1
|
Tao JH, Zhang J, Li HS, Zhou Y, Guan CX. Nature killer cell for solid tumors: Current obstacles and prospective remedies in NK cell therapy and beyond. Crit Rev Oncol Hematol 2025; 205:104553. [PMID: 39515404 DOI: 10.1016/j.critrevonc.2024.104553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 10/28/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
In recent years, cell therapy has emerged as an innovative treatment method for the management of clinical tumors following immunotherapy. Among them, Natural killer (NK) cell therapy has achieved a significant breakthrough in the treatment of hematological tumors. However, the therapeutic effectiveness of NK cells in the treatment of solid tumors remains challenging. With the progress of gene editing and culture techniques and their application to NK cell engineering, it is expected that NK cell therapy will revolutionize the treatment of solid tumors. In this review, we explore the discovery and biological properties of NK cells, their role in the tumor microenvironment, and the therapeutic strategies, clinical trials, challenges, and prospects of NK cells in the treatment of solid tumors.
Collapse
Affiliation(s)
- Jia-Hao Tao
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China
| | - Jun Zhang
- Ascle Therapeutics, Suzhou, Jiangsu 215000, China
| | - Hua-Shun Li
- Ascle Therapeutics, Suzhou, Jiangsu 215000, China.
| | - Yong Zhou
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China.
| | - Cha-Xiang Guan
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China.
| |
Collapse
|
2
|
Ghasempour A, Mohseni R, Sharif PM, Hamidieh AA. Natural killer cell-based therapies in neuroblastoma. Cell Immunol 2025; 407:104898. [PMID: 39631142 DOI: 10.1016/j.cellimm.2024.104898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/21/2024] [Accepted: 11/23/2024] [Indexed: 12/07/2024]
Abstract
Neuroblastoma (NB) is the most common extracranial solid tumor of childhood forming around 15 % of all pediatric tumors. Despite advances in the treatment of NB, high-risk patients still face a grave prognosis. Adoptive cell therapies based on NK cells are becoming an assistive treatment for such cases. Moreover, there is also evidence that NKT-based therapies have promising results in the management of NB. Lower complications in comparison with adoptive T cell therapies, various cell sources, and miscellaneous tumor recognition mechanisms are some of the advantages of NK- and NKT-based therapies. This review is dedicated to searching for recent advances in this field.
Collapse
Affiliation(s)
- Abtin Ghasempour
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Rashin Mohseni
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Pouya Mahdavi Sharif
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Ali Hamidieh
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
de Azevedo JTC, de Godoy JAP, de Souza C, Sielski MS, Coa LL, Barbosa A, Kerbauy LN, Kondo AT, Okamoto OK, Hamerschlak N, Kutner JM, Paiva RDMA. Current landscape of clinical use of ex vivo expanded natural killer cells for cancer therapy. EINSTEIN-SAO PAULO 2024; 22:eRW0612. [PMID: 39661859 PMCID: PMC11634336 DOI: 10.31744/einstein_journal/2024rw0612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 12/05/2023] [Indexed: 12/13/2024] Open
Abstract
Natural Killer cells are immune leukocytes required for responses against tumor cells and virus-infected cells. In the last decade, natural killer cells have emerged as promising tools in cancer therapy, and clinical studies on patients treated with natural killer cells have revealed increased rates of disease-free survival. In this article, we review results from the major clinical trials that have used natural killer cells for cancer treatment, including their global distribution. We also discuss the major mechanisms of natural killer cell activation and expansion and focus on the advantages and disadvantages of each mechanism for clinical applications. Although natural killer cells can be isolated from several sources, primary natural killer cells are most commonly used in clinical trials. However, the frequency of natural killer cells available in peripheral and cord blood is low, necessitating development of methods for expansion of natural killer cells for clinical use. The development of a platform for the expansion of large-scale good manufacturing practice-compliant natural killer cells has limitations as several methods for natural killer cell activation and expansion yield conflicting results. Only techniques using feeder cells can produce large numbers of cells, allowing the "off-the-shelf" use of natural killer cells. However, advances in cell culture have supported the development of feeder-free platforms for natural killer cell expansion, which is fundamental for improving the safety of this type of cell therapy.
Collapse
Affiliation(s)
| | | | - Cláudia de Souza
- Hospital Israelita Albert EinsteinSão PauloSPBrazil Hospital Israelita Albert Einstein, São Paulo, SP, Brazil.
| | - Micheli Severo Sielski
- Hospital Israelita Albert EinsteinSão PauloSPBrazil Hospital Israelita Albert Einstein, São Paulo, SP, Brazil.
| | - Larissa Leggieri Coa
- Hospital Israelita Albert EinsteinSão PauloSPBrazil Hospital Israelita Albert Einstein, São Paulo, SP, Brazil.
| | - Augusto Barbosa
- Hospital Israelita Albert EinsteinSão PauloSPBrazil Hospital Israelita Albert Einstein, São Paulo, SP, Brazil.
| | - Lucila Nassif Kerbauy
- Hospital Israelita Albert EinsteinSão PauloSPBrazil Hospital Israelita Albert Einstein, São Paulo, SP, Brazil.
| | - Andrea Tiemi Kondo
- Hospital Israelita Albert EinsteinSão PauloSPBrazil Hospital Israelita Albert Einstein, São Paulo, SP, Brazil.
| | - Oswaldo Keith Okamoto
- Hospital Israelita Albert EinsteinSão PauloSPBrazil Hospital Israelita Albert Einstein, São Paulo, SP, Brazil.
| | - Nelson Hamerschlak
- Hospital Israelita Albert EinsteinSão PauloSPBrazil Hospital Israelita Albert Einstein, São Paulo, SP, Brazil.
| | - José Mauro Kutner
- Hospital Israelita Albert EinsteinSão PauloSPBrazil Hospital Israelita Albert Einstein, São Paulo, SP, Brazil.
| | - Raquel de Melo Alves Paiva
- Hospital Israelita Albert EinsteinSão PauloSPBrazil Hospital Israelita Albert Einstein, São Paulo, SP, Brazil.
| |
Collapse
|
4
|
Yao P, Liu YG, Huang G, Hao L, Wang R. The development and application of chimeric antigen receptor natural killer (CAR-NK) cells for cancer therapy: current state, challenges and emerging therapeutic advances. Exp Hematol Oncol 2024; 13:118. [PMID: 39633491 PMCID: PMC11616395 DOI: 10.1186/s40164-024-00583-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 11/18/2024] [Indexed: 12/07/2024] Open
Abstract
Immunotherapy has transformed the landscape of cancer treatment, with chimeric antigen receptor (CAR)-engineered T (CAR-T) cell therapy emerging as a front runner in addressing some hematological malignancies. Despite its considerable efficacy, the occurrence of severe adverse effects associated with CAR-T cell therapy has limited their scope and prompted the exploration of alternative therapeutic strategies. Natural killer (NK) cells, characterized by both their innate cytotoxicity and ability to lyse target cells without the constraint of peptide specificity conferred by a major histocompatibility complex (MHC), have similarly garnered attention as a viable immunotherapy. As such, another therapeutic approach has recently emerged that seeks to combine the continued success of CAR-T cell therapy with the flexibility of NK cells. Clinical trials involving CAR-engineered NK (CAR-NK) cell therapy have exhibited promising efficacy with fewer deleterious side effects. This review aims to provide a concise overview of the cellular and molecular basis of NK cell biology, facilitating a better understanding of advancements in CAR design and manufacturing. The focus is on current approaches and strategies employed in CAR-NK cell development, exploring at both preclinical and clinical settings. We will reflect upon the achievements, advantages, and challenges intrinsic to CAR-NK cell therapy. Anticipating the maturation of CAR-NK cell therapy technology, we foresee its encouraging prospects for a broader range of cancer patients and other conditions. It is our belief that this CAR-NK progress will bring us closer to making significant strides in the treatment of refractory and recurrent cancers, as well as other immune-mediated disorders.
Collapse
Affiliation(s)
- Pin Yao
- Department of Health Management, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China
| | - Ya-Guang Liu
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Gang Huang
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Liangchun Hao
- Department of Pediatrics, Shengjing Hospital of China Medical University, No.36, Sanhao Street, Shenyang, 110004, Liaoning, China
| | - Runan Wang
- Department of Pediatrics, Shengjing Hospital of China Medical University, No.36, Sanhao Street, Shenyang, 110004, Liaoning, China.
| |
Collapse
|
5
|
Watanabe CM, Suzuki CI, Dos Santos AM, Aloia TPA, Lee G, Wald D, Okamoto OK, de Azevedo JTC, de Godoy JAP, Santos FPS, Weinlich R, Kerbauy LN, Kutner JM, Paiva RDMA, Hamerschlak N. An Extended Flow Cytometry Evaluation of ex Vivo Expanded NK Cells Using K562.Clone1, a Feeder Cell Line Manufactured in Brazil. Transplant Cell Ther 2024; 30:1063.e1-1063.e19. [PMID: 38986739 DOI: 10.1016/j.jtct.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/03/2024] [Accepted: 07/03/2024] [Indexed: 07/12/2024]
Abstract
Natural killer (NK) cells play a crucial role in the immune system's response against cancer. However, the challenge of obtaining the required quantity of NK cells for effective therapeutic response necessitates the development of strategies for their ex vivo expansion. This study aimed to develop a novel feeder cell line, K562.Clone1, capable of promoting the ex vivo expansion of NK cells while preserving their cytotoxic potential. he K562 leukemic cell line was transduced with mbIL-21 and 4-1BBL proteins to generate K562.Clone1 cells. NK cells were then co-cultured with these feeder cells, and their expansion rate was monitored over 14 days. The cytotoxic potential of the expanded NK cells was evaluated against acute myeloid leukemia blasts and tumor cell lines of leukemia and glial origin. Statistical analysis was performed to determine the significance of the results. The K562.Clone1 co-cultured with peripheral NK showed a significant increase in cell count, with an approximate 94-fold expansion over 14 days. Expanded NK cells demonstrated cytotoxicity against the tested tumor cell lines, indicating preservation of their cytotoxic characteristics. Additionally, the CD56, CD16, inhibitory KIRs, and activation receptors were conserved and present in a well-balanced manner. The study successfully developed a feeder cell line, K562.Clone1, that effectively promotes the expansion of NK cells ex vivo while maintaining their cytotoxic potential. This development could significantly contribute to the advancement of NK cell therapy, especially in Brazil.
Collapse
Affiliation(s)
| | | | | | | | - Grace Lee
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio
| | - David Wald
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio; Department of Pathology, University Hospitals Cleveland Medical Center, Cleveland, Ohio
| | - Oswaldo Keith Okamoto
- Department of Hemotherapy and Cellular Therapy, Hospital Israelita Albert Einstein, São Paulo, Brazil; Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo, São Paulo, Brazil
| | - Julia T Cottas de Azevedo
- Experimental Research Laboratory, Hospital Israelita Albert Einstein, São Paulo, Brazil; Department of Hemotherapy and Cellular Therapy, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Juliana Aparecida Preto de Godoy
- Experimental Research Laboratory, Hospital Israelita Albert Einstein, São Paulo, Brazil; Department of Hemotherapy and Cellular Therapy, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Fabio P S Santos
- Experimental Research Laboratory, Hospital Israelita Albert Einstein, São Paulo, Brazil; Oncology and Hematology Center, Familia Dayan-Daycoval, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Ricardo Weinlich
- Experimental Research Laboratory, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Lucila N Kerbauy
- Experimental Research Laboratory, Hospital Israelita Albert Einstein, São Paulo, Brazil; Department of Hemotherapy and Cellular Therapy, Hospital Israelita Albert Einstein, São Paulo, Brazil; Oncology and Hematology Center, Familia Dayan-Daycoval, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Jose Mauro Kutner
- Department of Hemotherapy and Cellular Therapy, Hospital Israelita Albert Einstein, São Paulo, Brazil; Oncology and Hematology Center, Familia Dayan-Daycoval, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Raquel de Melo Alves Paiva
- Experimental Research Laboratory, Hospital Israelita Albert Einstein, São Paulo, Brazil; Department of Hemotherapy and Cellular Therapy, Hospital Israelita Albert Einstein, São Paulo, Brazil.
| | - Nelson Hamerschlak
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
6
|
Zhu X, Xue J, Jiang H, Xue D. CAR-NK cells for gastrointestinal cancer immunotherapy: from bench to bedside. Mol Cancer 2024; 23:237. [PMID: 39443938 PMCID: PMC11515662 DOI: 10.1186/s12943-024-02151-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 10/08/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Gastrointestinal (GI) cancers represent a significant health burden worldwide. Their incidence continues to increase, and their management remains a clinical challenge. Chimeric antigen receptor (CAR) natural killer (NK) cells have emerged as a promising alternative to CAR-T cells for immunotherapy of GI cancers. Notably, CAR-NK cells offer several advantages, including reduced risk of graft-versus-host disease, lower cytokine release syndrome, and the ability to target cancer cells through both CAR-dependent and natural cytotoxic mechanisms. MAIN BODY This review comprehensively discusses the development and applications of CAR-NK cells in the treatment of GI cancers. We explored various sources of NK cells, CAR design strategies, and the current state of CAR-NK cell therapy for GI cancers, highlighting recent preclinical and clinical trials. Additionally, we addressed existing challenges and propose potential strategies to enhance the efficacy and safety of CAR-NK cell therapy. CONCLUSIONS Our findings highlight the potential of CAR-NK cells to revolutionize GI cancer treatment and pave the way for future clinical applications.
