1
|
Slyp B, Darby JM, Flies AS. Conversion of Mouse-Derived Hybridomas to Tasmanian Devil Recombinant IgG Antibodies. Methods Mol Biol 2024; 2826:231-249. [PMID: 39017897 DOI: 10.1007/978-1-0716-3950-4_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
The hybridoma method for production of monoclonal antibodies has been a cornerstone of biomedical research for several decades. Here we convert the monoclonal antibody sequence from mouse-derived hybridomas into a "devilized" recombinant antibody with devil IgG heavy chain and IgK light chain. The chimeric recombinant antibody can be used in functional assays, immunotherapy, and to improve understanding of antibodies and Fc receptors in Tasmanian devils. The process can be readily modified for other species.
Collapse
Affiliation(s)
- Bailey Slyp
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Jocelyn M Darby
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Andrew S Flies
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia.
| |
Collapse
|
2
|
Vinkler M, Fiddaman SR, Těšický M, O'Connor EA, Savage AE, Lenz TL, Smith AL, Kaufman J, Bolnick DI, Davies CS, Dedić N, Flies AS, Samblás MMG, Henschen AE, Novák K, Palomar G, Raven N, Samaké K, Slade J, Veetil NK, Voukali E, Höglund J, Richardson DS, Westerdahl H. Understanding the evolution of immune genes in jawed vertebrates. J Evol Biol 2023; 36:847-873. [PMID: 37255207 PMCID: PMC10247546 DOI: 10.1111/jeb.14181] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 04/23/2023] [Accepted: 04/26/2023] [Indexed: 06/01/2023]
Abstract
Driven by co-evolution with pathogens, host immunity continuously adapts to optimize defence against pathogens within a given environment. Recent advances in genetics, genomics and transcriptomics have enabled a more detailed investigation into how immunogenetic variation shapes the diversity of immune responses seen across domestic and wild animal species. However, a deeper understanding of the diverse molecular mechanisms that shape immunity within and among species is still needed to gain insight into-and generate evolutionary hypotheses on-the ultimate drivers of immunological differences. Here, we discuss current advances in our understanding of molecular evolution underpinning jawed vertebrate immunity. First, we introduce the immunome concept, a framework for characterizing genes involved in immune defence from a comparative perspective, then we outline how immune genes of interest can be identified. Second, we focus on how different selection modes are observed acting across groups of immune genes and propose hypotheses to explain these differences. We then provide an overview of the approaches used so far to study the evolutionary heterogeneity of immune genes on macro and microevolutionary scales. Finally, we discuss some of the current evidence as to how specific pathogens affect the evolution of different groups of immune genes. This review results from the collective discussion on the current key challenges in evolutionary immunology conducted at the ESEB 2021 Online Satellite Symposium: Molecular evolution of the vertebrate immune system, from the lab to natural populations.
