1
|
Borghesi A. Life-threatening infections in human newborns: Reconciling age-specific vulnerability and interindividual variability. Cell Immunol 2024; 397-398:104807. [PMID: 38232634 DOI: 10.1016/j.cellimm.2024.104807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/05/2024] [Accepted: 01/10/2024] [Indexed: 01/19/2024]
Abstract
In humans, the interindividual variability of clinical outcome following exposure to a microorganism is immense, ranging from silent infection to life-threatening disease. Age-specific immune responses partially account for the high incidence of infection during the first 28 days of life and the related high mortality at population level. However, the occurrence of life-threatening disease in individual newborns remains unexplained. By contrast, inborn errors of immunity and their immune phenocopies are increasingly being discovered in children and adults with life-threatening viral, bacterial, mycobacterial and fungal infections. There is a need for convergence between the fields of neonatal immunology, with its in-depth population-wide characterization of newborn-specific immune responses, and clinical immunology, with its investigations of infections in patients at the cellular and molecular levels, to facilitate identification of the mechanisms of susceptibility to infection in individual newborns and the design of novel preventive and therapeutic strategies.
Collapse
Affiliation(s)
- Alessandro Borghesi
- Neonatal Intensive Care Unit, San Matteo Research Hospital, Pavia, EU, Italy; School of Life Sciences, Swiss Federal Institute of Technology, Lausanne, Switzerland.
| |
Collapse
|
2
|
Petca A, Șandru F, Negoiță S, Dumitrașcu MC, Dimcea DAM, Nedelcu T, Mehedințu C, Filipov MM, Petca RC. Antimicrobial Resistance Profile of Group B Streptococci Colonization in a Sample Population of Pregnant Women from Romania. Microorganisms 2024; 12:414. [PMID: 38399818 PMCID: PMC10893514 DOI: 10.3390/microorganisms12020414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/31/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024] Open
Abstract
Group B Streptococcus (GBS) represents one of the leading causes of life-threatening invasive disease in pregnant women and neonates. Rates of GBS colonization vary by region, but studies on maternal GBS status are limited in Romania. This study aims to identify the prevalence of colonization with GBS and whether the obstetrical characteristics are statistically associated with the study group's antimicrobial susceptibility patterns of tested GBS strains. This observational study was conducted between 1 May and 31 December 2021 at The Department of Obstetrics and Gynecology at Elias University Emergency Hospital (EUEH) in Bucharest, Romania. A total of 152 samples were positive for GBS and included in the study according to the inclusion criteria. As a result, the prevalence of colonized patients with GBS was 17.3%. GBS isolated in this population had the highest resistance to erythromycin (n = 38; 25%), followed by clindamycin (n = 36; 23.7%). Regarding the susceptibility patterns of tested strains to penicillin, the 152 susceptible strains had MIC breakpoints less than 0.06 μg/μL. The susceptibility patterns of tested strains to linezolid indicated three resistant strains with low levels of resistance (MICs ranging between 2 and 3 μg/μL). Multidrug resistance (at least three antibiotic classes) was not observed. In conclusion, although GBS naturally displays sensitivity to penicillin, the exact bacterial susceptibility testing should be performed in all cases where second-line therapy is taken into consideration for treatment. We acknowledge the need for future actions to limit multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Aida Petca
- Department of Obstetrics and Gynecology, “Carol Davila” University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd., 050474 Bucharest, Romania; (A.P.); (M.C.D.); (D.A.-M.D.); (C.M.)
- Department of Obstetrics and Gynecology, Elias University Emergency Hospital, 17 Marasti Blvd., 011461 Bucharest, Romania
| | - Florica Șandru
- Department of Dermatology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Dermatology, Elias University Emergency Hospital, 17 Marasti Blvd., 011461 Bucharest, Romania
| | - Silvius Negoiță
- Department of Anesthesiology and Critical Care, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Anesthesiology and Critical Care, Elias University Emergency Hospital, 17 Marasti Blvd., 011461 Bucharest, Romania
| | - Mihai Cristian Dumitrașcu
- Department of Obstetrics and Gynecology, “Carol Davila” University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd., 050474 Bucharest, Romania; (A.P.); (M.C.D.); (D.A.-M.D.); (C.M.)