Collapse
Affiliation(s)
- Xingwang Zhu
- Department of Urinary Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, 110032, P.R. China
| | - Jieyun Xue
- China Medical University, Shenyang, Liaoning Province, 110000, P.R. China
| | - Hongzhou Jiang
- Department of Neurosurgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, 110032, P.R. China
| | - Dongwei Xue
- Department of Urinary Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, 110032, P.R. China.
| |
Collapse
|
7
|
Tang C, Zhang Y. Potential alternatives to αβ-T cells to prevent graft-versus-host disease (GvHD) in allogeneic chimeric antigen receptor (CAR)-based cancer immunotherapy: A comprehensive review. Pathol Res Pract 2024; 262:155518. [PMID: 39146830 DOI: 10.1016/j.prp.2024.155518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/28/2024] [Accepted: 08/06/2024] [Indexed: 08/17/2024]
Abstract
Currently, CAR-T cell therapy relies on an individualized manufacturing process in which patient's own T cells are infused back into patients after being engineered and expanded ex vivo. Despite the astonishing outcomes of autologous CAR-T cell therapy, this approach is endowed with several limitations and drawbacks, such as high cost and time-consuming manufacturing process. Switching the armature of CAR-T cell therapy from autologous settings to allogeneic can overcome several bottlenecks of the current approach. Nevertheless, the use of allogeneic CAR-T cells is limited by the risk of life-threatening GvHD. Thus, in recent years, developing a method to move CAR-T cell therapy to allogeneic settings without the risk of GvHD has become a hot research topic in this field. Since the alloreactivity of αβ T-cell receptor (TCR) accounts for developing GvHD, several efforts have been made to disrupt endogenous TCR of allogeneic CAR-T cells using gene editing tools to prevent GvHD. Nonetheless, the off-target activity of gene editing tools and their associated genotoxicities, as well as the negative consequences of endogenous TCR disruption, are the main concerns of using this approach. As an alternative, CAR αβ-T cells can be replaced with other types of CAR-engineered cells that are capable of recognizing and killing malignant cells through CAR while avoiding the induction of GvHD. These alternatives include T cell subsets with restricted TCR repertoire (γδ-T, iNKT, virus-specific T, double negative T cells, and MAIT cells), killer cells (NK and CIK cells), non-lymphocytic cells (neutrophils and macrophages), stem/progenitor cells, and cell-free extracellular vesicles. In this review, we discuss how these alternatives can move CAR-based immunotherapy to allogeneic settings to overcome the bottlenecks of autologous manner without the risk of GvHD. We comprehensively discuss the pros and cons of these alternatives over the traditional CAR αβ-T cells in light of their preclinical studies and clinical trials.
Collapse
MESH Headings
- Humans
- Graft vs Host Disease/immunology
- Graft vs Host Disease/prevention & control
- Graft vs Host Disease/therapy
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/genetics
- Immunotherapy, Adoptive/methods
- Neoplasms/therapy
- Neoplasms/immunology
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- T-Lymphocytes/immunology
- Animals
- Gene Editing/methods
- Transplantation, Homologous/methods
Collapse
Affiliation(s)
- Chaozhi Tang
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China; Department of Neurology, Xinxiang First Peoples Hospital, Xinxiang 453100, China
| | - Yuling Zhang
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China.
| |
Collapse
|
8
|
Wang Y, Zhao Y, Fang X, Yuan D, Ding M, Lu K, Qu H, Wang N, Lv X, Li P, Zhen C, Xu H, Jiang Y. Umbilical cord blood stem cells as third-party adjuvant infusions in human leukocyte antigen antibody-positive patients undergoing haploidentical hematopoietic stem cell transplantation. Front Immunol 2024; 15:1459699. [PMID: 39399498 PMCID: PMC11466763 DOI: 10.3389/fimmu.2024.1459699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/11/2024] [Indexed: 10/15/2024] Open
Abstract
Introduction Graft failure (GF) or poor graft function (PGF) remain critical obstacles in haploidentical hematopoietic stem cell transplantation (haplo-HSCT), especially in recipients with HLA antibodies. Here, we performed a retrospective cohort study to investigate the efficacy and safety of the use of unrelated umbilical cord blood stem cells (UCBs) as a third-party adjuvant infusion in patients with HLA-antibodies undergoing haplo-HSCT. Methods A total of 90 patients were divided into three groups: 17 patients in Group A (with positive HLA antibodies and who received UCB infusion), 36 patients in Group B (with positive HLA antibodies without UCB infusion), and 37 patients in Group C (without HLA antibody or UCB infusion). Results The median age of patients included in Groups A, B, and C was 43 (IQR, 27 - 49.5), 33 (IQR, 20 - 48.75), and 30 (IQR, 18 - 46.5) years, respectively. All but one patient in Group B achieved granulocyte recovery within 28 days after transplantation. The median time to granulocyte engraftment were all 12 days for patients in Groups A, B, and C, respectively. All the patients in Group A achieved 100% donor chimerism without UCB engraftment. There were no significant differences in granulocyte or platelet engraftment time between the three groups. There were 1, 5, and 0 patients in Groups A, B, and C, respectively, who developed PGF. The cumulative incidence rates for any grade of acute graft-versus-host disease (aGVHD) were comparable among the three groups. Patients in Group B presented a greater incidence of cGVHD than did those in Group A (P = 0.002) and Group C (P = 0.006). Patients in Group A presented more limited and milder cGVHD than those in Group C (P < 0.0001). The 1-year relapse-free survival (RFS) was 70.6% (95% CI, 0.47 - 0.87), 55.6% (95% CI, 0.40 - 0.70), and 77.9% (95% CI, 0.63 - 0.89) in Groups A, B, and C, respectively. Discussion Our results indicated that patients who were positive for HLA antibodies were at a greater risk of developing GF/PGF. Co-infusion with UCBs was safe and improved engraftment, cGVHD, and improved the 1-year RFS to some extent.
Collapse
Affiliation(s)
- Yuying Wang
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yiou Zhao
- School of Life Science and Technology, Changchun University of Science and Technology, Changchun, Jilin, China
| | - Xiaosheng Fang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Dai Yuan
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Mei Ding
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Kang Lu
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Huiting Qu
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Na Wang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Xiao Lv
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Peipei Li
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Changqing Zhen
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Hongzhi Xu
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yujie Jiang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
9
|
Mohammad Taheri M, Javan F, Poudineh M, Athari SS. Beyond CAR-T: The rise of CAR-NK cell therapy in asthma immunotherapy. J Transl Med 2024; 22:736. [PMID: 39103889 PMCID: PMC11302387 DOI: 10.1186/s12967-024-05534-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 07/23/2024] [Indexed: 08/07/2024] Open
Abstract
Asthma poses a major public health burden. While existing asthma drugs manage symptoms for many, some patients remain resistant. The lack of a cure, especially for severe asthma, compels exploration of novel therapies. Cancer immunotherapy successes with CAR-T cells suggest its potential for asthma treatment. Researchers are exploring various approaches for allergic diseases including membrane-bound IgE, IL-5, PD-L2, and CTLA-4 for asthma, and Dectin-1 for fungal asthma. NK cells offer several advantages over T cells for CAR-based immunotherapy. They offer key benefits: (1) HLA compatibility, meaning they can be used in a wider range of patients without the need for matching tissue types. (2) Minimal side effects (CRS and GVHD) due to their limited persistence and cytokine profile. (3) Scalability for "off-the-shelf" production from various sources. Several strategies have been introduced that highlight the superiority and challenges of CAR-NK cell therapy for asthma treatment including IL-10, IFN-γ, ADCC, perforin-granzyme, FASL, KIR, NCRs (NKP46), DAP, DNAM-1, TGF-β, TNF-α, CCL, NKG2A, TF, and EGFR. Furthermore, we advocate for incorporating AI for CAR design optimization and CRISPR-Cas9 gene editing technology for precise gene manipulation to generate highly effective CAR constructs. This review will delve into the evolution and production of CAR designs, explore pre-clinical and clinical studies of CAR-based therapies in asthma, analyze strategies to optimize CAR-NK cell function, conduct a comparative analysis of CAR-T and CAR-NK cell therapy with their respective challenges, and finally present established novel CAR designs with promising potential for asthma treatment.
Collapse
Affiliation(s)
| | - Fatemeh Javan
- Student Research Committee, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mohadeseh Poudineh
- Student Research Committee, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Seyed Shamseddin Athari
- Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.
- Department of Immunology, Zanjan School of Medicine, Zanjan University of Medical Sciences, 12th Street, Shahrake Karmandan, Zanjan, 45139-561111, Iran.
| |
Collapse
|
10
|
Kaito Y, Imai Y. Evolution of natural killer cell-targeted therapy for acute myeloid leukemia. Int J Hematol 2024; 120:34-43. [PMID: 38693419 DOI: 10.1007/s12185-024-03778-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/04/2024] [Accepted: 04/14/2024] [Indexed: 05/03/2024]
Abstract
In hematologic oncology, acute myeloid leukemia (AML) presents a significant challenge due to its complex genetic landscape and resistance to conventional therapies. Despite advances in treatment, including intensive chemotherapy and hematopoietic stem cell transplantation (HSCT), the prognosis for many patients with AML remains poor. Recently, immunotherapy has emerged as a promising approach to improve outcomes by augmenting existing treatments. Natural killer (NK) cells, a subset of innate lymphoid cells, have garnered attention for their potent cytotoxic capabilities against AML cells. In this review, we discuss the role of NK cells in AML immunosurveillance, their dysregulation in patients with AML, and various therapeutic strategies leveraging NK cells in AML treatment. We explore the challenges and prospects associated with NK cell therapy, including approaches to enhance NK cell function, overcome immune evasion mechanisms, and optimize treatment efficacy. Finally, we emphasize the importance of further research to validate and refine patient-first NK cell-based immunotherapies for AML.
Collapse
Affiliation(s)
- Yuta Kaito
- Department of Hematology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-Ku, Tokyo, 113-8602, Japan.
| | - Yoichi Imai
- Department of Hematology and Oncology, Dokkyo Medical University, Tochigi, Japan
| |
Collapse
|
11
|
Ballesteros-Ribelles A, Millán-López A, Carmona-Luque MD, Herrera C. Granulocyte Colony Stimulating Factor-Mobilized Peripheral Blood Mononuclear Cells: An Alternative Cellular Source for Chimeric Antigen Receptor Therapy. Int J Mol Sci 2024; 25:5769. [PMID: 38891957 PMCID: PMC11171785 DOI: 10.3390/ijms25115769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Lymphocyte collection by apheresis for CAR-T production usually does not include blood mobilized using granulocyte colony stimulating factor (G-CSF) due to the widespread knowledge that it causes a decrease in the number and functionality of lymphocytes. However, it is used for stem cell transplant, which is a common treatment for hematological malignancies. The growing demand for CAR therapies (CAR-T and NK-CAR), both in research and clinics, makes it necessary to evaluate whether mobilized PBSC products may be potential candidates for use in such therapies. This review collects recent works that experimentally verify the role and functionality of T and NK lymphocytes and the generation of CAR-T from apheresis after G-CSF mobilization. As discussed, T cells do not vary significantly in their phenotype, the ratio of CD4+ and CD8+ remains constant, and the different sub-populations remain stable. In addition, the expansion and proliferation rates are invariant regardless of mobilization with G-CSF as well as the secretion of proinflammatory cytokines and the cytotoxic ability. Therefore, cells mobilized before apheresis are postulated as a new alternative source of T cells for adoptive therapies that will serve to alleviate high demand, increase availability, and take advantage of the substantial number of existing cryopreserved products.
Collapse
Affiliation(s)
| | - Alejandro Millán-López
- Cell Therapy Group, Maimonides Institute for Biomedical Research, 14004 Córdoba, Spain; (A.B.-R.); (A.M.-L.)
| | - MDolores Carmona-Luque
- Cell Therapy Group, Maimonides Institute for Biomedical Research, 14004 Córdoba, Spain; (A.B.-R.); (A.M.-L.)
| | - Concha Herrera
- Cell Therapy Group, Maimonides Institute for Biomedical Research, 14004 Córdoba, Spain; (A.B.-R.); (A.M.-L.)
- Department of Hematology, Reina Sofia University Hospital, 14004 Córdoba, Spain
- Department of Medical and Surgical Sciences, University of Córdoba, 14004 Córdoba, Spain
| |
Collapse
|
12
|
Maia A, Tarannum M, Lérias JR, Piccinelli S, Borrego LM, Maeurer M, Romee R, Castillo-Martin M. Building a Better Defense: Expanding and Improving Natural Killer Cells for Adoptive Cell Therapy. Cells 2024; 13:451. [PMID: 38474415 PMCID: PMC10930942 DOI: 10.3390/cells13050451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 03/01/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024] Open
Abstract
Natural killer (NK) cells have gained attention as a promising adoptive cell therapy platform for their potential to improve cancer treatments. NK cells offer distinct advantages over T-cells, including major histocompatibility complex class I (MHC-I)-independent tumor recognition and low risk of toxicity, even in an allogeneic setting. Despite this tremendous potential, challenges persist, such as limited in vivo persistence, reduced tumor infiltration, and low absolute NK cell numbers. This review outlines several strategies aiming to overcome these challenges. The developed strategies include optimizing NK cell expansion methods and improving NK cell antitumor responses by cytokine stimulation and genetic manipulations. Using K562 cells expressing membrane IL-15 or IL-21 with or without additional activating ligands like 4-1BBL allows "massive" NK cell expansion and makes multiple cell dosing and "off-the-shelf" efforts feasible. Further improvements in NK cell function can be reached by inducing memory-like NK cells, developing chimeric antigen receptor (CAR)-NK cells, or isolating NK-cell-based tumor-infiltrating lymphocytes (TILs). Memory-like NK cells demonstrate higher in vivo persistence and cytotoxicity, with early clinical trials demonstrating safety and promising efficacy. Recent trials using CAR-NK cells have also demonstrated a lack of any major toxicity, including cytokine release syndrome, and, yet, promising clinical activity. Recent data support that the presence of TIL-NK cells is associated with improved overall patient survival in different types of solid tumors such as head and neck, colorectal, breast, and gastric carcinomas, among the most significant. In conclusion, this review presents insights into the diverse strategies available for NK cell expansion, including the roles played by various cytokines, feeder cells, and culture material in influencing the activation phenotype, telomere length, and cytotoxic potential of expanded NK cells. Notably, genetically modified K562 cells have demonstrated significant efficacy in promoting NK cell expansion. Furthermore, culturing NK cells with IL-2 and IL-15 has been shown to improve expansion rates, while the presence of IL-12 and IL-21 has been linked to enhanced cytotoxic function. Overall, this review provides an overview of NK cell expansion methodologies, highlighting the current landscape of clinical trials and the key advancements to enhance NK-cell-based adoptive cell therapy.
