Zhejiang, PR China.
| | - Yuan Huang
- Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences, Zhejiang, PR China.,Department of Breast Medical Oncology, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang, PR China.,Department of Breast Medical Oncology, Zhejiang Cancer Hospital, Zhejiang, PR China
| | - Guangliang Li
- Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences, Zhejiang, PR China.,Department of Breast Medical Oncology, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang, PR China.,Department of Breast Medical Oncology, Zhejiang Cancer Hospital, Zhejiang, PR China
| | - Weibin Zou
- Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences, Zhejiang, PR China.,Department of Breast Medical Oncology, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang, PR China.,Department of Breast Medical Oncology, Zhejiang Cancer Hospital, Zhejiang, PR China
| | - Lei Shi
- Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences, Zhejiang, PR China.,Department of Breast Medical Oncology, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang, PR China.,Department of Breast Medical Oncology, Zhejiang Cancer Hospital, Zhejiang, PR China
| |
Collapse
|
45
|
Arshinchi Bonab R, Asfa S, Kontou P, Karakülah G, Pavlopoulou A. Identification of neoplasm-specific signatures of miRNA interactions by employing a systems biology approach. PeerJ 2022; 10:e14149. [PMID: 36213495 PMCID: PMC9536303 DOI: 10.7717/peerj.14149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 09/07/2022] [Indexed: 01/21/2023] Open
Abstract
MicroRNAs represent major regulatory components of the disease epigenome and they constitute powerful biomarkers for the accurate diagnosis and prognosis of various diseases, including cancers. The advent of high-throughput technologies facilitated the generation of a vast amount of miRNA-cancer association data. Computational approaches have been utilized widely to effectively analyze and interpret these data towards the identification of miRNA signatures for diverse types of cancers. Herein, a novel computational workflow was applied to discover core sets of miRNA interactions for the major groups of neoplastic diseases by employing network-based methods. To this end, miRNA-cancer association data from four comprehensive publicly available resources were utilized for constructing miRNA-centered networks for each major group of neoplasms. The corresponding miRNA-miRNA interactions were inferred based on shared functionally related target genes. The topological attributes of the generated networks were investigated in order to detect clusters of highly interconnected miRNAs that form core modules in each network. Those modules that exhibited the highest degree of mutual exclusivity were selected from each graph. In this way, neoplasm-specific miRNA modules were identified that could represent potential signatures for the corresponding diseases.
Collapse
Affiliation(s)
- Reza Arshinchi Bonab
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Izmir, Turkey,Izmir Biomedicine and Genome Center, Izmir, Turkey
| | - Seyedehsadaf Asfa
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Izmir, Turkey,Izmir Biomedicine and Genome Center, Izmir, Turkey
| | - Panagiota Kontou
- Department of Mathematics, University of Thessaly, Lamia, Greece
| | - Gökhan Karakülah
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Izmir, Turkey,Izmir Biomedicine and Genome Center, Izmir, Turkey
| | - Athanasia Pavlopoulou
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Izmir, Turkey,Izmir Biomedicine and Genome Center, Izmir, Turkey
| |
Collapse
|
46
|
Masoumi-Ardakani Y, Najafipour H, Nasri HR, Aminizadeh S, Jafari SJ, Safi Z. Moderate Endurance Training and MitoQ Improve Cardiovascular Function, Oxidative Stress, and Inflammation in Hypertensive Individuals: The Role of miR-21 and miR-222: A Randomized, Double-Blind, Clinical Trial. CELL JOURNAL 2022; 24:577-585. [PMID: 36259475 PMCID: PMC9617024 DOI: 10.22074/cellj.2022.8089] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Hypertension (HTN) is among the leading causes of myocardial infarction, stroke, and kidney disease. The MitoQ supplement is a mitochondrial-targeted antioxidant that attenuates the generation of reactive oxygen species (ROS). miRNAs play an essential role in the pathophysiology of HTN. Regular aerobic exercise is recommended to decrease the risk of cardiovascular disease. We aimed to evaluate the effects of MitoQ supplementation and moderate endurance training (ET), alone and in