- Department of Obstetrics and Gynecology, University Emergency Hospital, 050098 Bucharest, Romania
| | - Daiana Anne-Marie Dimcea
- Department of Obstetrics and Gynecology, “Carol Davila” University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd., 050474 Bucharest, Romania; (A.P.); (M.C.D.); (D.A.-M.D.); (C.M.)
- Department of Obstetrics and Gynecology, Elias University Emergency Hospital, 17 Marasti Blvd., 011461 Bucharest, Romania
| | - Tiberiu Nedelcu
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd., 050474 Bucharest, Romania;
| | - Claudia Mehedințu
- Department of Obstetrics and Gynecology, “Carol Davila” University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd., 050474 Bucharest, Romania; (A.P.); (M.C.D.); (D.A.-M.D.); (C.M.)
- Department of Obstetrics and Gynecology, Filantropia Clinical Hospital, 011171 Bucharest, Romania
| | - Marinela Magdalena Filipov
- Department of Laboratory Medicine, Elias University Emergency Hospital, 17 Marasti Blvd., 011461 Bucharest, Romania;
| | - Răzvan-Cosmin Petca
- Department of Urology, “Carol Davila” University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd., 050474 Bucharest, Romania;
- Department of Urology, “Prof. Dr. Th. Burghele” Clinical Hospital, 20 Panduri Str., 050659 Bucharest, Romania
| |
Collapse
|
3
|
Yue L, Liu H. Neonatal Late-Onset Meningitis Caused by Serotype III CC17 Group B Streptococci Aggregating in Two Families from Southern China. Infect Drug Resist 2023; 16:3417-3424. [PMID: 37283938 PMCID: PMC10239641 DOI: 10.2147/idr.s401545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 03/29/2023] [Indexed: 06/08/2023] Open
Abstract
Background Late-onset meningitis infected by group B Streptococcus (GBS) continues to be a major cause of perinatal mortality, morbidity and long-term neurodevelopmental sequelae despite the implementation of universal screening, but its risk factors are not fully understood. Case Presentation We reported a set of dizygotic twins and a pair of compatriot siblings diagnosed with late-onset GBS meningitis aggregating in two Chinese families. All of GBS strains were identified as serotype III CC17 with high homology between the strains within the same family, and the isolates from the compatriots identical to their mother's carriage. The siblings in the two families presented clinical signs several days after close contact with their index cases having a fever at home, and obtained prompt diagnosis and anti-infective therapy. The two index patients had obvious brain damage before effective treatment and severe sequelae compared to their siblings with complete healing. Conclusion The dramatic difference in outcomes between the index cases and their siblings brings attention to prevent and control familial aggregation of neonatal late-onset GBS infection which never reported in China.
Collapse
Affiliation(s)
- Lei Yue
- Clinical Laboratory, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Haiying Liu
- Clinical Laboratory, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong, People’s Republic of China
| |
Collapse
|
4
|
Flores-Maldonado O, González GM, Montoya A, Andrade A, Treviño-Rangel R, Donis-Maturano L, Tavares-Carreón F, Becerril-García MA. Dissemination of Gram-positive bacteria to the lung of newborn mice increases local IL-6 and TNFα levels in lethal bacteremia. Microbes Infect 2022; 24:104984. [DOI: 10.1016/j.micinf.2022.104984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 04/08/2022] [Accepted: 04/22/2022] [Indexed: 12/01/2022]
|
5
|
Duale A, Singh P, Al Khodor S. Breast Milk: A Meal Worth Having. Front Nutr 2022; 8:800927. [PMID: 35155521 PMCID: PMC8826470 DOI: 10.3389/fnut.2021.800927] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 12/20/2021] [Indexed: 12/11/2022] Open
Abstract
A mother is gifted with breast milk, the natural source of nutrition for her infant. In addition to the wealth of macro and micro-nutrients, human milk also contains many microorganisms, few of which originate from the mother, while others are acquired from the mouth of the infant and the surroundings. Among these microbes, the most commonly residing bacteria are Staphylococci, Streptococci, Lactobacilli and Bifidobacteria. These microorganisms initiate and help the development of the milk microbiota as well as the microbiota of the gastrointestinal tract in infants, and contribute to developing immune regulatory factors such as cytokines, growth factors, lactoferrin among others. These factors play an important role in reducing the risk of developing chronic diseases like type 2 diabetes, asthma and others later in life. In this review, we will summarize the known benefits of breastfeeding and highlight the role of the breast milk microbiota and its cross-talk with the immune system in breastfed babies during the early years of life.