Collapse
Affiliation(s)
- Andreia Maia
- Molecular and Experimental Pathology Laboratory, Champalimaud Centre for the Unknown, Champalimaud Foundation, 1400-038 Lisbon, Portugal;
- NK Cell Gene Manipulation and Therapy Laboratory, Division of Cellular Therapy and Stem Cell Transplant, Dana–Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; (M.T.); (S.P.); (R.R.)
- NOVA Medical School, NOVA University of Lisbon, 1099-085 Lisbon, Portugal
| | - Mubin Tarannum
- NK Cell Gene Manipulation and Therapy Laboratory, Division of Cellular Therapy and Stem Cell Transplant, Dana–Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; (M.T.); (S.P.); (R.R.)
| | - Joana R. Lérias
- ImmunoTherapy/ImmunoSurgery, Champalimaud Centre for the Unknown, Champalimaud Foundation, 1400-038 Lisbon, Portugal; (J.R.L.); (M.M.)
| | - Sara Piccinelli
- NK Cell Gene Manipulation and Therapy Laboratory, Division of Cellular Therapy and Stem Cell Transplant, Dana–Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; (M.T.); (S.P.); (R.R.)
| | - Luis Miguel Borrego
- Comprehensive Health Research Centre (CHRC), NOVA Medical School, Faculdade de Ciências Médicas (FCM), NOVA University of Lisbon, 1099-085 Lisbon, Portugal;
- Immunoallergy Department, Hospital da Luz, 1600-209 Lisbon, Portugal
| | - Markus Maeurer
- ImmunoTherapy/ImmunoSurgery, Champalimaud Centre for the Unknown, Champalimaud Foundation, 1400-038 Lisbon, Portugal; (J.R.L.); (M.M.)
- I Medical Clinic, University of Mainz, 55131 Mainz, Germany
| | - Rizwan Romee
- NK Cell Gene Manipulation and Therapy Laboratory, Division of Cellular Therapy and Stem Cell Transplant, Dana–Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; (M.T.); (S.P.); (R.R.)
| | - Mireia Castillo-Martin
- Molecular and Experimental Pathology Laboratory, Champalimaud Centre for the Unknown, Champalimaud Foundation, 1400-038 Lisbon, Portugal;
- Pathology Service, Champalimaud Clinical Center, Champalimaud Foundation, 1400-038 Lisbon, Portugal
| |
Collapse
|
13
|
Zhang B, Yang M, Zhang W, Liu N, Wang D, Jing L, Xu N, Yang N, Ren T. Chimeric antigen receptor-based natural killer cell immunotherapy in cancer: from bench to bedside. Cell Death Dis 2024; 15:50. [PMID: 38221520 PMCID: PMC10788349 DOI: 10.1038/s41419-024-06438-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/21/2023] [Accepted: 01/04/2024] [Indexed: 01/16/2024]
Abstract
Immunotherapy has rapidly evolved in the past decades in the battle against cancer. Chimeric antigen receptor (CAR)-engineered T cells have demonstrated significant success in certain hematologic malignancies, although they still face certain limitations, including high costs and toxic effects. Natural killer cells (NK cells), as a vital component of the immune system, serve as the "first responders" in the context of cancer development. In this literature review, we provide an updated understanding of NK cell development, functions, and their applications in disease therapy. Furthermore, we explore the rationale for utilizing engineered NK cell therapies, such as CAR-NK cells, and discuss the differences between CAR-T and CAR-NK cells. We also provide insights into the key elements and strategies involved in CAR design for engineered NK cells. In addition, we highlight the challenges currently encountered and discuss the future directions in NK cell research and utilization, including pre-clinical investigations and ongoing clinical trials. Based on the outstanding antitumor potential of NK cells, it is highly likely that they will lead to groundbreaking advancements in cancer treatment in the future.
Collapse
Affiliation(s)
- Beibei Zhang
- Institute of Biomedical Research, Yunnan University, Kunming, 650500, China.
| | - Mengzhe Yang
- Graduate School of Capital Medical University, Beijing, 100069, China
| | - Weiming Zhang
- Department of Oncology, Wuming Hospital of Guangxi Medical University, Nanning, 530199, China
| | - Ning Liu
- Department of Hematology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518052, China
| | - Daogang Wang
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, 530000, China
| | - Liangfang Jing
- Department of Neonatology, Women and Children's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530005, China
| | - Ning Xu
- Department of Clinical Medicine, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, 530000, China
| | - Na Yang
- Department of Ultrasound, The Second Affiliated Hospital of Kunming Medical University, Yunnan, 650101, China.
| | - Tao Ren
- Department of Oncology, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, 530000, China.
| |
Collapse
|
14
|
Swieboda D, Rice TF, Guo Y, Nadel S, Thwaites RS, Openshaw PJM, Holder B, Culley FJ. Natural killer cells and innate lymphoid cells but not NKT cells are mature in their cytokine production at birth. Clin Exp Immunol 2024; 215:1-14. [PMID: 37556759 PMCID: PMC10776247 DOI: 10.1093/cei/uxad094] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/02/2023] [Accepted: 08/08/2023] [Indexed: 08/11/2023] Open
Abstract
Early life is a time of increased susceptibility to infectious diseases and development of allergy. Innate lymphocytes are crucial components of the initiation and regulation of immune responses at mucosal surfaces, but functional differences in innate lymphocytes early in life are not fully described. We aimed to characterize the abundance and function of different innate lymphocyte cell populations in cord blood in comparison to that of adults. Blood was collected from adult donors and umbilical vessels at birth. Multicolor flow cytometry panels were used to identify and characterize lymphocyte populations and their capacity to produce hallmark cytokines. Lymphocytes were more abundant in cord blood compared to adults, however, mucosal-associated invariant T cells and natural killer T (NKT)-like cells, were far less abundant. The capacity of NKT-like cells to produce cytokines and their expression of the cytotoxic granule protein granzyme B and the marker of terminal differentiation CD57 were much lower in cord blood than in adults. In contrast, natural killer (NK) cells were as abundant in cord blood as in adults, they could produce IFNγ, and their expression of granzyme B was not significantly different from that of adult NK cells, although CD57 expression was lower. All innate lymphoid cell (ILC) subsets were more abundant in cord blood, and ILC1 and ILC2 were capable of production of IFNγ and IL-13, respectively. In conclusion, different innate lymphoid cells differ in both abundance and function in peripheral blood at birth and with important implications for immunity in early life.
Collapse
Affiliation(s)
- Dawid Swieboda
- National Heart and Lung Institute, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, UK
| | - Thomas F Rice
- National Heart and Lung Institute, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, UK
| | - Yanping Guo
- National Heart and Lung Institute, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, UK
| | - Simon Nadel
- National Heart and Lung Institute, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, UK
| | - Ryan S Thwaites
- National Heart and Lung Institute, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, UK
| | - Peter J M Openshaw
- National Heart and Lung Institute, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, UK
| | - Beth Holder
- National Heart and Lung Institute, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, UK
| | - Fiona J Culley
- National Heart and Lung Institute, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, UK
| |
Collapse
|
15
|
Fetzko SL, Timothy LD, Parihar R. NK Cell Therapeutics for Hematologic Malignancies: from Potential to Fruition. Curr Hematol Malig Rep 2023; 18:264-272. [PMID: 37751103 DOI: 10.1007/s11899-023-00711-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2023] [Indexed: 09/27/2023]
Abstract
PURPOSE OF REVIEW The current review focuses on the preclinical development and clinical advances of natural killer (NK) cell therapeutics for hematologic malignancies and offers perspective on the unmet challenges that will direct future discovery in the field. RECENT FINDINGS Approaches to improve or re-direct NK cell anti-tumor functions against hematologic malignancies have included transgenic expression of chimeric antigen receptors (CARs), administration of NK cell engagers including BiKEs and TriKEs that enhance antibody-dependent cellular cytotoxicity (ADCC) by co-engaging NK cell CD16 and antigens on tumors, incorporation of a non-cleavable CD16 that results in enhanced ADCC, use of induced memory-like NK cells alone or in combination with CARs, and blockade of NK immune checkpoints to enhance NK cytotoxicity. Recently reported and ongoing clinical trials support the feasibility and safety of these approaches. NK cell-based therapeutic strategies hold great promise as cost-effective, off-the-shelf cell therapies for patients with relapsed and refractory hematologic diseases.
Collapse
Affiliation(s)
- Stephanie L Fetzko
- Department of Pediatrics, Division of Hematology-Oncology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Leander D Timothy
- Department of Pediatrics, Division of Hematology-Oncology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Robin Parihar
- Department of Pediatrics, Division of Hematology-Oncology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA.
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, and Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
16
|
Hinnekens C, De Smedt SC, Fraire JC, Braeckmans K. Non-viral engineering of NK cells. Biotechnol Adv 2023; 68:108212. [PMID: 37454745 DOI: 10.1016/j.biotechadv.2023.108212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 06/06/2023] [Accepted: 07/09/2023] [Indexed: 07/18/2023]
Abstract
The last decade has witnessed great progress in the field of adoptive cell therapies, with the authorization of Kymriah (tisagenlecleucel) in 2017 by the Food and Drug Administration (FDA) as a crucial stepstone. Since then, five more CAR-T therapies have been approved for the treatment of hematological malignancies. While this is a great step forward to treating several types of blood cancers, CAR-T cell therapies are still associated with severe side-effects such as Graft-versus-Host Disease (GvHD), cytokine release syndrome (CRS) and neurotoxicity. Because of this, there has been continued interest in Natural Killer cells which avoid these side-effects while offering the possibility to generate allogeneic cell therapies. Similar to T-cells, NK cells can be genetically modified to improve their therapeutic efficacy in a variety of ways. In contrast to T cells, viral transduction of NK cells remains inefficient and induces cytotoxic effects. Viral vectors also require a lengthy and expensive product development process and are accompanied by certain risks such as insertional mutagenesis. Therefore, non-viral transfection technologies are avidly being developed aimed at addressing these shortcomings of viral vectors. In this review we will present an overview of the potential of NK cells in cancer immunotherapies and the non-viral transfection technologies that have been explored to engineer them.
Collapse
Affiliation(s)
- Charlotte Hinnekens
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Stefaan C De Smedt
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Juan C Fraire
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 10-12, 08028 Barcelona, Spain.
| | - Kevin Braeckmans
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| |
Collapse
|
17
|
Hojjatipour T, Sharifzadeh Z, Maali A, Azad M. Chimeric antigen receptor-natural killer cells: a promising sword against insidious tumor cells. Hum Cell 2023; 36:1843-1864. [PMID: 37477869 DOI: 10.1007/s13577-023-00948-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 06/23/2023] [Indexed: 07/22/2023]
Abstract
Natural killer (NK) cells are a critical component of innate immunity, particularly in initial cancer recognition and inhibition of additional tumor growth or metastasis propagation. NK cells recognize transformed cells without prior sensitization via stimulatory receptors and rapidly eradicate them. However, the protective tumor microenvironment facilitates tumor escaping via induction of an exhaustion state in immune cells, including NK cells. Hence, genetic manipulation of NK cells for specific identification of tumor-associated antigens or a more robust response against tumor cells is a promising strategy for NK cells' tumoricidal augmentation. Regarding the remarkable achievement of engineered CAR-T cells in treating hematologic malignancies, there is evolving interest in CAR-NK cell recruitment in cancer immunotherapy. Innate functionality of NK cells, higher safety, superior in vivo maintenance, and the off-the-shelf potential move CAR-NK-based therapy superior to CAR-T cells treatment. In this review, we have comprehensively discussed the recent genetic manipulations of CAR-NK cell manufacturing regarding different domains of CAR constructs and their following delivery systems into diverse sources of NK cells. Then highlight the preclinical and clinical investigations of CAR-NK cells and examine the current challenges and prospects as an optimistic remedy in cancer immunotherapy.
Collapse
Affiliation(s)
- Tahereh Hojjatipour
- Department of Hematology and Blood Transfusion, Students Research Center, School of Allied Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Amirhosein Maali
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran
- Department of Medical Biotechnology, Faculty of Allied Medicine, Qazvin University of Medical Sciecnes, Qazvin, Iran
| | - Mehdi Azad
- Department of Medical Laboratory Sciences, School of Paramedicine, Faculty of Allied Medicine, Qazvin University of Medical Sciences, Qazvin, 3419759811, Iran.
| |
Collapse
|
18
|
Motallebnejad P, Kantardjieff A, Cichocki F, Azarin SM, Hu WS. Process engineering of natural killer cell-based immunotherapy. Trends Biotechnol 2023; 41:1314-1326. [PMID: 37142447 PMCID: PMC10523923 DOI: 10.1016/j.tibtech.2023.03.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/17/2023] [Accepted: 03/28/2023] [Indexed: 05/06/2023]
Abstract
Cell therapy offers the potential for curative treatment of cancers. Although T cells have been the predominantly used cell type, natural killer (NK) cells have attracted great attention owing to their ability to kill cancer cells and because they are naturally suitable for allogeneic applications. Upon stimulation by cytokines or activation by a target cell, NK cells proliferate and expand their population. These cytotoxic NK cells can be cryopreserved and used as an off-the-shelf medicine. The production process for NK cells thus differs from that of autologous cell therapies. We briefly outline key biological features of NK cells, review the manufacturing technologies for protein biologics, and discuss their adaptation for developing robust NK cell biomanufacturing processes.