Collapse
Affiliation(s)
- Michal Vinkler
- Department of ZoologyFaculty of ScienceCharles UniversityPragueCzech Republic
| | | | - Martin Těšický
- Department of ZoologyFaculty of ScienceCharles UniversityPragueCzech Republic
| | | | - Anna E. Savage
- Department of BiologyUniversity of Central FloridaFloridaOrlandoUSA
| | - Tobias L. Lenz
- Research Unit for Evolutionary ImmunogenomicsDepartment of BiologyUniversity of HamburgHamburgGermany
| | | | - Jim Kaufman
- Institute for Immunology and Infection ResearchUniversity of EdinburghEdinburghUK
- Department of Veterinary MedicineUniversity of CambridgeCambridgeUK
| | - Daniel I. Bolnick
- Department of Ecology and Evolutionary BiologyUniversity of ConnecticutStorrsConnecticutUSA
| | | | - Neira Dedić
- Department of Botany and ZoologyMasaryk UniversityBrnoCzech Republic
| | - Andrew S. Flies
- Menzies Institute for Medical ResearchUniversity of TasmaniaHobartTasmaniaAustralia
| | - M. Mercedes Gómez Samblás
- Department of ZoologyFaculty of ScienceCharles UniversityPragueCzech Republic
- Department of ParasitologyUniversity of GranadaGranadaSpain
| | | | - Karel Novák
- Department of Genetics and BreedingInstitute of Animal SciencePragueUhříněvesCzech Republic
| | - Gemma Palomar
- Faculty of BiologyInstitute of Environmental SciencesJagiellonian UniversityKrakówPoland
| | - Nynke Raven
- Department of ScienceEngineering and Build EnvironmentDeakin UniversityVictoriaWaurn PondsAustralia
| | - Kalifa Samaké
- Department of Genetics and MicrobiologyFaculty of ScienceCharles UniversityPragueCzech Republic
| | - Joel Slade
- Department of BiologyCalifornia State UniversityFresnoCaliforniaUSA
| | | | - Eleni Voukali
- Department of ZoologyFaculty of ScienceCharles UniversityPragueCzech Republic
| | - Jacob Höglund
- Department of Ecology and GeneticsUppsala UniversitetUppsalaSweden
| | | | | |
Collapse
|
3
|
Meng JH, Chen CX, Ahmadian MR, Zan H, Luo KJ, Jiang JX. Cross-Activation of Hemichannels/Gap Junctions and Immunoglobulin-Like Domains in Innate–Adaptive Immune Responses. Front Immunol 2022; 13:882706. [PMID: 35911693 PMCID: PMC9334851 DOI: 10.3389/fimmu.2022.882706] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 06/23/2022] [Indexed: 11/13/2022] Open
Abstract
Hemichannels (HCs)/gap junctions (GJs) and immunoglobulin (Ig)-like domain-containing proteins (IGLDCPs) are involved in the innate–adaptive immune response independently. Despite of available evidence demonstrating the importance of HCs/GJs and IGLDCPs in initiating, implementing, and terminating the entire immune response, our understanding of their mutual interactions in immunological function remains rudimentary. IGLDCPs include immune checkpoint molecules of the immunoglobulin family expressed in T and B lymphocytes, most of which are cluster of differentiation (CD) antigens. They also constitute the principal components of the immunological synapse (IS), which is formed on the cell surface, including the phagocytic synapse, T cell synapse, B cell synapse, and astrocytes–neuronal synapse. During the three stages of the immune response, namely innate immunity, innate–adaptive immunity, and adaptive immunity, HCs/GJs and IGLDCPs are cross-activated during the entire process. The present review summarizes the current understanding of HC-released immune signaling factors that influence IGLDCPs in regulating innate–adaptive immunity. ATP-induced “eat me” signals released by HCs, as well as CD31, CD47, and CD46 “don’t eat me” signaling molecules, trigger initiation of innate immunity, which serves to regulate phagocytosis. Additionally, HC-mediated trogocytosis promotes antigen presentation and amplification. Importantly, HC-mediated CD4+ T lymphocyte activation is critical in the transition of the innate immune response to adaptive immunity. HCs also mediate non-specific transcytosis of antibodies produced by mature B lymphocytes, for instance, IgA transcytosis in ovarian cancer cells, which triggers innate immunity. Further understanding of the interplay between HCs/GJs and IGLDCPs would aid in identifying therapeutic targets that regulate the HC–Ig-like domain immune response, thereby providing a viable treatment strategy for immunological diseases. The present review delineates the clinical immunology-related applications of HC–Ig-like domain cross-activation, which would greatly benefit medical professionals and immunological researchers alike. HCs/GJs and IGLDCPs mediate phagocytosis via ATP; “eat me and don’t eat me” signals trigger innate immunity; HC-mediated trogocytosis promotes antigen presentation and amplification in innate–adaptive immunity; HCs also mediate non-specific transcytosis of antibodies produced by mature B lymphocytes in adaptive immunity.