Collapse
Affiliation(s)
- Anoud Duale
- Division of Maternal and Child Health, Department of Translational Medicine, Research Branch, Sidra Medicine, Doha, Qatar
| | - Parul Singh
- Division of Maternal and Child Health, Department of Translational Medicine, Research Branch, Sidra Medicine, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Ar-Rayyan, Qatar
| | - Souhaila Al Khodor
- Division of Maternal and Child Health, Department of Translational Medicine, Research Branch, Sidra Medicine, Doha, Qatar
- *Correspondence: Souhaila Al Khodor
| |
Collapse
|
6
|
Bunis DG, Bronevetsky Y, Krow-Lucal E, Bhakta NR, Kim CC, Nerella S, Jones N, Mendoza VF, Bryson YJ, Gern JE, Rutishauser RL, Ye CJ, Sirota M, McCune JM, Burt TD. Single-Cell Mapping of Progressive Fetal-to-Adult Transition in Human Naive T Cells. Cell Rep 2021; 34:108573. [PMID: 33406429 PMCID: PMC10263444 DOI: 10.1016/j.celrep.2020.108573] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/01/2020] [Accepted: 12/08/2020] [Indexed: 12/12/2022] Open
Abstract
Whereas the human fetal immune system is poised to generate immune tolerance and suppress inflammation in utero, an adult-like immune system emerges to orchestrate anti-pathogen immune responses in post-natal life. It has been posited that cells of the adult immune system arise as a discrete ontological "layer" of hematopoietic stem-progenitor cells (HSPCs) and their progeny; evidence supporting this model in humans has, however, been inconclusive. Here, we combine bulk and single-cell transcriptional profiling of lymphoid cells, myeloid cells, and HSPCs from fetal, perinatal, and adult developmental stages to demonstrate that the fetal-to-adult transition occurs progressively along a continuum of maturity-with a substantial degree of inter-individual variation at the time of birth-rather than via a transition between discrete waves. These findings have important implications for the design of strategies for prophylaxis against infection in the newborn and for the use of umbilical cord blood (UCB) in the setting of transplantation.
Collapse
Affiliation(s)
- Daniel G Bunis
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA; Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Yelena Bronevetsky
- Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Elisabeth Krow-Lucal
- Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Nirav R Bhakta
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Charles C Kim
- Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Srilaxmi Nerella
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Norman Jones
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA; Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Ventura F Mendoza
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA; Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Yvonne J Bryson
- Division of Pediatric Infectious Diseases, Department of Pediatrics, David Geffen School of Medicine at UCLA, Mattel Children's Hospital UCLA, Los Angeles, CA, USA
| | - James E Gern
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Rachel L Rutishauser
- Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Chun Jimmie Ye
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA; Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA; Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA; Division of Rheumatology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA; Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA; Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Marina Sirota
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA; Department of Pediatrics, Division of Neonatology, University of California, San Francisco, San Francisco, CA, USA.
| | - Joseph M McCune
- Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA.