Collapse
Affiliation(s)
- Pedram Motallebnejad
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA
| | | | - Frank Cichocki
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - Samira M Azarin
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA
| | - Wei-Shou Hu
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
19
|
Borrill R, Poulton K, Wynn R. Immunology of cord blood T-cells favors augmented disease response during clinical pediatric stem cell transplantation for acute leukemia. Front Pediatr 2023; 11:1232281. [PMID: 37780051 PMCID: PMC10534014 DOI: 10.3389/fped.2023.1232281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/22/2023] [Indexed: 10/03/2023] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (HSCT) has been an important and efficacious treatment for acute leukemia in children for over 60 years. It works primarily through the graft-vs.-leukemia (GVL) effect, in which donor T-cells and other immune cells act to eliminate residual leukemia. Cord blood is an alternative source of stem cells for transplantation, with distinct biological and immunological characteristics. Retrospective clinical studies report superior relapse rates with cord blood transplantation (CBT), when compared to other stem cell sources, particularly for patients with high-risk leukemia. Xenograft models also support the superiority of cord blood T-cells in eradicating malignancy, when compared to those derived from peripheral blood. Conversely, CBT has historically been associated with an increased risk of transplant-related mortality (TRM) and morbidity, particularly from infection. Here we discuss clinical aspects of CBT, the unique immunology of cord blood T-cells, their role in the GVL effect and future methods to maximize their utility in cellular therapies for leukemia, honing and harnessing their antitumor properties whilst managing the risks of TRM.
Collapse
Affiliation(s)
- Roisin Borrill
- Blood and Marrow Transplant Unit, Royal Manchester Children’s Hospital, Manchester University NHS Foundation Trust, Manchester, United Kingdom
- Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, School of Biological Sciences, Lydia Becker Institute of Immunology and Inflammation, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Kay Poulton
- Transplantation Laboratory, Manchester University NHS Foundation Trust, Manchester, United Kingdom
- Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Robert Wynn
- Blood and Marrow Transplant Unit, Royal Manchester Children’s Hospital, Manchester University NHS Foundation Trust, Manchester, United Kingdom
- Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
20
|
Lin X, Sun Y, Dong X, Liu Z, Sugimura R, Xie G. IPSC-derived CAR-NK cells for cancer immunotherapy. Biomed Pharmacother 2023; 165:115123. [PMID: 37406511 DOI: 10.1016/j.biopha.2023.115123] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/24/2023] [Accepted: 07/02/2023] [Indexed: 07/07/2023] Open
Abstract
Adoptive cell therapies (ACT) based on chimeric antigen receptor (CAR)-modified immune cells have made great progress with six CAR-T cell products approved by the U.S. FDA for hematological malignancies. Compared with CAR-T cells, CAR-NK cells have attracted increasing attention owing to their multiple killing mechanisms, higher safety profile, and broad sources. Induced pluripotent stem cell (iPSC)-derived NK (iPSC-NK) cells possess a mature phenotype and potent cytolytic activity, and can provide a homogeneous population of CAR-NK cells that can be expanded to clinical scale. Thus, iPSC-derived CAR-NK (CAR-iNK) cells could be used as a standardized and "off-the-shelf" product for cancer immunotherapy. In this review, we summarize the current status of the manufacturing techniques, genetic modification strategies, preclinical and clinical evidence of CAR-iNK cells, and discuss the challenges and future prospects of CAR-iNK cell therapy as a novel cellular immunotherapy in cancer.
Collapse
Affiliation(s)
- Xiaotong Lin
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Yao Sun
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xin Dong
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zishen Liu
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Ryohichi Sugimura
- Centre for Translational Stem Cell Biology, School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region of China.
| | - Guozhu Xie
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
21
|
Valipour B, Majidi G, Dizaji Asl K, Nozad Charoudeh H. Cord blood derived NK cells activated in counter with tumor cells. Cell Tissue Bank 2023; 24:551-560. [PMID: 36456837 DOI: 10.1007/s10561-022-10056-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 11/18/2022] [Indexed: 12/02/2022]
Abstract
NK cells are initially known for their ability to kill tumor cells with no prior sensitization. Production of mature and long lasting NK cells from Umbilical Cord Blood (UCB) by using cytokines could be a promising method for immunotherapy. NK cells were generated from cord blood cells using IL2, IL7, and IL15 cytokines and measured expression of CD57 and NKp46 markers. Afterward, their capacity in the elimination of malignant cells (Reh cell line) was evaluated by assessment of interferon-γ (as cytokine production sign) and CD107-a expression (as cytotoxic function symptom) using flow cytometry. Our results showed efficient NKp46 + , and CD57 + NK cells generated on day 14. Also, expression of CD107-a and IFN-γ following co-culture with Reh cell lines significantly increased in comparison to the control. Taken together, we have reported one of the best culture conditions for the generation of CD57 + NK cells with on feeder cells and showed appropriate capacity in counter reh cell lines as a target.
Collapse
Affiliation(s)
- Behnaz Valipour
- Department of Anatomical Sciences, Sarab Faculty of Medical Sciences, Sarab, Iran
| | - Ghazal Majidi
- Stem Cell Research Centre, Tabriz University of Medical Sciences, Imam Reza St., Golgasht St., Tabriz, 5166614756, Iran
| | - Khadijeh Dizaji Asl
- Stem Cell Research Centre, Tabriz University of Medical Sciences, Imam Reza St., Golgasht St., Tabriz, 5166614756, Iran
| | | |
Collapse
|
22
|
Zhang Y, Zhou W, Yang J, Yang J, Wang W. Chimeric antigen receptor engineered natural killer cells for cancer therapy. Exp Hematol Oncol 2023; 12:70. [PMID: 37563648 PMCID: PMC10413722 DOI: 10.1186/s40164-023-00431-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 07/27/2023] [Indexed: 08/12/2023] Open
Abstract
Natural killer (NK) cells, a unique component of the innate immune system, are inherent killers of stressed and transformed cells. Based on their potent capacity to kill cancer cells and good tolerance of healthy cells, NK cells have been successfully employed in adoptive cell therapy to treat cancer patients. In recent years, the clinical success of chimeric antigen receptor (CAR)-T cells has proven the vast potential of gene-manipulated immune cells as the main force to fight cancer. Following the lessons learned from mature gene-transfer technologies and advanced strategies in CAR-T therapy, NK cells have been rapidly explored as a promising candidate for CAR-based therapy. An exponentially growing number of studies have employed multiple sources of CAR-NK cells to target a wide range of cancer-related antigens, showing remarkable outcomes and encouraging safety profiles. Clinical trials of CAR-NK cells have also shown their impressive therapeutic efficacy in the treatment of hematological tumors, but CAR-NK cell therapy for solid tumors is still in the initial stages. In this review, we present the favorable profile of NK cells as a potential platform for CAR-based engineering and then summarize the outcomes and strategies of CAR-NK therapies in up-to-date preclinical and clinical investigations. Finally, we evaluate the challenges remaining in CAR-NK therapy and describe existing strategies that can assist us in devising future prospective solutions.
Collapse
Affiliation(s)
- Yalan Zhang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Weilin Zhou
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Jiangping Yang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, 610041, People's Republic of China
- Department of Head and Neck Oncology and Department of Radiation Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Jinrong Yang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, 610041, People's Republic of China
- Hematology Research Laboratory, Department of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Wei Wang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
23
|
Zheng Z, Li S, Liu M, Chen C, Zhang L, Zhou D. Fine-Tuning through Generations: Advances in Structure and Production of CAR-T Therapy. Cancers (Basel) 2023; 15:3476. [PMID: 37444586 DOI: 10.3390/cancers15133476] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 06/23/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Chimeric antigen receptor (CAR)-T cell therapy is a promising form of immunotherapy that has seen significant advancements in the past few decades. It involves genetically modifying T cells to target cancer cells expressing specific antigens, providing a novel approach to treating various types of cancer. However, the initial success of first-generation CAR-T cells was limited due to inadequate proliferation and undesirable outcomes. Nonetheless, significant progress has been made in CAR-T cell engineering, leading to the development of the latest fifth-generation CAR-T cells that can target multiple antigens and overcome individual limitations. Despite these advancements, some shortcomings prevent the widespread use of CAR-T therapy, including life-threatening toxicities, T-cell exhaustion, and inadequate infiltration for solid tumors. Researchers have made considerable efforts to address these issues by developing new strategies for improving CAR-T cell function and reducing toxicities. This review provides an overview of the path of CAR-T cell development and highlights some of the prominent advances in its structure and manufacturing process, which include the strategies to improve antigen recognition, enhance T-cell activation and persistence, and overcome immune escape. Finally, the review briefly covers other immune cells for cancer therapy and ends with the discussion on the broad prospects of CAR-T in the treatment of various diseases, not just hematological tumors, and the challenges that need to be addressed for the widespread clinical application of CAR-T cell therapies.
Collapse
Affiliation(s)
- Zhibo Zheng
- Department of International Medical Services, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Siyuan Li
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Mohan Liu
- Department of Breast Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Chuyan Chen
- Department of Gastroenterology, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100730, China
| | - Lu Zhang
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Daobin Zhou
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
24
|
Meng F, Zhang S, Xie J, Zhou Y, Wu Q, Lu B, Zhou S, Zhao X, Li Y. Leveraging CD16 fusion receptors to remodel the immune response for enhancing anti-tumor immunotherapy in iPSC-derived NK cells. J Hematol Oncol 2023; 16:62. [PMID: 37316891 DOI: 10.1186/s13045-023-01455-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 05/17/2023] [Indexed: 06/16/2023] Open
Abstract
BACKGROUND The cytotoxicity of NK cells is largely dependent on IgG Fc receptor CD16a, which mediates antibody-dependent cell-mediated cytotoxicity (ADCC). The high-affinity and non-cleavable CD16 (hnCD16) is developed and demonstrated a multi-tumor killing potential. However, the hnCD16 receptor activates a single CD16 signal and provides limited tumor suppression. How to exploit the properties of hnCD16 and incorporate NK cell-specific activation domains is a promising development direction to further improve the anti-tumor activity of NK cells. METHODS To expand the applications of hnCD16-mediated ADCC for NK cell-based immunotherapy in cancer, we designed the hnCD16 Fusion Receptor (FR) constructs with the ectodomain of hnCD16 fused with NK cell-specific activating domains in the cytoplasm. FR constructs were transduced into CD16-negative NK cell line and human iPSC-derived NK (iNK) cells and effective FR constructs were screened. The up-regulation of immune activation- and cytokine-releasing-related pathways in FR-transduced NK cells was screened and validated by RNA sequencing and multiplex cytokines release assay, respectively. The tumor-killing efficiency was tested in vitro and in vivo via co-culture with tumor cell lines and xenograft mice-bearing human B-cell lymphoma, respectively. RESULTS We screened the most effective combination to kill B cell lymphoma, which was fused with the ectodomain of hnCD16a, NK-specific co-stimulators (2B4 and DAP10) and CD3ζ in cytoplasmic domains. The screened construct showed excellent cytotoxicity effects and sharp multiple cytokines releasing both in the NK cell line and iNK cells. The transcriptomic analysis and validation assays of hnCD16- and hnCD16FR-transduced NK cells showed that hnCD16FR transduction remodeled immune-related transcriptome in NK cells, where significant upregulation of genes related to cytotoxicity, high cytokines releasing, induced tumor cell apoptosis, and ADCC in comparison with hnCD16 transduction were highlighted. In vivo xenograft studies demonstrated that a single low-dose regimen of engineered hnCD16FR iPSC-derived NK cells co-administered with anti-CD20 mAb treatment mediated potent activity and significantly improved survival. CONCLUSION We developed a novel hnCD16FR construct that exhibits more potent cytotoxicity than reported hnCD16, which is a promising approach to treat malignancies with improved ADCC properties. We also offer a rationale for NK activation domains that remodel immune response to enhance CD16 signaling in NK cells.
Collapse
Affiliation(s)
- Fanyi Meng
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Stem Cell Research Center, Peking University, Beijing, China
| | - Siqi Zhang
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Stem Cell Research Center, Peking University, Beijing, China
| | - Juan Xie
- Peking University Institute of Hematology, Peking University People's Hospital, Beijing, China
| | - Yuan Zhou
- Department of Biomedical Informatics, MOE Key Lab of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Qingling Wu
- Guangzhou Regenverse Therapeutics Co.,Ltd., Guangzhou, China
| | - Binyan Lu
- Guangzhou Regenverse Therapeutics Co.,Ltd., Guangzhou, China
| | - Shixin Zhou
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Stem Cell Research Center, Peking University, Beijing, China.
| | - Xiangyu Zhao
- Peking University Institute of Hematology, Peking University People's Hospital, Beijing, China.
| | - Yang Li
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Stem Cell Research Center, Peking University, Beijing, China.
| |
Collapse
|
25
|
Ngo HT, Dang VT, Nguyen NHT, Bui ANT, Van Pham P. Comparison of cytotoxic potency between freshly cultured and freshly thawed cytokine-induced killer cells from human umbilical cord blood. Cell Tissue Bank 2023; 24:139-152. [PMID: 35792988 DOI: 10.1007/s10561-022-10022-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 06/19/2022] [Indexed: 11/29/2022]
Abstract
Immune cell therapy has been incorporated into cancer therapy over the past few years. Chimeric antigen receptor T cells (Car-T cells) transplantation is a novel and promising therapy for cancer treatment and introduces a new age of immune cell therapy. However, the expensive nature of genetic modification procedures limits the accessibility of Car-T cells for cancer treatment. Cytokine-induced killer cells (CIKs) can kill the target cells in an MHC-non-restricted manner; these cells can be developed to "off-the-shelf" immune cell products for cancer treatment. However, the anti-tumor potency of freshly thawed CIKs is not well documented. This study aimed to fill this gap, evaluating the anti-tumor potency of freshly thawed CIKs compared to that of freshly cultured CIKs. CIKs were produced from the human umbilical cord blood in accordance with published protocols. CIKs were cryopreserved in xeno-free cryomedium that contains 5% DMSO, 10% human serum in phosphate buffer saline at - 86 °C. These cells were thawed and immediately utilized in assays (called freshly thawed CIKs) with freshly cultured cells are control. The expression of the surface markers of CIKs, cytokine production, and in vitro anti-tumor cytotoxic cells of freshly thawed CIKs were evaluated and compared to freshly cultured CIKs. Additionally, the freshly thawed CIKs were injected into the breast of tumor-bearing mice to assess the anti-tumor potency in vivo. The results obtained in freshly thawed CIKs and freshly cultured CIKs demonstrated that the expression of CD3, and CD56 were comparable in both cases. The production of TNF-α, IFN-γ, and IL-10 was slightly reduced in freshly thawed cells compared to the freshly cultured cells. The in vitro lysis toward MCF-7 cancer cells was similar between freshly thawed and freshly cultured CIKs. Moreover, the freshly thawed CIKs displayed anti-breast tumor activity in the breast tumor-bearing mice. The volume of tumors significantly reduced in the mice grafted with freshly thawed CIKs while, conversely, the tumor volume in mice of the placebo group gradually increased. This study substantiated that freshly thawed CIKs preserved their anti-tumor potency in both in vitro and in vivo conditions. The results initially revealed the great potential of UCB-CIKs for "off-the-shelf" CIK product manufacturing. However, further studies on the effects of cryomedia, freezing rate, and thawing procedure should be undertaken before freshly thawed off-the-shelf UCB-CIKs are utilized in clinical trials.
