1
|
Abad C, Pinal-Fernandez I, Guillou C, Bourdenet G, Drouot L, Cosette P, Giannini M, Debrut L, Jean L, Bernard S, Genty D, Zoubairi R, Remy-Jouet I, Geny B, Boitard C, Mammen A, Meyer A, Boyer O. IFNγ causes mitochondrial dysfunction and oxidative stress in myositis. Nat Commun 2024; 15:5403. [PMID: 38926363 PMCID: PMC11208592 DOI: 10.1038/s41467-024-49460-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Idiopathic inflammatory myopathies (IIMs) are severe autoimmune diseases with poorly understood pathogenesis and unmet medical needs. Here, we examine the role of interferon γ (IFNγ) using NOD female mice deficient in the inducible T cell co-stimulator (Icos), which have previously been shown to develop spontaneous IFNγ-driven myositis mimicking human disease. Using muscle proteomic and spatial transcriptomic analyses we reveal profound myofiber metabolic dysregulation in these mice. In addition, we report muscle mitochondrial abnormalities and oxidative stress in diseased mice. Supporting a pathogenic role for oxidative stress, treatment with a reactive oxygen species (ROS) buffer compound alleviated myositis, preserved muscle mitochondrial ultrastructure and respiration, and reduced inflammation. Mitochondrial anomalies and oxidative stress were diminished following anti-IFNγ treatment. Further transcriptomic analysis in IIMs patients and human myoblast in vitro studies supported the link between IFNγ and mitochondrial dysfunction observed in mice. These results suggest that mitochondrial dysfunction, ROS and inflammation are interconnected in a self-maintenance loop, opening perspectives for mitochondria therapy and/or ROS targeting drugs in myositis.
Collapse
Affiliation(s)
- Catalina Abad
- Univ Rouen Normandie, Inserm, UMR1234, FOCIS Center of Excellence PAn'THER, F-76000, Rouen, France
| | - Iago Pinal-Fernandez
- Muscle Disease Unit, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Clement Guillou
- Univ Rouen Normandie, Inserm US 51, CNRS UAR 2026, HeRacLeS PISSARO, F-76000, Rouen, France
| | - Gwladys Bourdenet
- Univ Rouen Normandie, Inserm, UMR1234, FOCIS Center of Excellence PAn'THER, F-76000, Rouen, France
| | - Laurent Drouot
- Univ Rouen Normandie, Inserm, UMR1234, FOCIS Center of Excellence PAn'THER, F-76000, Rouen, France
| | - Pascal Cosette
- Univ Rouen Normandie, Inserm US 51, CNRS UAR 2026, HeRacLeS PISSARO, F-76000, Rouen, France
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, PBS UMR 6270, F-76000, Rouen, France
| | - Margherita Giannini
- Translational Medicine Federation of Strasbourg, Team 3072, Faculty of Medicine, University of Strasbourg, Strasbourg, France
- Unité exploration fonctionnelle musculaire-service de physiologie, Centre National de Référence des Maladies Auto-Immunes Systémiques Rares de l'Est et du Sud-Ouest -Service de rhumatologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Lea Debrut
- Translational Medicine Federation of Strasbourg, Team 3072, Faculty of Medicine, University of Strasbourg, Strasbourg, France
| | - Laetitia Jean
- Univ Rouen Normandie, Inserm, UMR1234, FOCIS Center of Excellence PAn'THER, F-76000, Rouen, France
| | - Sophie Bernard
- Univ Rouen Normandie, Inserm US51, CNRS UAR2026, HeRacLeS PRIMACEN, F-76000, Rouen, France
| | - Damien Genty
- CHU Rouen, Department of Pathology, F-76000, Rouen, France
| | - Rachid Zoubairi
- Univ Rouen Normandie, Inserm, UMR1234, FOCIS Center of Excellence PAn'THER, F-76000, Rouen, France
| | - Isabelle Remy-Jouet
- Univ Rouen Normandie, Inserm, UMR1096, BOSS facility, F-76000, Rouen, France
| | - Bernard Geny
- Translational Medicine Federation of Strasbourg, Team 3072, Faculty of Medicine, University of Strasbourg, Strasbourg, France
- Unité exploration fonctionnelle musculaire-service de physiologie, Centre National de Référence des Maladies Auto-Immunes Systémiques Rares de l'Est et du Sud-Ouest -Service de rhumatologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Christian Boitard
- Cochin Institute, Paris Descartes University, Sorbonne Paris Cité, Paris, France
| | - Andrew Mammen
- Muscle Disease Unit, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Medicine, Division of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alain Meyer
- Translational Medicine Federation of Strasbourg, Team 3072, Faculty of Medicine, University of Strasbourg, Strasbourg, France
- Unité exploration fonctionnelle musculaire-service de physiologie, Centre National de Référence des Maladies Auto-Immunes Systémiques Rares de l'Est et du Sud-Ouest -Service de rhumatologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Olivier Boyer
- Univ Rouen Normandie, Inserm, UMR1234, FOCIS Center of Excellence PAn'THER, F-76000, Rouen, France.