combination, on cardiac function, blood pressure, the circulatory levels of miRNA-21 and miRNA-222, and oxidative status in individuals with HTN. MATERIALS AND METHODS In a double-blind, randomized clinical trial (except for ET group), 52 male hypertensive subjects (40-55 years old) were randomly divided into four groups (n=13): Placebo, MitoQ (20 mg/day, oral), ET (Cycle ergometer, moderate intensity, 40-60% VO2 peak, three sessions/week for six weeks), and MitoQ+ET. Cardiac echocardiography indices, serum oxidative and inflammation status, and miRNAs 21 and 222 were assessed before and after interventions. RESULTS Left ventricular mass [effect size (ES): -6.3, 95% confidence interval (CI): -11.2 to -1.4] and end-systolic/ diastolic diameters significantly improved in the intervention groups (ES: -0.05, 95% CI: -0.11 to 0.00 and -0.09, 95% CI: -0.16 to -0.02). Total serum antioxidant capacity (TAC) increased (ES: 36.0, 95% CI: 26.1 to 45.8), and malondialdehyde (MDA) (ES: -0.43, 95% CI: -0.53 to -0.32), IL-6 (ES: -1.6, 95% CI: -1.98 to -1.25), miR-21 (ES: -0.48, 95% CI: -0.61 to -0.35), and miR-222 (ES: -0.31, 95% CI: -0.44 to -0.18) significantly decreased in response to ET, MitoQ, and their combination. CONCLUSION MitoQ and ET, individually and more pronouncedly in combination, can improve cardiovascular health in people with high blood pressure (BP) by reducing inflammation and increasing antioxidant defense, in association with reduction in circulatory miR-21 and miR-222 levels (registration number: IRCT20190228042870N1).
Collapse
Affiliation(s)
- Yaser Masoumi-Ardakani
- Physiology Research Center, Institute of Neuropharmacology, Department of Physiology and Pharmacology, Kerman University of
Medical Sciences, Kerman, Iran,Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran
| | - Hamid Najafipour
- Cardiovascular Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences,
Kerman, Iran,P.O.Box: 7619813159Cardiovascular Research CenterInstitute of Basic and Clinical Physiology SciencesKerman University of Medical SciencesKermanIran
| | - Hamid Reza Nasri
- Cardiovascular Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences,
Kerman, Iran
| | - Soheil Aminizadeh
- Physiology Research Center, Institute of Neuropharmacology, Department of Physiology and Pharmacology, Kerman University of
Medical Sciences, Kerman, Iran
| | - Shirin Jafari Jafari
- Cardiovascular Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences,
Kerman, Iran
| | - Zohreh Safi
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical
Sciences, Kerman, Iran
| |
Collapse
|
47
|
Shang Q, Wang J, Xi Z, Gao B, Qian H, An R, Shao G, Liu H, Li T, Liu X. Mechanisms underlying microRNA-222-3p modulation of methamphetamine-induced conditioned place preference in the nucleus accumbens in mice. Psychopharmacology (Berl) 2022; 239:2997-3008. [PMID: 35881147 DOI: 10.1007/s00213-022-06183-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 06/20/2022] [Indexed: 11/24/2022]
Abstract
RATIONALE MicroRNA (miRNA) control of post-transcription gene expression in the nucleus accumbens (NAc) has been implicated in methamphetamine (METH) dependence. Conditioned place preference (CPP) is a classical animal procedure that reflects the rewarding effects of addictive drugs. miR-222-3p has been reported to play a key role in various neurological diseases and is strongly associated with alcohol dependence. Nevertheless, the role of miR-222-3p in METH dependence remains unclear. OBJECTIVE To explore the molecular mechanisms underlying the role of miR-222-3p in the NAc in METH-induced CPP. METHODS miR-222-3p expression in the NAc of METH-induced CPP mice was detected by quantitative real-time (qPCR). Following adeno-associated virus (AAV)-mediated overexpression or knockdown of miR-222-3p in the NAc, mice were subjected to CPP to investigate the effects of miR-222-3p on METH-induced CPP. Target genes of mir-222-3p were predicted using bioinformatics analysis. Candidate target genes for METH-induced CPP were validated by qPCR. RESULTS miR-222-3p expression in the NAc was decreased in CPP mice. Overexpression of miR-222-3p in the NAc blunted METH-induced CPP. Ppp3r1, Cdkn1c, Fmr1, and PPARGC1A were identified as target gene transcripts potentially mediating the effects of miR-222-3p on METH-induced CPP. CONCLUSION Our results highlight miR-222-3p as a key epigenetic regulator in METH-induced CPP and suggest a potential role for miR-222-3p in the regulation of METH-induced reward-related changes in the brain.