Collapse
Affiliation(s)
- Jiang-Hui Meng
- School of Life Sciences, Yunnan University, Kunming, China
- Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, China
| | - Chang-Xu Chen
- School of Life Sciences, Yunnan University, Kunming, China
- Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, China
| | - Mohammad R. Ahmadian
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Hong Zan
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center, San Antonio, TX, United States
| | - Kai-Jun Luo
- School of Life Sciences, Yunnan University, Kunming, China
- Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, China
- *Correspondence: Kai-Jun Luo, ; Jean X. Jiang,
| | - Jean X. Jiang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, United States
- *Correspondence: Kai-Jun Luo, ; Jean X. Jiang,
| |
Collapse
|
4
|
Spatial variation in gene expression of Tasmanian devil facial tumors despite minimal host transcriptomic response to infection. BMC Genomics 2021; 22:698. [PMID: 34579650 PMCID: PMC8477496 DOI: 10.1186/s12864-021-07994-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 09/08/2021] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Transmissible cancers lie at the intersection of oncology and infectious disease, two traditionally divergent fields for which gene expression studies are particularly useful for identifying the molecular basis of phenotypic variation. In oncology, transcriptomics studies, which characterize the expression of thousands of genes, have identified processes leading to heterogeneity in cancer phenotypes and individual prognoses. More generally, transcriptomics studies of infectious diseases characterize interactions between host, pathogen, and environment to better predict population-level outcomes. Tasmanian devils have been impacted dramatically by a transmissible cancer (devil facial tumor disease; DFTD) that has led to widespread population declines. Despite initial predictions of extinction, populations have persisted at low levels, due in part to heterogeneity in host responses, particularly between sexes. However, the processes underlying this variation remain unknown. RESULTS We sequenced transcriptomes from healthy and DFTD-infected devils, as well as DFTD tumors, to characterize host responses to DFTD infection, identify differing host-tumor molecular interactions between sexes, and investigate the extent to which tumor gene expression varies among host populations. We found minimal variation in gene expression of devil lip tissues, either with respect to DFTD infection status or sex. However, 4088 genes were differentially expressed in tumors among our sampling localities. Pathways that were up- or downregulated in DFTD tumors relative to normal tissues exhibited the same patterns of expression with greater intensity in tumors from localities that experienced DFTD for longer. No mRNA sequence variants were associated with expression variation. CONCLUSIONS Expression variation among localities may reflect morphological differences in tumors that alter ratios of normal-to-tumor cells within biopsies. Phenotypic variation in tumors may arise from environmental variation or differences in host immune response that were undetectable in lip biopsies, potentially reflecting variation in host-tumor coevolutionary relationships among sites that differ in the time since DFTD arrival.
Collapse
|
5
|
Ong CEB, Patchett AL, Darby JM, Chen J, Liu GS, Lyons AB, Woods GM, Flies AS. NLRC5 regulates expression of MHC-I and provides a target for anti-tumor immunity in transmissible cancers. J Cancer Res Clin Oncol 2021; 147:1973-1991. [PMID: 33797607 PMCID: PMC8017436 DOI: 10.1007/s00432-021-03601-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/16/2021] [Indexed: 12/16/2022]
Abstract
Purpose Downregulation of MHC class I (MHC-I) is a common immune evasion strategy of many cancers. Similarly, two allogeneic clonal transmissible cancers have killed thousands of wild Tasmanian devils (Sarcophilus harrisii) and also modulate MHC-I expression to evade anti-cancer and allograft responses. IFNG treatment restores MHC-I expression on devil facial tumor (DFT) cells but is insufficient to control tumor growth. Transcriptional co-activator NLRC5 is a master regulator of MHC-I in humans and mice but its role in transmissible cancers remains unknown. In this study, we explored the regulation and role of MHC-I in these unique genetically mis-matched tumors. Methods We used transcriptome and flow cytometric analyses to determine how MHC-I shapes allogeneic and anti-tumor responses. Cell lines that overexpress NLRC5 to drive antigen presentation, and B2M-knockout cell lines incapable of presenting antigen on MHC-I were used to probe the role of MHC-I in rare cases of tumor regressions. Results Transcriptomic results suggest that NLRC5 plays a major role in MHC-I regulation in devils. NLRC5 was shown to drive the expression of many components of the antigen presentation pathway but did not upregulate PDL1. Serum from devils with tumor regressions showed strong binding to IFNG-treated and NLRC5 cell lines; antibody binding to IFNG-treated and NRLC5 transgenic tumor cells was diminished or absent following B2M knockout. Conclusion MHC-I could be identified as a target for anti-tumor and allogeneic immunity. Consequently, NLRC5 could be a promising target for immunotherapy and vaccines to protect devils from transmissible cancers and inform development of transplant and cancer therapies for humans. Supplementary Information The online version contains supplementary material available at 10.1007/s00432-021-03601-x.