| | - Trevor D Burt
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA; Department of Pediatrics, Division of Neonatology, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
7
|
Keij FM, Achten NB, Tramper-Stranders GA, Allegaert K, van Rossum AMC, Reiss IKM, Kornelisse RF. Stratified Management for Bacterial Infections in Late Preterm and Term Neonates: Current Strategies and Future Opportunities Toward Precision Medicine. Front Pediatr 2021; 9:590969. [PMID: 33869108 PMCID: PMC8049115 DOI: 10.3389/fped.2021.590969] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 03/01/2021] [Indexed: 12/20/2022] Open
Abstract
Bacterial infections remain a major cause of morbidity and mortality in the neonatal period. Therefore, many neonates, including late preterm and term neonates, are exposed to antibiotics in the first weeks of life. Data on the importance of inter-individual differences and disease signatures are accumulating. Differences that may potentially influence treatment requirement and success rate. However, currently, many neonates are treated following a "one size fits all" approach, based on general protocols and standard antibiotic treatment regimens. Precision medicine has emerged in the last years and is perceived as a new, holistic, way of stratifying patients based on large-scale data including patient characteristics and disease specific features. Specific to sepsis, differences in disease susceptibility, disease severity, immune response and pharmacokinetics and -dynamics can be used for the development of treatment algorithms helping clinicians decide when and how to treat a specific patient or a specific subpopulation. In this review, we highlight the current and future developments that could allow transition to a more precise manner of antibiotic treatment in late preterm and term neonates, and propose a research agenda toward precision medicine for neonatal bacterial infections.
Collapse
Affiliation(s)
- Fleur M Keij
- Division of Neonatology, Department of Pediatrics, Erasmus Medical Center-Sophia Children's Hospital, Rotterdam, Netherlands.,Department of Pediatrics, Franciscus Gasthuis and Vlietland, Rotterdam, Netherlands
| | - Niek B Achten
- Division of Neonatology, Department of Pediatrics, Erasmus Medical Center-Sophia Children's Hospital, Rotterdam, Netherlands
| | - Gerdien A Tramper-Stranders
- Division of Neonatology, Department of Pediatrics, Erasmus Medical Center-Sophia Children's Hospital, Rotterdam, Netherlands.,Department of Pediatrics, Franciscus Gasthuis and Vlietland, Rotterdam, Netherlands
| | - Karel Allegaert
- Department of Development and Regeneration, Department of Pharmaceutical and Pharmacological Sciences, Katholieke Universiteit Leuven, Leuven, Belgium.,Department of Clinical Pharmacy, Erasmus Medical Center Rotterdam, Rotterdam, Netherlands
| | - Annemarie M C van Rossum
- Division of Infectious Diseases, Department of Pediatrics, Erasmus Medical Center-Sophia Children's Hospital, Rotterdam, Netherlands
| | - Irwin K M Reiss
- Division of Neonatology, Department of Pediatrics, Erasmus Medical Center-Sophia Children's Hospital, Rotterdam, Netherlands
| | - René F Kornelisse
- Division of Neonatology, Department of Pediatrics, Erasmus Medical Center-Sophia Children's Hospital, Rotterdam, Netherlands
| |
Collapse
|
8
|
Steer PJ, Russell AB, Kochhar S, Cox P, Plumb J, Gopal Rao G. Group B streptococcal disease in the mother and newborn-A review. Eur J Obstet Gynecol Reprod Biol 2020; 252:526-533. [PMID: 32586597 PMCID: PMC7295463 DOI: 10.1016/j.ejogrb.2020.06.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/12/2020] [Accepted: 06/13/2020] [Indexed: 02/06/2023]
Abstract
Group B Streptococcus, a common commensal in the gut of humans and in the lower genital tract in women, remains an important cause of neonatal mortality and morbidity. The incidence of early onset disease has fallen markedly in countries that test women for carriage at 35-37 weeks of pregnancy and then offer intrapartum prophylaxis with penicillin during labour. Countries that do not test, but instead employ a risk factor approach, have not seen a similar fall. There are concerns about the effect on the neonatal microbiome of widespread use of antibiotic prophylaxis during labour, but so far the effects seem minor and temporary. Vaccination against GBS would be acceptable to most women and GBS vaccines are in the early stages of development. Tweetable abstract: Group B Strep is a key cause of infection, death and disability in young babies. Antibiotics given in labour remain the mainstay of prevention, until a vaccine is available.