Collapse
Affiliation(s)
- Qing Shang
- Institute of Forensic Injury, Institute of Forensic Bio-Evidence, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, Xi'an, People's Republic of China.,College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Yanta Road W.76, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Jing Wang
- Institute of Forensic Injury, Institute of Forensic Bio-Evidence, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, Xi'an, People's Republic of China.,College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Yanta Road W.76, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Zhijia Xi
- Institute of Forensic Injury, Institute of Forensic Bio-Evidence, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, Xi'an, People's Republic of China.,College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Yanta Road W.76, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Baoyao Gao
- Institute of Forensic Injury, Institute of Forensic Bio-Evidence, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, Xi'an, People's Republic of China.,College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Yanta Road W.76, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Hongyan Qian
- Institute of Forensic Injury, Institute of Forensic Bio-Evidence, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, Xi'an, People's Republic of China.,College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Yanta Road W.76, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Ran An
- Institute of Forensic Injury, Institute of Forensic Bio-Evidence, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, Xi'an, People's Republic of China.,College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Yanta Road W.76, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Gaojie Shao
- Institute of Forensic Injury, Institute of Forensic Bio-Evidence, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, Xi'an, People's Republic of China.,College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Yanta Road W.76, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Hua Liu
- Key Laboratory of Forensic Toxicology, Ministry of Public Security, Beijing, People's Republic of China
| | - Tao Li
- Institute of Forensic Injury, Institute of Forensic Bio-Evidence, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, Xi'an, People's Republic of China. .,College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Yanta Road W.76, Xi'an, 710061, Shaanxi, People's Republic of China.
| | - Xinshe Liu
- Institute of Forensic Injury, Institute of Forensic Bio-Evidence, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, Xi'an, People's Republic of China. .,College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Yanta Road W.76, Xi'an, 710061, Shaanxi, People's Republic of China.
| |
Collapse
|
48
|
Yun JH, Baek MJ, Jung HI. Expression of miR-221 and miR-18a in patients with hepatocellular carcinoma and its clinical significance. KOREAN JOURNAL OF CLINICAL ONCOLOGY 2022; 18:17-26. [PMID: 36945332 PMCID: PMC9942768 DOI: 10.14216/kjco.22003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 06/20/2022] [Accepted: 06/20/2022] [Indexed: 11/07/2022]
Abstract
Purpose Recently, microRNA (miRNA) has been evaluated to provide a new diagnostic and therapeutic modality hepatocellular carcinoma (HCC) and other tumors. They are small non-coding RNA molecules that function as transcriptional and post-transcriptional regulators of gene expression by silencing target genes. The aim of this study was to evaluate the clinical significance of microRNA-18a, 221 (miR-18a, miR-221) expression in HCC formalin-fixed paraffin-embedded (FFPE) tissue. Methods miR-18a and miR-221 expressions were assessed by reverse transcription and real-time quantitative reverse transcription polymerase chain reaction in 50 pairs of FFPE HCC and the adjacent noncancerous liver tissues. And we evaluated the expression level in HCC tissues as compared with their adjacent noncancerous counterparts. And the relationship between miR-18a, miR-221 level and clinicopathological data and survival rates were analyzed. Results miR-221 and miR-18a were overexpressed in HCC tissue as compared with their adjacent noncancerous liver tissue (P<0.001). miR-221 expression was found to be correlated with larger tumor size (P=0.048). miR-18a expression was correlated with modified Union for International Cancer Control stage (P=0.05). The overall survival (P=0.02) of HCC patients with high miR-221 expression was significantly poorer compared to those patients with low expression. Multivariate analyses demonstrated that miR-221 may be a poor prognostic factor of HCC patients. Conclusion High expression of miR-221 in FFPE tissues could provide significance for prognosis of HCC patients. Although, miR-18a expression was significantly upregulated in HCC tissues, they are not correlated with prognosis. Further large prospective studies are needed to determine their clinical significance.
