1
|
Wozniak DM, Riesle-Sbarbaro SA, Kirchoff N, Hansen-Kant K, Wahlbrink A, Stern A, Lander A, Hartmann K, Krasemann S, Kurth A, Prescott J. Inoculation route-dependent Lassa virus dissemination and shedding dynamics in the natural reservoir - Mastomys natalensis. Emerg Microbes Infect 2021; 10:2313-2325. [PMID: 34792436 PMCID: PMC8654411 DOI: 10.1080/22221751.2021.2008773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Lassa virus (LASV), a Risk Group-4 zoonotic haemorrhagic fever virus, affects sub-Saharan African countries. Lassa fever, caused by LASV, results in thousands of annual deaths. Although decades have elapsed since the identification of the Natal multimammate mouse (Mastomys natalensis) as a natural reservoir of LASV, little effort has been made to characterize LASV infection in its reservoir. The natural route of infection and transmission of LASV within M. natalensis remains unknown, and the clinical impact of LASV in M. natalensis is mostly undescribed. Herein, using an outbred colony of M. natalensis, we investigate the replication and dissemination dynamics of LASV in this reservoir following various inoculation routes. Inoculation with LASV, regardless of route, resulted in a systemic infection and accumulation of abundant LASV-RNA in many tissues. LASV infection in the Natal multimammate mice was subclinical, however, clinical chemistry values were transiently altered and immune infiltrates were observed histologically in lungs, spleens and livers, indicating a minor disease with coordinated immune responses are elicited, controlling infection. Intranasal infection resulted in unique virus tissue dissemination dynamics and heightened LASV shedding, compared to subcutaneous inoculation. Our study provides important insights into LASV infection in its natural reservoir using a contemporary infection system, demonstrating that specific inoculation routes result in disparate dissemination outcomes, suggesting intranasal inoculation is important in the maintenance of LASV in the natural reservoir, and emphasizes that selection of the appropriate inoculation route is necessary to examine aspects of viral replication, transmission and responses to zoonotic viruses in their natural reservoirs.
Collapse
Affiliation(s)
- D M Wozniak
- ZBS5-Biosafety Level-4 Laboratory, Robert Koch-Institute, Berlin, Germany
| | | | - N Kirchoff
- ZBS5-Biosafety Level-4 Laboratory, Robert Koch-Institute, Berlin, Germany
| | - K Hansen-Kant
- ZBS5-Biosafety Level-4 Laboratory, Robert Koch-Institute, Berlin, Germany
| | - A Wahlbrink
- ZBS5-Biosafety Level-4 Laboratory, Robert Koch-Institute, Berlin, Germany
| | - A Stern
- ZBS5-Biosafety Level-4 Laboratory, Robert Koch-Institute, Berlin, Germany
| | - A Lander
- ZBS5-Biosafety Level-4 Laboratory, Robert Koch-Institute, Berlin, Germany
| | - K Hartmann
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - S Krasemann
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - A Kurth
- ZBS5-Biosafety Level-4 Laboratory, Robert Koch-Institute, Berlin, Germany
| | - J Prescott
- ZBS5-Biosafety Level-4 Laboratory, Robert Koch-Institute, Berlin, Germany
| |
Collapse
|
2
|
Fingolimod can act as a facilitator to establish the primary T-cell response with reduced need of adjuvants. Vaccine 2018; 36:7632-7640. [PMID: 30392766 DOI: 10.1016/j.vaccine.2018.10.090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 10/20/2018] [Accepted: 10/27/2018] [Indexed: 11/24/2022]
Abstract
The CD8+ T-cell response is an essential part of the adaptive immunity. Adjuvants are routinely required for priming of T cells against antigens encountered in lymph nodes (LNs) to generate antigen-specific immunity but may concomitantly trigger unexpected inflammatory responses. Sphingosine-1-phosphate (S1P) induces transient desensitization of S1P receptors on LN T cells and temporarily blocks their egress, leading to prolonged intranodal retention that allows effective immunosurveillance and increases the chance of priming. In light of the regulatory role of S1P in T-cell migration, we here develop a strategic approach to the T-cell priming with protein vaccine containing low-dose TLR-based adjuvants (LDAV) to induce antigen-specific CD8+ T cell responses as efficiently as using regular dose adjuvants in vaccine (RDAV). We found that when combined with one low dose of the S1P analog fingolimod administered into the same vaccination site posteriorly at a specific time, LDAV can elicit a primary response that reaches the level of that induced by RDAV with respect to the response magnitude and functionality. Time-course studies indicate that LDAV and fingolimod in combination act to mimic the expansion kinetics of RDAV-primed antigen-specific CD8+ T cells. Further, intranodal accumulation of cDC1 is markedly enhanced in mice receiving the combination vaccination despite the decrease in adjuvant use. Of particular note is the marginal cutaneous inflammation at the injection site, indicating an added benefit of using fingolimod. Therefore, fingolimod as a nonadjuvant agent essentially facilitates antigen-specific T-cell priming with reduced need of adjuvants and minimized adverse reactions.
Collapse
|