Collapse
Affiliation(s)
- Philip J Steer
- Imperial College London, Academic Department of Obstetrics and Gynaecology, Chelsea and Westminster Hospital, London SW10 9NH, United Kingdom.
| | | | - Sonali Kochhar
- Global Healthcare Consulting, India; Department of Global Health, University of Washington, Seattle, United States
| | - Philippa Cox
- Homerton University Hospital NHS Foundation Trust, London, United Kingdom
| | - Jane Plumb
- Group B Strep Support, Haywards Heath, RH16 1UA, United Kingdom
| | - Gopal Gopal Rao
- London North West University Healthcare NHS Trust, Harrow, United Kingdom
| |
Collapse
|
9
|
Alshengeti A, Alharbi A, Alraddadi S, Alawfi A, Aljohani B. Knowledge, attitude and current practices of pregnant women towards group B streptococcus screening: cross-sectional study, Al-Madinah, Saudi Arabia. BMJ Open 2020; 10:e032487. [PMID: 32054626 PMCID: PMC7045259 DOI: 10.1136/bmjopen-2019-032487] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
AIMS Group B streptococcus (GBS) is one of the most frequent bacterial pathogens causing invasive infections in neonates. It can be transmitted from colonised mother to neonates around delivery. Screening strategies for GBS during pregnancy include either universal culture-based or risk-based screening. The present study aimed to assess the knowledge, attitude and current practices of pregnant women towards GBS screening in Al-Madinah City, Saudi Arabia. METHODS A hospital-based cross-sectional study was conducted at Madinah Maternity and Children Hospital, Al-Madinah, Saudi Arabia, from May to July 2018. Participants were recruited from postnatal wards. Participants were interviewed using a previously published validated survey that was divided into the following domains: demographic data, knowledge, experience and attitude towards different GBS screening strategies. RESULTS A total of 377 out of 450 women (response rate 83.7%) were enrolled. The results showed that the overall mean knowledge score of the pregnant women towards GBS screening was 59.8%. Majority of the women (66.8%) were not aware of the GBS bacterium, while 86.5% of them had never been informed of GBS risk assessment during their pregnancies. The mean knowledge score among women who were aware of GBS (62.8%) was significantly higher than that among women who were not (58.4%) (p=0.015). However, majority of the pregnant women (61.8%) showed preference for universal culture-based GBS screening strategy over risk-based strategy. CONCLUSION The study results have concluded that the level of awareness and knowledge about GBS among pregnant women were relatively poor; however, majority of the pregnant women prefer universal culture-based screening.
Collapse
Affiliation(s)
- Amer Alshengeti
- Pediatric Department, College of Medicine, Taibah University, Madinah, Saudi Arabia
| | - Amjad Alharbi
- Pediatric Department, Madinah Maternity and Children Hospital, Madinah, Saudi Arabia
| | - Shahad Alraddadi
- Radiology Department, Security Forces Hospital, Riyadh, Saudi Arabia
| | - Abdulsalam Alawfi
- Pediatric Department, College of Medicine, Taibah University, Madinah, Saudi Arabia
| | - Bushra Aljohani
- Obstetrics and Gynecology Department, Madinah Maternity and Children Hospital, Medinah, Saudi Arabia
| |
Collapse
|
10
|
Borghesi A, Marzollo A, Michev A, Fellay J. Susceptibility to infection in early life: a growing role for human genetics. Hum Genet 2020; 139:733-743. [PMID: 31932884 DOI: 10.1007/s00439-019-02109-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 12/30/2019] [Indexed: 12/23/2022]
Abstract
The unique vulnerability to infection of newborns and young infants is generally explained by a constellation of differences between early-life immune responses and immune responses at later ages, often referred to as neonatal immune immaturity. This developmental view, corroborated by robust evidence, offers a plausible, population-level description of the pathogenesis of life-threatening infectious diseases during the early-life period, but provides little explanation on the wide inter-individual differences in susceptibility and resistance to specific infections during the first months of life. In this context, the role of individual human genetic variation is increasingly recognized. A life-threatening infection caused by an opportunistic pathogen in an otherwise healthy infant likely represents the first manifestation of an inborn error of immunity. Single-gene disorders may also underlie common infections in full-term infants with no comorbidities or in preterm infants. In addition, there is increasing evidence of a possible role for common genetic variation in the pathogenesis of infection in preterm infants. Over the past years, a unified theory of infectious diseases emerged, supporting a hypothetical, age-dependent general model of genetic architecture of human infectious diseases. We discuss here how the proposed genetic model can be reconciled with the widely accepted developmental view of early-life infections in humans.