Collapse
Affiliation(s)
- Jong Hyuk Yun
- Department of Surgery, Soonchunhyang University Cheonan Hospital, Cheonan, Korea
| | - Moo-Jun Baek
- Department of Surgery, Soonchunhyang University Cheonan Hospital, Cheonan, Korea
| | - Hae Il Jung
- Department of Surgery, Soonchunhyang University Cheonan Hospital, Cheonan, Korea
| |
Collapse
|
49
|
Zhang X, Zai L, Tao Z, Wu D, Lin M, Wan J. miR-145-5p affects autophagy by targeting CaMKIIδ in atherosclerosis. Int J Cardiol 2022; 360:68-75. [PMID: 35597494 DOI: 10.1016/j.ijcard.2022.05.039] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/27/2022] [Accepted: 05/16/2022] [Indexed: 01/18/2023]
Abstract
BACKGROUND Atherosclerosis (AS) is a chronic progressive inflammatory disease involving many cells. miR-145-5p mediates the biological phenotypes of human aortic vascular smooth muscle cells (HAVSMCs) and influences the progression of AS, but the potential mechanism needs further study. METHODS Total RNA was extracted from patient plasma and arteries to determine the expression of miR-145-5p. The CaMKIIδ pathway and genes were predicted as the target of miR-145-5p by bioinformatics approaches. The interaction between miR-145-5p and CaMKIIδ was confirmed by RT-qPCR and Dual Luciferase Reporter Assay System. Western blot analysis, immunofluorescence staining, transmission electron microscopy (TEM) and protein tracing on HAVSMCs transduced with mCherry-GFP-LC3 lentiviral vectors to determine the mechanism by which miR-145-5p affects the atherosclerotic disease process. RESULTS The expression of miR-145-5p was downregulated in blood and arteries specimens of patients with coronary stenosis. Correspondingly, CaMKIIδ was upregulated and miR-145-5p was downregulated in hypoxic HAVSMCs. CaMKIIδ was predicted and confirmed as a downstream target of miR-145-5p. In addition, CaMKIIδ induced the upregulation of autophagy-related proteins by activating the AMPK/mTOR/ULK1 signalling pathway. Moreover, we confirmed that miR-145-5p inhibits CaMKIIδ expression by binding to a specific sequence in the CaMKIIδ 3' UTR and affects autophagy. Crucially, CaMKIIδ was promoted by the downregulation of miR-145-5p and then activating autophagy in HAVSMCs through the AMPK/mTOR/ULK1 signalling pathway to affect the AS progress. CONCLUSIONS miR-145-5p regulates CaMKIIδ, leading to altered autophagy in HAVSMCs. This alteration plays an important role in AS progression.