Collapse
Affiliation(s)
- Hieu Trong Ngo
- Stem Cell Institute, University of Science Ho Chi Minh City, Ho Chi Minh City, Viet Nam.,Vietnam National University Ho Chi Minh City, Ho Chi Minh City, Viet Nam
| | - Vy Thanh Dang
- Stem Cell Institute, University of Science Ho Chi Minh City, Ho Chi Minh City, Viet Nam.,Vietnam National University Ho Chi Minh City, Ho Chi Minh City, Viet Nam
| | - Nguyen Ho-Thao Nguyen
- Stem Cell Institute, University of Science Ho Chi Minh City, Ho Chi Minh City, Viet Nam.,Vietnam National University Ho Chi Minh City, Ho Chi Minh City, Viet Nam
| | - Anh Nguyen-Tu Bui
- Stem Cell Institute, University of Science Ho Chi Minh City, Ho Chi Minh City, Viet Nam.,Vietnam National University Ho Chi Minh City, Ho Chi Minh City, Viet Nam
| | - Phuc Van Pham
- Stem Cell Institute, University of Science Ho Chi Minh City, Ho Chi Minh City, Viet Nam. .,Vietnam National University Ho Chi Minh City, Ho Chi Minh City, Viet Nam. .,Laboratory of Stem Cell Research and Application, University of Science Ho Chi Minh City, Ho Chi Minh City, Viet Nam. .,Laboratory of Cancer Research, University of Science Ho Chi Minh City, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
26
|
Berrien-Elliott MM, Jacobs MT, Fehniger TA. Allogeneic natural killer cell therapy. Blood 2023; 141:856-868. [PMID: 36416736 PMCID: PMC10023727 DOI: 10.1182/blood.2022016200] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/17/2022] [Accepted: 11/20/2022] [Indexed: 11/24/2022] Open
Abstract
Interest in adoptive cell therapy for treating cancer is exploding owing to early clinical successes of autologous chimeric antigen receptor (CAR) T lymphocyte therapy. However, limitations using T cells and autologous cell products are apparent as they (1) take weeks to generate, (2) utilize a 1:1 donor-to-patient model, (3) are expensive, and (4) are prone to heterogeneity and manufacturing failures. CAR T cells are also associated with significant toxicities, including cytokine release syndrome, immune effector cell-associated neurotoxicity syndrome, and prolonged cytopenias. To overcome these issues, natural killer (NK) cells are being explored as an alternative cell source for allogeneic cell therapies. NK cells have an inherent ability to recognize cancers, mediate immune functions of killing and communication, and do not induce graft-versus-host disease, cytokine release syndrome, or immune effector cell-associated neurotoxicity syndrome. NK cells can be obtained from blood or cord blood or be derived from hematopoietic stem and progenitor cells or induced pluripotent stem cells, and can be expanded and cryopreserved for off-the-shelf availability. The first wave of point-of-care NK cell therapies led to the current allogeneic NK cell products being investigated in clinical trials with promising preliminary results. Basic advances in NK cell biology and cellular engineering have led to new translational strategies to block inhibition, enhance and broaden target cell recognition, optimize functional persistence, and provide stealth from patients' immunity. This review details NK cell biology, as well as NK cell product manufacturing, engineering, and combination therapies explored in the clinic leading to the next generation of potent, off-the-shelf cellular therapies for blood cancers.
Collapse
Affiliation(s)
| | - Miriam T. Jacobs
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Todd A. Fehniger
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
27
|
Hattab D, Amer MFA, Mohd Gazzali A, Chuah LH, Bakhtiar A. Current status in cellular-based therapies for prevention and treatment of COVID-19. Crit Rev Clin Lab Sci 2023:1-25. [PMID: 36825325 DOI: 10.1080/10408363.2023.2177605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the pathogen responsible for the coronavirus disease 2019 (COVID-19) outbreaks that resulted in a catastrophic threat to global health, with more than 500 million cases detected and 5.5 million deaths worldwide. Patients with a COVID-19 infection presented with clinical manifestations ranging from asymptomatic to severe symptoms, resulting in acute lung injury, acute respiratory distress syndrome, and even death. Immune dysregulation through delayed innate immune response or impairment of the adaptive immune response is the key contributor to the pathophysiology of COVID-19 and SARS-CoV-2-induced cytokine storm. Symptomatic and supportive therapy is the fundamental strategy in treating COVID-19 infection, including antivirals, steroid-based therapies, and cell-based immunotherapies. Various studies reported substantial effects of immune-based therapies for patients with COVID-19 to modulate the over-activated immune system while simultaneously refining the body's ability to destroy the virus. However, challenges may arise from the complexity of the disease through the genetic variance of the virus itself and patient heterogeneity, causing increased transmissibility and heightened immune system evasion that rapidly change the intervention and prevention measures for SARS-CoV-2. Cell-based therapy, utilizing stem cells, dendritic cells, natural killer cells, and T cells, among others, are being extensively explored as other potential immunological approaches for preventing and treating SARS-CoV-2-affected patients the similar process was effectively proven in SARS-CoV-1 and MERS-CoV infections. This review provides detailed insights into the innate and adaptive immune response-mediated cell-based immunotherapies in COVID-19 patients. The immune response linking towards engineered autologous or allogenic immune cells for either treatment or preventive therapies is subsequently highlighted in an individual study or in combination with several existing treatments. Up-to-date data on completed and ongoing clinical trials of cell-based agents for preventing or treating COVID-19 are also outlined to provide a guide that can help in treatment decisions and future trials.
Collapse
Affiliation(s)
- Dima Hattab
- Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | - Mumen F A Amer
- Faculty of Pharmacy, Applied Science Private University, Amman, Jordan
| | - Amirah Mohd Gazzali
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | - Lay Hong Chuah
- School of Pharmacy, Monash University Malaysia, Selangor, Malaysia
| | - Athirah Bakhtiar
- School of Pharmacy, Monash University Malaysia, Selangor, Malaysia
| |
Collapse
|
28
|
Liu Q, Li J, Zheng H, Yang S, Hua Y, Huang N, Kleeff J, Liao Q, Wu W. Adoptive cellular immunotherapy for solid neoplasms beyond CAR-T. Mol Cancer 2023; 22:28. [PMID: 36750830 PMCID: PMC9903509 DOI: 10.1186/s12943-023-01735-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 01/30/2023] [Indexed: 02/09/2023] Open
Abstract
In recent decades, immune checkpoint blockade and chimeric antigen receptor T cell (CAR-T) therapy are two milestone achievements in clinical immunotherapy. However, both show limited efficacies in most solid neoplasms, which necessitates the exploration of new immunotherapeutic modalities. The failure of CAR-T and immune checkpoint blockade in several solid neoplasms is attributed to multiple factors, including low antigenicity of tumor cells, low infiltration of effector T cells, and diverse mechanisms of immunosuppression in the tumor microenvironment. New adoptive cell therapies have been attempted for solid neoplasms, including TCR-T, CAR-natural killer cells (CAR-NK), and CAR-macrophages (CAR-M). Compared to CAR-T, these new adoptive cell therapies have certain advantages in treating solid neoplasms. In this review, we summarized the 40-year evolution of adoptive cell therapies, then focused on the advances of TCR-T, CAR-NK, and CAR-M in solid neoplasms and discussed their potential clinical applications.
Collapse
Affiliation(s)
- Qiaofei Liu
- grid.506261.60000 0001 0706 7839Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, No.1 Shuai Fu Yuan, Dongcheng District, Beijing, 100730 China
| | - Jiayi Li
- grid.506261.60000 0001 0706 7839Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, No.1 Shuai Fu Yuan, Dongcheng District, Beijing, 100730 China
| | - Huaijin Zheng
- grid.506261.60000 0001 0706 7839Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, No.1 Shuai Fu Yuan, Dongcheng District, Beijing, 100730 China
| | - Sen Yang
- grid.506261.60000 0001 0706 7839Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, No.1 Shuai Fu Yuan, Dongcheng District, Beijing, 100730 China
| | - Yuze Hua
- grid.506261.60000 0001 0706 7839Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, No.1 Shuai Fu Yuan, Dongcheng District, Beijing, 100730 China
| | - Nan Huang
- grid.506261.60000 0001 0706 7839Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, No.1 Shuai Fu Yuan, Dongcheng District, Beijing, 100730 China
| | - Jorg Kleeff
- grid.9018.00000 0001 0679 2801Department of Visceral, Vascular and Endocrine Surgery, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Quan Liao
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, No.1 Shuai Fu Yuan, Dongcheng District, Beijing, 100730, China.
| | - Wenming Wu
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, No.1 Shuai Fu Yuan, Dongcheng District, Beijing, 100730, China.
| |
Collapse
|
29
|
Maalej KM, Merhi M, Inchakalody VP, Mestiri S, Alam M, Maccalli C, Cherif H, Uddin S, Steinhoff M, Marincola FM, Dermime S. CAR-cell therapy in the era of solid tumor treatment: current challenges and emerging therapeutic advances. Mol Cancer 2023; 22:20. [PMID: 36717905 PMCID: PMC9885707 DOI: 10.1186/s12943-023-01723-z] [Citation(s) in RCA: 198] [Impact Index Per Article: 99.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/16/2023] [Indexed: 01/31/2023] Open
Abstract
In the last decade, Chimeric Antigen Receptor (CAR)-T cell therapy has emerged as a promising immunotherapeutic approach to fight cancers. This approach consists of genetically engineered immune cells expressing a surface receptor, called CAR, that specifically targets antigens expressed on the surface of tumor cells. In hematological malignancies like leukemias, myeloma, and non-Hodgkin B-cell lymphomas, adoptive CAR-T cell therapy has shown efficacy in treating chemotherapy refractory patients. However, the value of this therapy remains inconclusive in the context of solid tumors and is restrained by several obstacles including limited tumor trafficking and infiltration, the presence of an immunosuppressive tumor microenvironment, as well as adverse events associated with such therapy. Recently, CAR-Natural Killer (CAR-NK) and CAR-macrophages (CAR-M) were introduced as a complement/alternative to CAR-T cell therapy for solid tumors. CAR-NK cells could be a favorable substitute for CAR-T cells since they do not require HLA compatibility and have limited toxicity. Additionally, CAR-NK cells might be generated in large scale from several sources which would suggest them as promising off-the-shelf product. CAR-M immunotherapy with its capabilities of phagocytosis, tumor-antigen presentation, and broad tumor infiltration, is currently being investigated. Here, we discuss the emerging role of CAR-T, CAR-NK, and CAR-M cells in solid tumors. We also highlight the advantages and drawbacks of CAR-NK and CAR-M cells compared to CAR-T cells. Finally, we suggest prospective solutions such as potential combination therapies to enhance the efficacy of CAR-cells immunotherapy.