- CHU Rouen, Department of Immunology and Biotherapy, F-76000, Rouen, France.
| |
Collapse
|
2
|
Bourdenet G, Pileyre B, Drouot L, Martinet J, Bécourt C, Carrette M, Riou G, Bergua C, Jaworski T, Chan P, Jean L, Fréret M, Cosette P, Boitard C, Abad C, Boyer O. Icos gene disruption in non-obese diabetic mice elicits myositis associated with anti-troponin T3 autoantibodies. Neuropathol Appl Neurobiol 2023; 49:e12889. [PMID: 36751013 DOI: 10.1111/nan.12889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 02/01/2023] [Accepted: 02/05/2023] [Indexed: 02/09/2023]
Abstract
AIMS Idiopathic inflammatory myopathies (IIM) are autoimmune inflammatory disorders leading to skeletal muscle weakness and disability. The pathophysiology of IIM is poorly understood due to the scarcity of animal disease models. Genetic deletion of Icos or Icosl (inducible T cell co-stimulator/ligand) in non-obese diabetic (NOD) mice leads to muscle disease. Our aim was to characterise Icos-/- NOD myopathy and to search for novel autoantibodies (aAbs) in this model. METHODS Diabetes, weight, myopathy incidence/clinical score and grip strength were assessed over time. Locomotor activity was analysed with the Catwalk XT gait analysis system. Muscle histology was evaluated in haematoxylin/eosin and Sirius red-stained sections, and immune infiltrates were characterised by immunofluorescence and flow cytometry. 2D gel electrophoresis of muscle protein extracts and mass spectrometry were used to identify novel aAbs. NOD mice were immunised with troponin T3 (TNNT3) in incomplete Freund's adjuvant (IFA) and R848. An addressable laser bead immunoassay (ALBIA) was developed to measure aAb IgG serum levels. RESULTS Icos-/- NOD mice did not exhibit diabetes but developed spontaneous progressive myositis with decreased muscle strength and altered locomotor activity. Muscle from these mice exhibited myofibre necrosis, myophagocytosis, central nuclei, fibrosis and perimysial and endomysial cell infiltrates with macrophages and T cells. We identified anti-TNNT3 aAbs in diseased mice. Immunisation of NOD mice with murine TNNT3 protein led to myositis development, supporting its pathophysiological role. CONCLUSIONS These data show that Icos-/- NOD mice represent a spontaneous model of myositis and the discovery of anti-TNNT3 aAb suggests a new autoantigen in this model.