Collapse
Affiliation(s)
- Alessandro Borghesi
- Neonatal Intensive Care Unit, Fondazione IRCCS Policlinico "San Matteo", Pavia, Italy. .,School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| | - Antonio Marzollo
- Pediatric Hematology-Oncology Unit, Department of Women's and Children's Health, Azienda Ospedaliera-University of Padova, Padua, Italy
| | - Alexandre Michev
- Department of Pediatrics, Fondazione IRCCS Policlinico "San Matteo", University of Pavia, Pavia, Italy
| | - Jacques Fellay
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Precision Medicine Unit, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
11
|
Two Overlapping Clusters of Group B Streptococcus Late-onset Disease in a Neonatal Intensive Care Unit. Pediatr Infect Dis J 2018; 37:1160-1164. [PMID: 29561513 DOI: 10.1097/inf.0000000000001987] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
OBJECTIVES Current predominant routes of group B Streptococcus (GBS) transmission in preterm neonates admitted to neonatal intensive care unit (NICU) are poorly defined. We report 2 overlapping clusters of GBS late-onset disease (LOD) from June to September 2015 in an Italian NICU. METHODS During the outbreak, possible sources of transmission (equipment, feeding bottles and breast pumps) were swabbed. Specimens from throat and rectum were collected on a weekly basis from all neonates admitted to NICU. Colonized or infected neonates had cohorting. Bacterial isolates were characterized by serologic and molecular typing methods. RESULTS GBS was isolated in 2 full-term and 7 preterm neonates. Strains belonged to serotype III, with 3 different sequence types (ST17, ST182 and ST19). Full-term neonates were colonized with GBS strains unrelated to the clusters (ST182 and ST19). Two distinct ST17 strains caused 2 clusters in preterm neonates: a first cluster with 1 case of LOD and a second, larger cluster with 6 LOD in 5 neonates (one of them had recurrence). ST17 strains were isolated from vaginorectal and milk samples of 2 mothers. Two preterm neonates had no evidence of colonization for weeks, until they presented with LOD. CONCLUSIONS Molecular analyses identified the presence of multiclonal GBS strains and 2 clusters of 7 cases of GBS-LOD. The dynamics of transmission of GBS within the NICU were complex. Breast milk was suspected to be one of the possible sources. In a research setting, the screening of GBS carrier mothers who deliver very preterm could contribute to the tracking of GBS transmission.
Collapse
|
12
|
Chen J, Fu J, Du W, Liu X, Rongkavilit C, Huang X, Wu Y, Wang Y, McGrath E. Group B streptococcal colonization in mothers and infants in western China: prevalences and risk factors. BMC Infect Dis 2018; 18:291. [PMID: 29970020 PMCID: PMC6029028 DOI: 10.1186/s12879-018-3216-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 06/26/2018] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The epidemiology of maternal and infant Group B streptococcus (GBS) colonization is poorly understood in China. The aim of this study is to explore the prevalence and risk factors associated with maternal and infant GBS colonization in Western China. METHODS From January 2017 to June 2017, a prospective study was conducted to estimate the maternal and infant GBS colonization rate by maternal rectovaginal and infant nasopharynx, ear canal and umbilical swab culture. Patient demographics, clinical characteristics and outcomes were collected. Chi-square and logistic regression analyses were used to examine the risk factors associated with GBS colonization of mothers and infants. RESULTS The GBS colonization rate in mothers and infants was 6.1 and 0.7%, respectively. The vertical transmission rate was 7.6%. The early onset GBS infection rate was 0.58 per 1000 live births and mortality was 0.29 per 1000 live births. Age younger than 40 years (p = 0.040) and minority ethnic status (p = 0.049) were associated with higher GBS colonization rate in pregnant women. Positive GBS status in the mother prior to delivery (p < 0.001) as well as longer duration of membrane rupture (≥12 h) (p < 0.001) and longer labor (≥4 h) (p < 0.001) were all significant risk factors for GBS colonization in infants. Compared to infants without GBS colonization, infants colonized with GBS were more likely to have had a temperature of ≥38 °C (p < 0.001), developed early onset infection (EOD) (p < 0.001), and been prescribed antibiotics (p < 0.001). Furthermore, infants with GBS were more likely to have been admitted to neonatal intensive unit (NICU) (p < 0.001) with a longer hospital length of stay (LOS) (p < 0.001). CONCLUSIONS Maternal GBS colonization, longer duration of membrane rupture and labor were all major risk factors associated with GBS colonization in Chinese infants. Infant GBS colonization was associated with increased risk of EOD and NICU admission as well as longer LOS.