Collapse
Affiliation(s)
- Karama Makni Maalej
- grid.413548.f0000 0004 0571 546XTranslational Cancer Research Facility, National Center for Cancer Care and Research, Translational Research Institute, Hamad Medical Corporation, P.O. Box: 3050, Doha, Qatar
| | - Maysaloun Merhi
- grid.413548.f0000 0004 0571 546XTranslational Cancer Research Facility, National Center for Cancer Care and Research, Translational Research Institute, Hamad Medical Corporation, P.O. Box: 3050, Doha, Qatar
| | - Varghese P. Inchakalody
- grid.413548.f0000 0004 0571 546XTranslational Cancer Research Facility, National Center for Cancer Care and Research, Translational Research Institute, Hamad Medical Corporation, P.O. Box: 3050, Doha, Qatar
| | - Sarra Mestiri
- grid.413548.f0000 0004 0571 546XTranslational Cancer Research Facility, National Center for Cancer Care and Research, Translational Research Institute, Hamad Medical Corporation, P.O. Box: 3050, Doha, Qatar
| | - Majid Alam
- grid.413548.f0000 0004 0571 546XTranslational Research Institute, Academic Health System, Dermatology Institute, Hamad Medical Corporation, Doha, Qatar ,grid.413548.f0000 0004 0571 546XDepartment of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar
| | - Cristina Maccalli
- grid.467063.00000 0004 0397 4222Laboratory of Immune and Biological Therapy, Research Department, Sidra Medicine, Doha, Qatar
| | - Honar Cherif
- grid.413548.f0000 0004 0571 546XDepartment of Hematology, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Shahab Uddin
- grid.413548.f0000 0004 0571 546XTranslational Research Institute, Academic Health System, Dermatology Institute, Hamad Medical Corporation, Doha, Qatar
| | - Martin Steinhoff
- grid.413548.f0000 0004 0571 546XTranslational Research Institute, Academic Health System, Dermatology Institute, Hamad Medical Corporation, Doha, Qatar ,grid.413548.f0000 0004 0571 546XDepartment of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar ,grid.416973.e0000 0004 0582 4340Department of Dermatology, Weill Cornell Medicine-Qatar, Doha, Qatar ,grid.412603.20000 0004 0634 1084College of Medicine, Qatar University, Doha, Qatar ,grid.5386.8000000041936877XDepartment of Dermatology, Weill Cornell Medicine, New York, USA
| | - Francesco M. Marincola
- grid.418227.a0000 0004 0402 1634Global Head of Research, Kite Pharma, Santa Monica, California USA
| | - Said Dermime
- grid.413548.f0000 0004 0571 546XTranslational Cancer Research Facility, National Center for Cancer Care and Research, Translational Research Institute, Hamad Medical Corporation, P.O. Box: 3050, Doha, Qatar ,grid.452146.00000 0004 1789 3191College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University, Doha, Qatar
| |
Collapse
|
30
|
Abstract
INTRODUCTION New methods in cancer immunotherapy, such as chimeric antigen receptor (CAR)-T cells, have shown promising results in destroying malignant cells. However, limitations and side effects of CAR-T cell therapy, such as graft-versus-host disease (GVHD), neurotoxicity, and cytokine release syndrome, have motivated researchers to investigate safer alternative cells like natural killer (NK) cells. AREA COVERED NK cells can effectively recognize hematologic malignant cells and destroy them. Many clinical and preclinical studies investigate the efficacy of CAR-NK cells in treating lymphoma and other hematologic malignancies. The results of published clinical trials and preclinical studies have shown that CAR-NK cells could be an appropriate choice for treating lymphoma. In this review, we discuss the characteristics of CAR-NK cells, their role in treating B-cell and T-cell lymphoma, and the challenges faced by using them. We also highlight clinical trials using CAR-NK cells for treating lymphoma. EXPERT OPINION CAR-NK cells have shown promising results in cancer therapy, especially B-cell lymphoma, with a much lower risk for GVHD, cytokine release syndrome, and neurotoxicity than CAR-T cells. Further investigations are required to overcome the obstacles of CAR-NK cell therapy, both generally, and in cancers like T-cell lymphoma.
Collapse
Affiliation(s)
- Shaghayegh Khanmohammadi
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
31
|
Zhao D, Zhu D, Cai F, Jiang M, Liu X, Li T, Zheng Z. Current Situation and Prospect of Adoptive Cellular Immunotherapy for Malignancies. Technol Cancer Res Treat 2023; 22:15330338231204198. [PMID: 38037341 PMCID: PMC10693217 DOI: 10.1177/15330338231204198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/05/2023] [Accepted: 08/30/2023] [Indexed: 12/02/2023] Open
Abstract
Adoptive cell immunotherapy (ACT) is an innovative promising treatment for tumors. ACT is characterized by the infusion of active anti-tumor immune cells (specific and non-specific) into patients to kill tumor cells either directly or indirectly by stimulating the body's immune system. The patient's (autologous) or a donor's (allogeneic) immune cells are used to improve immune function. Chimeric antigen receptor (CAR) T cells (CAR-T) is a type of ACT that has gained attention. T cells from the peripheral blood are genetically engineered to express CARs that rapidly proliferate and specifically recognize target antigens to exert its anti-tumor effects. Clinical application of CAR-T therapy for hematological tumors has shown good results, but adverse reactions and recurrence limit its applicability. Tumor infiltrating lymphocyte (TIL) therapy is effective for solid tumors. TIL therapy exhibits T cell receptor (TCR) clonality, superior tumor homing ability, and low targeted toxicity, but its successful application is limited to a number of tumors. Regardless, TIL and CAR-T therapies are effective for treating cancer. Additionally, CAR-natural killer (NK), CAR-macrophages (M), and TCR-T therapies are currently being researched. In this review, we highlight the current developments and limitations of several types of ACT.
Collapse
Affiliation(s)
- Dong Zhao
- Department of Oncology, General Hospital of Northern Theater Command, Shenyang, P. R. China
| | - Dantong Zhu
- Department of Oncology, General Hospital of Northern Theater Command, Shenyang, P. R. China
| | - Fei Cai
- Department of Oncology, General Hospital of Northern Theater Command, Shenyang, P. R. China
| | - Mingzhe Jiang
- Department of Oncology, General Hospital of Northern Theater Command, Shenyang, P. R. China
| | - Xuefei Liu
- Department of Oncology, General Hospital of Northern Theater Command, Shenyang, P. R. China
| | - Tingting Li
- Department of Oncology, General Hospital of Northern Theater Command, Shenyang, P. R. China
| | - Zhendong Zheng
- Department of Oncology, General Hospital of Northern Theater Command, Shenyang, P. R. China
| |
Collapse
|
32
|
Ghaedrahmati F, Esmaeil N, Abbaspour M. Targeting immune checkpoints: how to use natural killer cells for fighting against solid tumors. Cancer Commun (Lond) 2022; 43:177-213. [PMID: 36585761 PMCID: PMC9926962 DOI: 10.1002/cac2.12394] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 10/08/2022] [Accepted: 11/15/2022] [Indexed: 01/01/2023] Open
Abstract
Natural killer (NK) cells are unique innate immune cells that mediate anti-viral and anti-tumor responses. Thus, they might hold great potential for cancer immunotherapy. NK cell adoptive immunotherapy in humans has shown modest efficacy. In particular, it has failed to demonstrate therapeutic efficiency in the treatment of solid tumors, possibly due in part to the immunosuppressive tumor microenvironment (TME), which reduces NK cell immunotherapy's efficiencies. It is known that immune checkpoints play a prominent role in creating an immunosuppressive TME, leading to NK cell exhaustion and tumor immune escape. Therefore, NK cells must be reversed from their dysfunctional status and increased in their effector roles in order to improve the efficiency of cancer immunotherapy. Blockade of immune checkpoints can not only rescue NK cells from exhaustion but also augment their robust anti-tumor activity. In this review, we discussed immune checkpoint blockade strategies with a focus on chimeric antigen receptor (CAR)-NK cells to redirect NK cells to cancer cells in the treatment of solid tumors.
Collapse
Affiliation(s)
- Farhoodeh Ghaedrahmati
- Department of ImmunologySchool of MedicineIsfahan University of Medical SciencesIsfahanIran
| | - Nafiseh Esmaeil
- Department of ImmunologySchool of MedicineIsfahan University of Medical SciencesIsfahanIran,Research Institute for Primordial Prevention of Non‐Communicable DiseaseIsfahan University of Medical SciencesIsfahanIran
| | - Maryam Abbaspour
- Department of Pharmaceutical BiotechnologyFaculty of PharmacyIsfahan University of Medical SciencesIsfahanIran
| |
Collapse
|
33
|
CAR-NK as a Rapidly Developed and Efficient Immunotherapeutic Strategy against Cancer. Cancers (Basel) 2022; 15:cancers15010117. [PMID: 36612114 PMCID: PMC9817948 DOI: 10.3390/cancers15010117] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/14/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Chimeric antigen receptor (CAR)-modified T cell therapy has been rapidly developing in recent years, ultimately revolutionizing immunotherapeutic strategies and providing significant anti-tumor potency, mainly in treating hematological neoplasms. However, graft-versus-host disease (GVHD) and other adverse effects, such as cytokine release syndromes (CRS) and neurotoxicity associated with CAR-T cell infusion, have raised some concerns about the broad application of this therapy. Natural killer (NK) cells have been identified as promising alternative platforms for CAR-based therapies because of their unique features, such as a lack of human leukocyte antigen (HLA)-matching restriction, superior safety, and better anti-tumor activity when compared with CAR-T cells. The lack of CRS, neurotoxicity, or GVHD, in the case of CAR-NK therapy, in addition to the possibility of using allogeneic NK cells as a CAR platform for "off-the-shelf" therapy, opens new windows for strategic opportunities. This review underlines recent design achievements in CAR constructs and summarizes preclinical studies' results regarding CAR-NK therapies' safety and anti-tumor potency. Additionally, new approaches in CAR-NK technology are briefly described, and currently registered clinical trials are listed.
Collapse
|
34
|
Qin H, You C, Yan F, Tan K, Xu C, Zhao R, Ekpo MD, Tan S. Overcoming the challenges in translational development of natural killer cell therapeutics: An opinion paper. Front Oncol 2022; 12:1062765. [DOI: 10.3389/fonc.2022.1062765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/22/2022] [Indexed: 12/04/2022] Open
|
35
|
Wang X, Yang X, Yuan X, Wang W, Wang Y. Chimeric antigen receptor-engineered NK cells: new weapons of cancer immunotherapy with great potential. Exp Hematol Oncol 2022; 11:85. [PMID: 36324149 PMCID: PMC9628181 DOI: 10.1186/s40164-022-00341-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 09/29/2022] [Indexed: 11/18/2022] Open
Abstract
Chimeric antigen receptor (CAR)-engineered T (CAR-T) cells have obtained prominent achievement in the clinical immunotherapy of hematological malignant tumors, leading to a rapid development of cellular immunotherapy in cancer treatment. Scientists are also aware of the prospective advantages of CAR engineering in cellular immunotherapy. Due to various limitations such as the serious side effects of CAR-T therapy, researchers began to investigate other immune cells for CAR modification. Natural killer (NK) cells are critical innate immune cells with the characteristic of non-specifically recognizing target cells and with the potential to become "off-the-shelf" products. In recent years, many preclinical studies on CAR-engineered NK (CAR-NK) cells have shown their remarkable efficacy in cancer therapy and their superiority over autologous CAR-T cells. In this review, we summarize the generation, mechanisms of anti-tumor activity and unique advantages of CAR-NK cells, and then analyze some challenges and recent clinical trials about CAR-NK cells therapy. We believe that CAR-NK therapy is a promising prospect for cancer immunotherapy in the future.
Collapse
Affiliation(s)
- Xiao Wang
- grid.16821.3c0000 0004 0368 8293Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Xuejiao Yang
- grid.16821.3c0000 0004 0368 8293Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Xiang Yuan
- grid.13291.380000 0001 0807 1581Department of Thoracic Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Wenbo Wang
- grid.24516.340000000123704535Department of Oncology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, 200072 China
| | - Yueying Wang
- grid.16821.3c0000 0004 0368 8293Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| |
Collapse
|
36
|
Cord Blood-Derived Natural Killer Cell Exploitation in Immunotherapy Protocols: More Than a Promise? Cancers (Basel) 2022; 14:cancers14184439. [PMID: 36139598 PMCID: PMC9496735 DOI: 10.3390/cancers14184439] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/25/2022] [Accepted: 09/09/2022] [Indexed: 11/30/2022] Open
Abstract
Simple Summary NK cell anti-tumor activity against hematological malignancies is well-established and many studies support their role in the control of solid tumor growth and metastasis generation. However, tumor microenvironment may affect NK cell function. Ongoing studies are aimed to design novel immunotherapeutic protocols to combine NK cell-based immunotherapy with other therapeutic strategies to improve the anti-tumor NK cell response. In this context, UCB is one of the main sources of both mature NK cells and of CD34+ HSPC that can generate NK cells, both in-vivo and in-vitro. UCB-derived NK cells represent a valuable tool to perform in-vitro and preclinical analyses and are already used in several clinical settings, particularly against hematological malignancies. The present review describes the characteristics of different types of UCB-derived NK cells and the in-vitro models to expand them, both for research and clinical purposes in the context of cancer immunotherapy. Abstract In the last 20 years, Natural Killer (NK) cell-based immunotherapy has become a promising approach to target various types of cancer. Indeed, NK cells play a pivotal role in the first-line defense against tumors through major histocompatibility complex-independent immunosurveillance. Their role in the control of leukemia relapse has been clearly established and, moreover, the presence of NK cells in the tumor microenvironment (TME) generally correlates with good prognosis. However, it has also been observed that, often, NK cells poorly infiltrate the tumor tissue, and, in TME, their functions may be compromised by immunosuppressive factors that contribute to the failure of anti-cancer immune response. Currently, studies are focused on the design of effective strategies to expand NK cells and enhance their cytotoxic activity, exploiting different cell sources, such as peripheral blood (PB), umbilical cord blood (UCB) and NK cell lines. Among them, UCB represents an important source of mature NK cells and CD34+ Hematopoietic Stem and Progenitor Cells (HSPCs), as precursors of NK cells. In this review, we summarize the UCB-derived NK cell activity in the tumor context, review the different in-vitro models to expand NK cells from UCB, and discuss the importance of their exploitation in anti-tumor immunotherapy protocols.