Collapse
Affiliation(s)
- Xinxin Zhang
- Wuhan University, No. 185 Donghu Road, Wuhan, Hubei 430072, PR China
| | - Ling Zai
- Wuhan Medical Emergency Center, No. 288 Machang Road, Wuhan, Hubei 430024, PR China
| | - Ziqi Tao
- Wuhan University, No. 185 Donghu Road, Wuhan, Hubei 430072, PR China
| | - Daiqian Wu
- Wuhan University, No. 185 Donghu Road, Wuhan, Hubei 430072, PR China
| | - Mingying Lin
- Hainan General Hospital of Hainan Medical University, No. 19 Xiuhua Road, Haikou, Hainan, PR China.
| | - Jing Wan
- Wuhan University Zhongnan Hospital, No. 169 Donghu Road, Wuhan, Hubei 430071, PR China.
| |
Collapse
|
50
|
Ramírez-Moya J, Wert-Lamas L, Acuña-Ruíz A, Fletcher A, Wert-Carvajal C, McCabe CJ, Santisteban P, Riesco-Eizaguirre G. Identification of an interactome network between lncRNAs and miRNAs in thyroid cancer reveals SPTY2D1-AS1 as a new tumor suppressor. Sci Rep 2022; 12:7706. [PMID: 35562181 PMCID: PMC9095586 DOI: 10.1038/s41598-022-11725-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 04/19/2022] [Indexed: 11/26/2022] Open
Abstract
Thyroid cancer is the most common primary endocrine malignancy in adults and its incidence is rapidly increasing. Long non-coding RNAs (lncRNAs), generally defined as RNA molecules longer than 200 nucleotides with no protein-encoding capacity, are highly tissue-specific molecules that serve important roles in gene regulation through a variety of different mechanisms, including acting as competing endogenous RNAs (ceRNAs) that ‘sponge’ microRNAs (miRNAs). In the present study, using an integrated approach through RNA-sequencing of paired thyroid tumor and non-tumor samples, we have identified an interactome network between lncRNAs and miRNAs and examined the functional consequences in vitro and in vivo of one of such interactions. We have identified a likely operative post-transcriptional regulatory network in which the downregulated lncRNA, SPTY2D1-AS1, is predicted to target the most abundant and upregulated miRNAs in thyroid cancer, particularly miR-221, a well-known oncomiRNA in cancer. Indeed, SPTY2D1-AS1 functions as a potent tumor suppressor in vitro and in vivo, it is downregulated in the most advanced stages of human thyroid cancer, and it seems to block the processing of the primary form of miR-221. Overall, our results link SPTY2D1-AS1 to thyroid cancer progression and highlight the potential use of this lncRNA as a therapeutic target of thyroid cancer.
Collapse
Affiliation(s)
- Julia Ramírez-Moya
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior Investigaciones Científicas, Universidad Autónoma de Madrid (CSIC-UAM), 28029, Madrid, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain
| | - León Wert-Lamas
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior Investigaciones Científicas, Universidad Autónoma de Madrid (CSIC-UAM), 28029, Madrid, Spain
| | - Adrián Acuña-Ruíz
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior Investigaciones Científicas, Universidad Autónoma de Madrid (CSIC-UAM), 28029, Madrid, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain
| | - Alice Fletcher
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior Investigaciones Científicas, Universidad Autónoma de Madrid (CSIC-UAM), 28029, Madrid, Spain.,Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, B152TT, UK
| | - Carlos Wert-Carvajal
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior Investigaciones Científicas, Universidad Autónoma de Madrid (CSIC-UAM), 28029, Madrid, Spain.,Department of Bioengineering and Aerospace Engineering, Universidad Carlos III, 28911, Madrid, Spain
| | - Christopher J McCabe
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, B152TT, UK
| | - Pilar Santisteban
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior Investigaciones Científicas, Universidad Autónoma de Madrid (CSIC-UAM), 28029, Madrid, Spain. .,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain.
| | - Garcilaso Riesco-Eizaguirre
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior Investigaciones Científicas, Universidad Autónoma de Madrid (CSIC-UAM), 28029, Madrid, Spain. .,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain. .,Hospital Universitario de Móstoles, 28223, Madrid, Spain. .,Endocrinology Molecular Group, Faculty of Medicine, Universidad Francisco de Vitoria, Madrid, Spain.
| |
Collapse
|