Collapse
Affiliation(s)
- Gwladys Bourdenet
- Univ Rouen Normandie, INSERM U1234, FOCIS Center of Excellence PAn'THER, Rouen, France
| | - Baptiste Pileyre
- Univ Rouen Normandie, INSERM U1234, FOCIS Center of Excellence PAn'THER, Rouen, France
| | - Laurent Drouot
- Univ Rouen Normandie, INSERM U1234, FOCIS Center of Excellence PAn'THER, Rouen, France
| | - Jérémie Martinet
- Univ Rouen Normandie, INSERM U1234, FOCIS Center of Excellence PAn'THER, Rouen, France.,CHU de Rouen, Departement of Immunology and Biotherapy, Rouen, France
| | | | - Marion Carrette
- CHU de Rouen, Departement of Immunology and Biotherapy, Rouen, France
| | - Gaétan Riou
- Univ Rouen Normandie, INSERM U1234, FOCIS Center of Excellence PAn'THER, Rouen, France
| | - Cécile Bergua
- Univ Rouen Normandie, INSERM U1234, FOCIS Center of Excellence PAn'THER, Rouen, France
| | - Thara Jaworski
- Univ Rouen Normandie, INSERM U1234, FOCIS Center of Excellence PAn'THER, Rouen, France
| | - Philippe Chan
- Univ Rouen Normandie, INSERM US 51, CNRS UAR 2026, HeRacLeS-PISSARO, Rouen, France
| | - Laetitia Jean
- Univ Rouen Normandie, INSERM U1234, FOCIS Center of Excellence PAn'THER, Rouen, France
| | - Manuel Fréret
- Univ Rouen Normandie, INSERM U1234, FOCIS Center of Excellence PAn'THER, Rouen, France.,CHU de Rouen, Department of Rheumatology, Rouen, France
| | - Pascal Cosette
- Univ Rouen Normandie, INSERM US 51, CNRS UAR 2026, HeRacLeS-PISSARO, Rouen, France.,Univ Rouen Normandie, PISSARO, CNRS UMR6270, Rouen, France
| | | | - Catalina Abad
- Univ Rouen Normandie, INSERM U1234, FOCIS Center of Excellence PAn'THER, Rouen, France
| | - Olivier Boyer
- Univ Rouen Normandie, INSERM U1234, FOCIS Center of Excellence PAn'THER, Rouen, France.,CHU de Rouen, Departement of Immunology and Biotherapy, Rouen, France
| |
Collapse
|
3
|
Stark AK, Davenport ECM, Patton DT, Scudamore CL, Vanhaesebroeck B, Veldhoen M, Garden OA, Okkenhaug K. Loss of Phosphatidylinositol 3-Kinase Activity in Regulatory T Cells Leads to Neuronal Inflammation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 205:78-89. [PMID: 32414808 PMCID: PMC7311201 DOI: 10.4049/jimmunol.2000043] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 04/21/2020] [Indexed: 12/29/2022]
Abstract
Class I PI3K enzymes are critical for the maintenance of effective immunity. In T cells, PI3Kα and PI3Kδ are activated by the TCR and costimulatory receptors, whereas PI3Kγ is activated by G protein-coupled chemokine receptors. PI3Kδ is a key regulator of regulatory T (Treg) cell function. PI3K isoform-selective inhibitors are in development for the treatment of diseases associated with immune dysregulation, including chronic inflammatory conditions, cancer, and autoimmune diseases. Idelalisib (PI3Kδ), alpelisib (PI3Kα), duvelisib (PI3Kδ/γ), and copanlisib (pan-PI3K) have recently been approved for use in cancer treatment. Although effective, these therapies often have severe side effects associated with immune dysregulation and, in particular, loss of Treg cells. Therefore, it is important to gain a better understanding of the relative contribution of different PI3K isoforms under homeostatic and inflammatory conditions. Experimental autoimmune encephalitis is a mouse model of T cell-driven CNS inflammation, in which Treg cells play a key protective role. In this study, we show that PI3Kδ is required to maintain normal Treg cell development and phenotype under homeostatic conditions but that loss of PI3Kδ alone in Treg cells does not lead to autoimmunity. However, combined loss of PI3Kα and PI3Kδ signaling resulted in increased experimental autoimmune encephalitis disease severity. Moreover, mice lacking PI3Kα and PI3Kδ in Treg cells developed spontaneous peripheral nerve inflammation. These results show a key role for PI3K signaling in Treg cell-mediated protection against CNS inflammation.