Collapse
|
37
|
Current Progress of CAR-NK Therapy in Cancer Treatment. Cancers (Basel) 2022; 14:cancers14174318. [PMID: 36077853 PMCID: PMC9454439 DOI: 10.3390/cancers14174318] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/23/2022] [Accepted: 08/31/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Chimeric antigen receptor (CAR)-T and -natural killer (NK) therapies are promising in cancer treatment. CAR-NK therapy gains great attention due to the lack of adverse effects observed in CAR-T therapies and to the NK cells’ unique mechanisms of recognizing target cells. Off-the-shelf products are in urgent need, not only for good yields, but also for lower cost and shorter preparation time. The current progress of CAR-NK therapy is discussed. Abstract CD8+ T cells and natural killer (NK) cells eliminate target cells through the release of lytic granules and Fas ligand (FasL)-induced target cell apoptosis. The introduction of chimeric antigen receptor (CAR) makes these two types of cells selective and effective in killing cancer cells. The success of CAR-T therapy in the treatment of acute lymphoblastic leukemia (ALL) and other types of blood cancers proved that the immunotherapy is an effective approach in fighting against cancers, yet adverse effects, such as graft versus host disease (GvHD) and cytokine release syndrome (CRS), cannot be ignored for the CAR-T therapy. CAR-NK therapy, then, has its advantage in lacking these adverse effects and works as effective as CAR-T in terms of killing. Despite these, NK cells are known to be hard to transduce, expand in vitro, and sustain shorter in vivo comparing to infiltrated T cells. Moreover, CAR-NK therapy faces challenges as CAR-T therapy does, e.g., the time, the cost, and the potential biohazard due to the use of animal-derived products. Thus, enormous efforts are needed to develop safe, effective, and large-scalable protocols for obtaining CAR-NK cells. Here, we reviewed current progress of CAR-NK therapy, including its biological properties, CAR compositions, preparation of CAR-NK cells, and clinical progresses. We also discussed safety issues raised from genetic engineering. We hope this review is instructive to the research community and a broad range of readers.
Collapse
|
38
|
Carbonnel M, Daclin C, Tarantino N, Groiseau O, Morin V, Rousseau A, Vasse M, Hertig A, Kennel T, Ayoubi JM, Vieillard V. Plasticity of natural killer cells in pregnant patients infected with SARS-CoV-2 and their neonates during childbirth. Front Immunol 2022; 13:893450. [PMID: 35911747 PMCID: PMC9335005 DOI: 10.3389/fimmu.2022.893450] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 06/28/2022] [Indexed: 12/03/2022] Open
Abstract
The COVID-19 pandemic has occurred due to infection caused by the SARS-CoV-2 coronavirus, which impacts gestation and pregnancy. In SARS-CoV-2 infection, only very rare cases of vertical transmission have been reported, suggesting that fetal immune imprinting due to a maternal infection is probably a result of changes in maternal immunity. Natural killer (NK) cells are the leading maternal immune cells that act as a natural defense system to fight infections. They also play a pivotal role in the establishment and maintenance of pregnancy. While peripheral NK cells display specific features in patients infected with SARS-CoV-2 in the general population, information remains elusive in pregnant mothers and neonates. In the present study, we analyzed the characteristics of NK cells isolated from both neonatal umbilical cord blood and maternal peripheral blood close to the time of delivery. Phenotype and functions were compared in 18 healthy pregnant women and 34 COVID-19 patients during pregnancy within an ongoing infection (PCR+; N = 15) or after recovery (IgG+PCR-; N = 19). The frequency of NK cells from infected women and their neonates was correlated with the production of inflammatory cytokines in the serum. The expression of NKG2A and NKp30, as well as degranulation of NK cells in pregnant women with ongoing infection, were both negatively correlated to estradiol level. Furthermore, NK cells from the neonates born to infected women were significantly decreased and also correlated to estradiol level. This study highlights the relationship between NK cells, inflammation, and estradiol in patients with ongoing infection, providing new insights into the impact of maternal SARS-CoV-2 infection on the neonate.
Collapse
Affiliation(s)
- Marie Carbonnel
- Department of Obstetrics and Gynecology, Hôpital Foch, Suresnes, France
- University of Versailles, Versailles, France
| | - Camille Daclin
- Department of Obstetrics and Gynecology, Hôpital Foch, Suresnes, France
- University of Versailles, Versailles, France
| | - Nadine Tarantino
- Sorbonne Université, Inserm U1135, CNRS ERL 8255, Centre d’Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Olivia Groiseau
- Sorbonne Université, Inserm U1135, CNRS ERL 8255, Centre d’Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Véronique Morin
- Sorbonne Université, Inserm U1135, CNRS ERL 8255, Centre d’Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Alice Rousseau
- Sorbonne Université, Inserm U1135, CNRS ERL 8255, Centre d’Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Marc Vasse
- Department of Clinical Biology, Hôpital Foch, Suresnes, France
- INSERM UMRS-1176, University Paris-Sud, Orsay, France
| | - Alexandre Hertig
- Nephrology and Renal Transplantation Department, Hôpital Foch, Suresnes, France
| | - Titouan Kennel
- Department of Clinic Research, Hôpital Foch, Suresnes, France
| | - Jean Marc Ayoubi
- Department of Obstetrics and Gynecology, Hôpital Foch, Suresnes, France
- University of Versailles, Versailles, France
| | - Vincent Vieillard
- Sorbonne Université, Inserm U1135, CNRS ERL 8255, Centre d’Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| |
Collapse
|
39
|
Della Chiesa M, Setti C, Giordano C, Obino V, Greppi M, Pesce S, Marcenaro E, Rutigliani M, Provinciali N, Paleari L, DeCensi A, Sivori S, Carlomagno S. NK Cell-Based Immunotherapy in Colorectal Cancer. Vaccines (Basel) 2022; 10:1033. [PMID: 35891197 PMCID: PMC9323201 DOI: 10.3390/vaccines10071033] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/22/2022] [Accepted: 06/25/2022] [Indexed: 02/01/2023] Open
Abstract
Human Natural Killer (NK) cells are all round players in immunity thanks to their powerful and immediate response against transformed cells and the ability to modulate the subsequent adaptive immune response. The potential of immunotherapies based on NK cell involvement has been initially revealed in the hematological setting but has inspired the design of different immune tools to also be applied against solid tumors, including colorectal cancer (CRC). Indeed, despite cancer prevention screening plans, surgery, and chemotherapy strategies, CRC is one of the most widespread cancers and with the highest mortality rate. Therefore, further efficient and complementary immune-based therapies are in urgent need. In this review, we gathered the most recent advances in NK cell-based immunotherapies aimed at fighting CRC, in particular, the use of monoclonal antibodies targeting tumor-associated antigens (TAAs), immune checkpoint blockade, and adoptive NK cell therapy, including NK cells modified with chimeric antigen receptor (CAR-NK).
Collapse
Affiliation(s)
- Mariella Della Chiesa
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy; (C.S.); (C.G.); (V.O.); (M.G.); (S.P.); (E.M.); (S.S.)
| | - Chiara Setti
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy; (C.S.); (C.G.); (V.O.); (M.G.); (S.P.); (E.M.); (S.S.)
| | - Chiara Giordano
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy; (C.S.); (C.G.); (V.O.); (M.G.); (S.P.); (E.M.); (S.S.)
| | - Valentina Obino
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy; (C.S.); (C.G.); (V.O.); (M.G.); (S.P.); (E.M.); (S.S.)
| | - Marco Greppi
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy; (C.S.); (C.G.); (V.O.); (M.G.); (S.P.); (E.M.); (S.S.)
| | - Silvia Pesce
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy; (C.S.); (C.G.); (V.O.); (M.G.); (S.P.); (E.M.); (S.S.)
| | - Emanuela Marcenaro
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy; (C.S.); (C.G.); (V.O.); (M.G.); (S.P.); (E.M.); (S.S.)
| | | | | | - Laura Paleari
- A.Li.Sa., Liguria Region Health Authority, 16121 Genoa, Italy;
| | - Andrea DeCensi
- Medical Oncology, Galliera Hospital, 16128 Genoa, Italy; (N.P.); (A.D.)
| | - Simona Sivori
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy; (C.S.); (C.G.); (V.O.); (M.G.); (S.P.); (E.M.); (S.S.)
| | - Simona Carlomagno
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy; (C.S.); (C.G.); (V.O.); (M.G.); (S.P.); (E.M.); (S.S.)
| |
Collapse
|
40
|
Rossi F, Fredericks N, Snowden A, Allegrezza MJ, Moreno-Nieves UY. Next Generation Natural Killer Cells for Cancer Immunotherapy. Front Immunol 2022; 13:886429. [PMID: 35720306 PMCID: PMC9202478 DOI: 10.3389/fimmu.2022.886429] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/25/2022] [Indexed: 12/15/2022] Open
Abstract
In recent years, immunotherapy for cancer has become mainstream with several products now authorized for therapeutic use in the clinic and are becoming the standard of care for some malignancies. Chimeric antigen receptor (CAR)-T cell therapies have demonstrated substantial efficacy for the treatment of hematological malignancies; however, they are complex and currently expensive to manufacture, and they can generate life-threatening adverse events such as cytokine release syndrome (CRS). The limitations of current CAR-T cells therapies have spurred an interest in alternative immunotherapy approaches with safer risk profiles and with less restrictive manufacturing constraints. Natural killer (NK) cells are a population of immune effector cells with potent anti-viral and anti-tumor activity; they have the capacity to swiftly recognize and kill cancer cells without the need of prior stimulation. Although NK cells are naturally equipped with cytotoxic potential, a growing body of evidence shows the added benefit of engineering them to better target tumor cells, persist longer in the host, and be fitter to resist the hostile tumor microenvironment (TME). NK-cell-based immunotherapies allow for the development of allogeneic off-the-shelf products, which have the potential to be less expensive and readily available for patients in need. In this review, we will focus on the advances in the development of engineering of NK cells for cancer immunotherapy. We will discuss the sourcing of NK cells, the technologies available to engineer NK cells, current clinical trials utilizing engineered NK cells, advances on the engineering of receptors adapted for NK cells, and stealth approaches to avoid recipient immune responses. We will conclude with comments regarding the next generation of NK cell products, i.e., armored NK cells with enhanced functionality, fitness, tumor-infiltration potential, and with the ability to overcome tumor heterogeneity and immune evasion.
Collapse
Affiliation(s)
- Fiorella Rossi
- Janssen Research and Development, LLC, Pharmaceutical Companies of Johnson & Johnson, Spring House, PA, United States
| | - Nathaniel Fredericks
- Janssen Research and Development, LLC, Pharmaceutical Companies of Johnson & Johnson, Spring House, PA, United States
| | - Andrew Snowden
- Janssen Research and Development, LLC, Pharmaceutical Companies of Johnson & Johnson, Spring House, PA, United States
| | - Michael J Allegrezza
- Janssen Research and Development, LLC, Pharmaceutical Companies of Johnson & Johnson, Spring House, PA, United States
| | - Uriel Y Moreno-Nieves
- Janssen Research and Development, LLC, Pharmaceutical Companies of Johnson & Johnson, Spring House, PA, United States
| |
Collapse
|
41
|
Maddineni S, Silberstein JL, Sunwoo JB. Emerging NK cell therapies for cancer and the promise of next generation engineering of iPSC-derived NK cells. J Immunother Cancer 2022; 10:jitc-2022-004693. [PMID: 35580928 PMCID: PMC9115029 DOI: 10.1136/jitc-2022-004693] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2022] [Indexed: 12/11/2022] Open
Abstract
Adoptive cell therapy is a rapidly advancing approach to cancer immunotherapy that seeks to facilitate antitumor responses by introducing potent effector cells into the tumor microenvironment. Expanded autologous T cells, particularly T cells with engineered T cell receptors (TCR) and chimeric antigen receptor-T cells have had success in various hematologic malignancies but have faced challenges when applied to solid tumors. As a result, other immune subpopulations may provide valuable and orthogonal options for treatment. Natural killer (NK) cells offer the possibility of significant tumor clearance and recruitment of additional immune subpopulations without the need for prior antigen presentation like in T or B cells that could require removal of endogenous antigen specificity mediated via the T cell receptor (TCR and/or the B ecll receptor (BCR). In recent years, NK cells have been demonstrated to be increasingly important players in the immune response against cancer. Here, we review multiple avenues for allogeneic NK cell therapy, including derivation of NK cells from peripheral blood or umbilical cord blood, the NK-92 immortalized cell line, and induced pluripotent stem cells (iPSCs). We also describe the potential of engineering iPSC-derived NK cells and the utility of this platform. Finally, we consider the benefits and drawbacks of each approach and discuss recent developments in the manufacturing and genetic or metabolic engineering of NK cells to have robust and prolonged antitumor responses in preclinical and clinical settings.
Collapse
Affiliation(s)
- Sainiteesh Maddineni
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Palo Alto, California, USA
| | - John L Silberstein
- Program in Immunology, Stanford University School of Medicine, Palo Alto, California, USA.,Department of Bioengineering, Stanford University, Palo Alto, California, USA
| | - John B Sunwoo
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Palo Alto, California, USA
| |
Collapse
|
42
|
Recent Advancements in Antifibrotic Therapies for Regression of Liver Fibrosis. Cells 2022; 11:cells11091500. [PMID: 35563807 PMCID: PMC9104939 DOI: 10.3390/cells11091500] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/21/2022] [Accepted: 04/26/2022] [Indexed: 11/18/2022] Open
Abstract
Cirrhosis is a severe form of liver fibrosis that results in the irreversible replacement of liver tissue with scar tissue in the liver. Environmental toxicity, infections, metabolic causes, or other genetic factors including autoimmune hepatitis can lead to chronic liver injury and can result in inflammation and fibrosis. This activates myofibroblasts to secrete ECM proteins, resulting in the formation of fibrous scars on the liver. Fibrosis regression is possible through the removal of pathophysiological causes as well as the elimination of activated myofibroblasts, resulting in the reabsorption of the scar tissue. To date, a wide range of antifibrotic therapies has been tried and tested, with varying degrees of success. These therapies include the use of growth factors, cytokines, miRNAs, monoclonal antibodies, stem-cell-based approaches, and other approaches that target the ECM. The positive results of preclinical and clinical studies raise the prospect of a viable alternative to liver transplantation in the near future. The present review provides a synopsis of recent antifibrotic treatment modalities for the treatment of liver cirrhosis, as well as a brief summary of clinical trials that have been conducted to date.