Collapse
Affiliation(s)
- Jichang Chen
- Department of Neonatology, Liuzhou Maternity and Child Health Care Hospital, Liuzhou, 545001 China
| | - Jinjian Fu
- Department of Laboratory, Liuzhou Maternity and Child Healthcare Hospital, Liuzhou, 545001 China
| | - Wei Du
- Children’s Hospital of Michigan, Detroit, MI USA
- Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI USA
| | - Xin Liu
- Department of Pediatrics, Liuzhou Maternity and Child Healthcare Hospital, Liuzhou, 545001 China
| | | | - Xuemei Huang
- Department of Neonatology, Liuzhou Maternity and Child Health Care Hospital, Liuzhou, 545001 China
| | - Yubi Wu
- Department of Obstetrics and Gynecology, Liuzhou Maternity and Child Healthcare Hospital, Liuzhou, 545001 China
| | - Yuanliu Wang
- Department of Obstetrics and Gynecology, Liuzhou Maternity and Child Healthcare Hospital, Liuzhou, 545001 China
| | - Eric McGrath
- Children’s Hospital of Michigan, Detroit, MI USA
- Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI USA
- Division of Infectious Diseases, Children’s Hospital of Michigan, 3901 Beaubien Boulevard, Detroit, MI 48201 USA
| |
Collapse
|
13
|
Kolter J, Henneke P. Codevelopment of Microbiota and Innate Immunity and the Risk for Group B Streptococcal Disease. Front Immunol 2017; 8:1497. [PMID: 29209311 PMCID: PMC5701622 DOI: 10.3389/fimmu.2017.01497] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 10/24/2017] [Indexed: 12/14/2022] Open
Abstract
The pathogenesis of neonatal late-onset sepsis (LOD), which manifests between the third day and the third month of life, remains poorly understood. Group B Streptococcus (GBS) is the most important cause of LOD in infants without underlying diseases or prematurity and the third most frequent cause of meningitis in the Western world. On the other hand, GBS is a common intestinal colonizer in infants. Accordingly, despite its adaption to the human lower gastrointestinal tract, GBS has retained its potential virulence and its transition from a commensal to a dangerous pathogen is unpredictable in the individual. Several cellular innate immune mechanisms, in particular Toll-like receptors, the inflammasome and the cGAS pathway, are engaged by GBS effectors like nucleic acids. These are likely to impact on the GBS-specific host resistance. Given the long evolution of streptococci as a normal constituent of the human microbiota, the emergence of GBS as the dominant neonatal sepsis cause just about 50 years ago is remarkable. It appears that intensive usage of tetracycline starting in the 1940s has been a selection advantage for the currently dominant GBS clones with superior adhesive and invasive properties. The historical replacement of Group A by Group B streptococci as a leading neonatal pathogen and the higher frequency of other β-hemolytic streptococci in areas with low GBS prevalence suggests the existence of a confined streptococcal niche, where locally competing streptococcal species are subject to environmental and immunological selection pressure. Thus, it seems pivotal to resolve neonatal innate immunity at mucous surfaces and its impact on microbiome composition and quality, i.e., genetic heterogeneity and metabolism, at the microanatomical level. Then, designer pro- and prebiotics, such as attenuated strains of GBS, and oligonucleotide priming of mucosal immunity may unfold their potential and facilitate adaptation of potentially hazardous streptococci as part of a beneficial local microbiome, which is stabilized by mucocutaneous innate immunity.
Collapse
Affiliation(s)
- Julia Kolter
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Philipp Henneke
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Center for Pediatrics and Adolescent Medicine, Medical Center - University of Freiburg, Freiburg, Germany
| |
Collapse
|