Collapse
MESH Headings
- Animals
- Autoimmunity/genetics
- Class I Phosphatidylinositol 3-Kinases/genetics
- Class I Phosphatidylinositol 3-Kinases/metabolism
- Class Ib Phosphatidylinositol 3-Kinase/genetics
- Class Ib Phosphatidylinositol 3-Kinase/metabolism
- Encephalomyelitis, Autoimmune, Experimental/blood
- Encephalomyelitis, Autoimmune, Experimental/diagnosis
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Female
- Humans
- Male
- Mice
- Mice, Transgenic
- Myelin-Oligodendrocyte Glycoprotein/administration & dosage
- Myelin-Oligodendrocyte Glycoprotein/immunology
- Peptide Fragments/administration & dosage
- Peptide Fragments/immunology
- Peripheral Nerves/immunology
- Peripheral Nerves/pathology
- Severity of Illness Index
- Signal Transduction/genetics
- Signal Transduction/immunology
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
Collapse
Affiliation(s)
- Anne-Katrien Stark
- Laboratory of Lymphocyte Signalling and Development, Babraham Research Campus, Cambridge CB22 3AT, United Kingdom
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom
| | - Elizabeth C M Davenport
- Laboratory of Lymphocyte Signalling and Development, Babraham Research Campus, Cambridge CB22 3AT, United Kingdom
- Royal Veterinary College, London NW1 0TU, United Kingdom
| | - Daniel T Patton
- Laboratory of Lymphocyte Signalling and Development, Babraham Research Campus, Cambridge CB22 3AT, United Kingdom
| | - Cheryl L Scudamore
- Royal Veterinary College, London NW1 0TU, United Kingdom
- Exepathology, Exmouth EX8 5LQ, United Kingdom
| | - Bart Vanhaesebroeck
- UCL Cancer Institute, University College London, London WC1E 6AG, United Kingdom
| | - Marc Veldhoen
- Laboratory of Lymphocyte Signalling and Development, Babraham Research Campus, Cambridge CB22 3AT, United Kingdom
- Instituto de Medicina Molecular, Joâo Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisbon, Portugal; and
| | - Oliver A Garden
- Royal Veterinary College, London NW1 0TU, United Kingdom
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Klaus Okkenhaug
- Laboratory of Lymphocyte Signalling and Development, Babraham Research Campus, Cambridge CB22 3AT, United Kingdom;
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom
| |
Collapse
|
4
|
Panneton V, Chang J, Witalis M, Li J, Suh W. Inducible T‐cell co‐stimulator: Signaling mechanisms in T follicular helper cells and beyond. Immunol Rev 2019; 291:91-103. [DOI: 10.1111/imr.12771] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 04/30/2019] [Indexed: 12/30/2022]
Affiliation(s)
- Vincent Panneton
- IRCM (Institut de recherches cliniques de Montréal) Montreal Quebec Canada
- Department of Microbiology, Infectiology, and Immunology University of Montreal Montreal Quebec Canada
| | - Jinsam Chang
- IRCM (Institut de recherches cliniques de Montréal) Montreal Quebec Canada
- Molecular Biology Program University of Montreal Montreal Quebec Canada
| | - Mariko Witalis
- IRCM (Institut de recherches cliniques de Montréal) Montreal Quebec Canada
- Molecular Biology Program University of Montreal Montreal Quebec Canada
| | - Joanna Li
- IRCM (Institut de recherches cliniques de Montréal) Montreal Quebec Canada
- Department of Microbiology and Immunology McGill University Montreal Quebec Canada
| | - Woong‐Kyung Suh
- IRCM (Institut de recherches cliniques de Montréal) Montreal Quebec Canada
- Department of Microbiology, Infectiology, and Immunology University of Montreal Montreal Quebec Canada
- Molecular Biology Program University of Montreal Montreal Quebec Canada
- Department of Microbiology and Immunology McGill University Montreal Quebec Canada
| |
Collapse
|
5
|
Bourdenet G, Dubourg B, Nicol L, Mulder P, Martinet J, Allenbach Y, Boitard C, Boyer O. Value of magnetic resonance imaging for evaluating muscle inflammation: insights from a new mouse model of myositis. Neuropathol Appl Neurobiol 2017; 44:537-540. [PMID: 29231968 DOI: 10.1111/nan.12457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/26/2017] [Accepted: 12/12/2017] [Indexed: 11/29/2022]
Affiliation(s)
- G Bourdenet
- Normandie Université, Rouen University Hospital, UNIROUEN, IRIB, INSERM, U1234, Department of Immunology, Rouen, France
| | - B Dubourg
- Normandie Université, Rouen University Hospital, UNIROUEN, IRIB, INSERM, U1096, Department of Radiology, Rouen, France
| | - L Nicol
- Normandie Université, UNIROUEN, IRIB, PICTUR, INSERM, U1096, Rouen, France
| | - P Mulder
- Normandie Université, UNIROUEN, IRIB, PICTUR, INSERM, U1096, Rouen, France
| | - J Martinet
- Normandie Université, Rouen University Hospital, UNIROUEN, IRIB, INSERM, U1234, Department of Immunology, Rouen, France
| | - Y Allenbach
- Assistance Publique - Hôpitaux de Paris, Pitié-Salpêtrière University Hospital, Department of Internal Medicine and Clinical Immunology, Paris, France
| | - C Boitard
- Sorbonne Paris Cité, Paris Descartes University, Cochin Institute, INSERM, U1016, Paris, France
| | - O Boyer
- Normandie Université, Rouen University Hospital, UNIROUEN, IRIB, INSERM, U1234, Department of Immunology, Rouen, France
| |
Collapse
|