Collapse
|
43
|
Ramos-Mejia V, Arellano-Galindo J, Mejía-Arangure JM, Cruz-Munoz ME. A NK Cell Odyssey: From Bench to Therapeutics Against Hematological Malignancies. Front Immunol 2022; 13:803995. [PMID: 35493522 PMCID: PMC9046543 DOI: 10.3389/fimmu.2022.803995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 03/11/2022] [Indexed: 11/13/2022] Open
Abstract
In 1975 two independent groups noticed the presence of immune cells with a unique ability to recognize and eliminate transformed hematopoietic cells without any prior sensitization or expansion of specific clones. Since then, NK cells have been the axis of thousands of studies that have resulted until June 2021, in more than 70 000 publications indexed in PubMed. As result of this work, which include approaches in vitro, in vivo, and in natura, it has been possible to appreciate the role played by the NK cells, not only as effectors against specific pathogens, but also as regulators of the immune response. Recent advances have revealed previous unidentified attributes of NK cells including the ability to adapt to new conditions under the context of chronic infections, or their ability to develop some memory-like characteristics. In this review, we will discuss significant findings that have rule our understanding of the NK cell biology, the developing of these findings into new concepts in immunology, and how these conceptual platforms are being used in the design of strategies for cancer immunotherapy.
Collapse
Affiliation(s)
- Veronica Ramos-Mejia
- GENYO: Centro Pfizer, Universidad de Granada, Junta de Andalucía de Genómica e Investigación Oncológica, Granada, Spain
| | - Jose Arellano-Galindo
- Unidad de Investigación en Enfermedades Infecciosas, Hospital Infantil de México “Dr. Federico Gomez”, Ciudad de México, Mexico
| | - Juan Manuel Mejía-Arangure
- Genómica del Cancer, Instituto Nacional de Medicina Genómica (INMEGEN) & Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
- *Correspondence: Mario Ernesto Cruz-Muñoz, ; Juan Manuel Mejía-Arangure,
| | - Mario Ernesto Cruz-Munoz
- Facultad de Medicina, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
- *Correspondence: Mario Ernesto Cruz-Muñoz, ; Juan Manuel Mejía-Arangure,
| |
Collapse
|
44
|
Tarannum M, Romee R, Shapiro RM. Innovative Strategies to Improve the Clinical Application of NK Cell-Based Immunotherapy. Front Immunol 2022; 13:859177. [PMID: 35401529 PMCID: PMC8990319 DOI: 10.3389/fimmu.2022.859177] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 02/28/2022] [Indexed: 12/31/2022] Open
Abstract
Natural killer cells constitute a part of the innate immune system that mediates an effective immune response towards virus-infected and malignant cells. In recent years, research has focused on exploring and advancing NK cells as an active immunotherapy platform. Despite major advances, there are several key challenges that need to be addressed for the effective translation of NK cell research to clinical applications. This review highlights some of these challenges and the innovative strategies being developed to overcome them, including in vitro expansion, in vivo persistence, infiltration to the tumor site, and prevention of exhaustion.
Collapse
Affiliation(s)
- Mubin Tarannum
- Division of Stem Cell Transplant and Cellular Therapy, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
| | - Rizwan Romee
- Division of Stem Cell Transplant and Cellular Therapy, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
| | - Roman M Shapiro
- Division of Stem Cell Transplant and Cellular Therapy, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
45
|
Hossian AKMN, Hackett CS, Brentjens RJ, Rafiq S. Multipurposing CARs: Same engine, different vehicles. Mol Ther 2022; 30:1381-1395. [PMID: 35151842 PMCID: PMC9077369 DOI: 10.1016/j.ymthe.2022.02.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 12/16/2021] [Accepted: 02/08/2022] [Indexed: 11/22/2022] Open
Abstract
T cells genetically engineered to recognize and eliminate tumor cells through synthetic chimeric antigen receptors (CARs) have demonstrated remarkable clinical efficacy against B cell leukemia over the past decade. This therapy is a form of highly personalized medicine that involves genetically modifying a patient's T cells to recognize and kill cancer cells. With the FDA approval of 5 CAR T cell products, this approach has been validated as a powerful new drug in the therapeutic armamentarium against cancer. Researchers are now studying how to expand this technology beyond its use in conventional polyclonal αβ T cells to address limitations to the current therapy in cancer and applications beyond it. Considering the specific characteristics of immune cell from diverse lineages, several preclinical and clinical studies are under way to assess the advantages of CAR-redirected function in these cells and apply the lessons learned from CAR T cell therapy in cancer to other diseases.
Collapse
Affiliation(s)
- A K M Nawshad Hossian
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA 30322, USA
| | - Christopher S Hackett
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Renier J Brentjens
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA.
| | - Sarwish Rafiq
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA 30322, USA; Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
46
|
Fang F, Xie S, Chen M, Li Y, Yue J, Ma J, Shu X, He Y, Xiao W, Tian Z. Advances in NK cell production. Cell Mol Immunol 2022; 19:460-481. [PMID: 34983953 PMCID: PMC8975878 DOI: 10.1038/s41423-021-00808-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 11/06/2021] [Indexed: 12/12/2022] Open
Abstract
Immunotherapy based on natural killer (NK) cells is a promising approach for treating a variety of cancers. Unlike T cells, NK cells recognize target cells via a major histocompatibility complex (MHC)-independent mechanism and, without being sensitized, kill the cells directly. Several strategies for obtaining large quantities of NK cells with high purity and high cytotoxicity have been developed. These strategies include the use of cytokine-antibody fusions, feeder cells or membrane particles to stimulate the proliferation of NK cells and enhance their cytotoxicity. Various materials, including peripheral blood mononuclear cells (PBMCs), umbilical cord blood (UCB), induced pluripotent stem cells (iPSCs) and NK cell lines, have been used as sources to generate NK cells for immunotherapy. Moreover, genetic modification technologies to improve the proliferation of NK cells have also been developed to enhance the functions of NK cells. Here, we summarize the recent advances in expansion strategies with or without genetic manipulation of NK cells derived from various cellular sources. We also discuss the closed, automated and GMP-controlled large-scale expansion systems used for NK cells and possible future NK cell-based immunotherapy products.
Collapse
Affiliation(s)
- Fang Fang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
- Institute of Immunology, University of Science and Technology of China, Hefei, 230027, China
- Engineering Technology Research Center of Biotechnology Drugs Anhui, University of Science and Technology of China, Hefei, 230027, China
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, 230027, China
| | - Siqi Xie
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
- Institute of Immunology, University of Science and Technology of China, Hefei, 230027, China
- Engineering Technology Research Center of Biotechnology Drugs Anhui, University of Science and Technology of China, Hefei, 230027, China
| | - Minhua Chen
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
- Institute of Immunology, University of Science and Technology of China, Hefei, 230027, China
- Engineering Technology Research Center of Biotechnology Drugs Anhui, University of Science and Technology of China, Hefei, 230027, China
| | - Yutong Li
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
- Institute of Immunology, University of Science and Technology of China, Hefei, 230027, China
- Engineering Technology Research Center of Biotechnology Drugs Anhui, University of Science and Technology of China, Hefei, 230027, China
| | - Jingjing Yue
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
- Institute of Immunology, University of Science and Technology of China, Hefei, 230027, China
- Engineering Technology Research Center of Biotechnology Drugs Anhui, University of Science and Technology of China, Hefei, 230027, China
| | - Jie Ma
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
- Institute of Immunology, University of Science and Technology of China, Hefei, 230027, China
- Engineering Technology Research Center of Biotechnology Drugs Anhui, University of Science and Technology of China, Hefei, 230027, China
| | - Xun Shu
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
- Institute of Immunology, University of Science and Technology of China, Hefei, 230027, China
- Engineering Technology Research Center of Biotechnology Drugs Anhui, University of Science and Technology of China, Hefei, 230027, China
| | - Yongge He
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
- Institute of Immunology, University of Science and Technology of China, Hefei, 230027, China
- Engineering Technology Research Center of Biotechnology Drugs Anhui, University of Science and Technology of China, Hefei, 230027, China
| | - Weihua Xiao
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China.
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China.
- Institute of Immunology, University of Science and Technology of China, Hefei, 230027, China.
- Engineering Technology Research Center of Biotechnology Drugs Anhui, University of Science and Technology of China, Hefei, 230027, China.
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, 230027, China.
| | - Zhigang Tian
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China.
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China.
- Institute of Immunology, University of Science and Technology of China, Hefei, 230027, China.
- Engineering Technology Research Center of Biotechnology Drugs Anhui, University of Science and Technology of China, Hefei, 230027, China.
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, 230027, China.
| |
Collapse
|
47
|
The tricks for fighting against cancer using CAR NK cells: A review. Mol Cell Probes 2022; 63:101817. [DOI: 10.1016/j.mcp.2022.101817] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 04/07/2022] [Accepted: 04/11/2022] [Indexed: 01/07/2023]
|
48
|
Khatami F, Aghamir ZS, Jahanshahi F, Feiz-Abadi SA, Birang F, Khoshchehreh M, Namazi Shabestari A, Aghamir SMK. The Gene Manipulation and Cellular Immunotherapy Combination in the Treatment of Cancer. IRANIAN JOURNAL OF BIOTECHNOLOGY 2022; 20:e3094. [PMID: 36337063 PMCID: PMC9583824 DOI: 10.30498/ijb.2022.294933.3094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
CONTEXT The immune system is directly linked to the tumors, from tumor formation to the tumor's development and metastasis. So, the interest of scientists over the protective immunological mechanisms has increased and shown gifted strategy in cancer treatment. EVIDENCE ACQUISITION Genetic engineering and cellular immunotherapy are two different advanced molecular mechanisms to modify the immune responses and genome. Gene manipulation is the bioengineering technology that allows vectors to transfer new genetic information into the target cells. Cellular immunotherapy is an excellent strategy that connects the body's immune system to fight cancer. RESULTS & CONCLUSIONS This review described that combination of genetic engineering and cellular immunotherapy has brought the novel antitumor repressive molecules stopping the tumor tissue immune tolerance and significantly expanding cancer therapy's effectiveness. Usually, cell immunotherapy and genetic engineering are considered two independent processes, and, in this review, we believe them in combinations. Here, we review these two novel approaches, and they are both combinations in terms of technological advances and clinical experience.
Collapse
Affiliation(s)
- Fatemeh Khatami
- Urology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | | | - Fatemeh Birang
- Department of Medical Laboratory Sciences, Allied Medical Faculty, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Alireza Namazi Shabestari
- Department of Geriatric Medicine, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
49
|
Novel insights in CAR-NK cells beyond CAR-T cell technology; promising advantages. Int Immunopharmacol 2022; 106:108587. [PMID: 35149294 DOI: 10.1016/j.intimp.2022.108587] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 02/08/2023]
Abstract
CAR-T (chimeric antigen receptor T cell) technology, which has recently showed successful results in the treatment of hematological tumors, has been the focus of attention as one of the most potent approaches in tumor immunotherapy. However, side effects and limitations of this application, such as the risk of graft versus host disease (GvHD), make it challenging to be as accessible as other treatments. Natural killer cells (NK) could be transplanted without alloreactivity, making them as an off-the-shelf product. CAR-NK (chimeric antigen receptor NK cell) therapy can circumvent some serious limitations of CAR-T cell therapy. Application of CAR-NK cells have some considerable advantages over CAR-T cells. These include lack of cytokine release syndrome (CRS), neurotoxicity, and GvHD when using allogenic CAR-T cell. These features lessen the risk of tumor antigen loss and disease relapse. Moreover, NK cells which were derived from different sources, can make the CAR therapy more feasible. In this narrative review, we outlined the key features of CAR-NK cells as an alternative to CAR-T cell therapy in cancer immunotherapy and highlighted the main advantages.
Collapse
|
50
|
Natural Killer Cell-Mediated Immunotherapy for Leukemia. Cancers (Basel) 2022; 14:cancers14030843. [PMID: 35159109 PMCID: PMC8833963 DOI: 10.3390/cancers14030843] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/26/2022] [Accepted: 02/03/2022] [Indexed: 12/18/2022] Open
Abstract
Simple Summary Conventional therapies such as chemotherapy and radiation in leukemia increase infection susceptibility, adverse side effects and immune cell inactivation. Natural killer (NK) cells are the first line of defense against cancer and are critical in the recognition and cytolysis of rapidly dividing and abnormal cell populations. In this review, we describe NK cells and NK cell receptors, functional impairment of NK cells in leukemia, NK cell immunotherapies currently under investigation including monoclonal antibodies (mAbs), adoptive transfer, chimeric antigen receptor-NKs (CAR-NKs), bi-specific/tri-specific killer engagers (BiKEs/TriKEs) and potential targets of NK cell-mediated immunotherapy for leukemia in the future. Abstract Leukemia is a malignancy of the bone marrow and blood resulting from the abnormal differentiation of hematopoietic stem cells (HSCs). There are four main types of leukemia including acute myeloid leukemia (AML), acute lymphoblastic leukemia (ALL), chronic myeloid leukemia (CML), and chronic lymphocytic leukemia (CLL). While chemotherapy and radiation have been conventional forms of treatment for leukemia, these therapies increase infection susceptibility, adverse side effects and immune cell inactivation. Immunotherapies are becoming promising treatment options for leukemia, with natural killer (NK) cell-mediated therapy providing a specific direction of interest. The role of NK cells is critical for cancer cell elimination as these immune cells are the first line of defense against cancer proliferation and are involved in both recognition and cytolysis of rapidly dividing and abnormal cell populations. NK cells possess various activating and inhibitory receptors, which regulate NK cell function, signaling either inhibition and continued surveillance, or activation and subsequent cytotoxic activity. In this review, we describe NK cells and NK cell receptors, functional impairment of NK cells in leukemia, NK cell immunotherapies currently under investigation, including monoclonal antibodies (mAbs), adoptive transfer, chimeric antigen receptor-NKs (CAR-NKs), bi-specific/tri-specific killer engagers (BiKEs/TriKEs) and future potential targets of NK cell-based immunotherapy for leukemia.
Collapse
|