Collapse
Affiliation(s)
- Chrissie E B Ong
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Private Bag 23, Hobart TAS 7000, Australia
| | - Amanda L Patchett
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Private Bag 23, Hobart TAS 7000, Australia
| | - Jocelyn M Darby
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Private Bag 23, Hobart TAS 7000, Australia
| | - Jinying Chen
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Private Bag 23, Hobart TAS 7000, Australia.,Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Guei-Sheung Liu
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Private Bag 23, Hobart TAS 7000, Australia.,Ophthalmology, Department of Surgery, University of Melbourne, East Melbourne, Australia
| | - A Bruce Lyons
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Gregory M Woods
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Private Bag 23, Hobart TAS 7000, Australia
| | - Andrew S Flies
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Private Bag 23, Hobart TAS 7000, Australia.
| |
Collapse
|
6
|
Patchett AL, Tovar C, Blackburn NB, Woods GM, Lyons AB. Mesenchymal plasticity of devil facial tumour cells during in vivo vaccine and immunotherapy trials. Immunol Cell Biol 2021; 99:711-723. [PMID: 33667023 DOI: 10.1111/imcb.12451] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 01/12/2021] [Accepted: 03/04/2021] [Indexed: 12/13/2022]
Abstract
Immune evasion is critical to the growth and survival of cancer cells. This is especially pertinent to transmissible cancers, which evade immune detection across genetically diverse hosts. The Tasmanian devil (Sarcophilus harrisii) is threatened by the emergence of Devil Facial Tumour Disease (DFTD), comprising two transmissible cancers (DFT1 and DFT2). The development of effective prophylactic vaccines and therapies against DFTD has been restricted by an incomplete understanding of how allogeneic DFT1 and DFT2 cells maintain immune evasion upon activation of tumour-specific immune responses. In this study, we used RNA sequencing to examine tumours from three experimental DFT1 cases. Two devils received a vaccine prior to inoculation with live DFT1 cells, providing an opportunity to explore changes to DFT1 cancers under immune pressure. Analysis of DFT1 in the non-immunised devil revealed a 'myelinating Schwann cell' phenotype, reflecting both natural DFT1 cancers and the DFT1 cell line used for the experimental challenge. Comparatively, immunised devils exhibited a 'dedifferentiated mesenchymal' DFT1 phenotype. A third 'immune-enriched' phenotype, characterised by increased PDL1 and CTLA-4 expression, was detected in a DFT1 tumour that arose after immunotherapy. In response to immune pressure, mesenchymal plasticity and upregulation of immune checkpoint molecules are used by human cancers to evade immune responses. Similar mechanisms are associated with immune evasion by DFTD cancers, providing novel insights that will inform modification of DFTD vaccines. As DFT1 and DFT2 are clonal cancers transmitted across genetically distinct hosts, the Tasmanian devil provides a 'natural' disease model for more broadly exploring these immune evasion mechanisms in cancer.
Collapse
Affiliation(s)
- Amanda L Patchett
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Cesar Tovar
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia.,School of Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Nicholas B Blackburn
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Gregory M Woods
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - A Bruce Lyons
- School of Medicine, University of Tasmania, Hobart, TAS, Australia
| |
Collapse
|
7
|
Wong C, Darby JM, Murphy PR, Pinfold TL, Lennard PR, Woods GM, Lyons AB, Flies AS. Tasmanian devil CD28 and CTLA4 capture CD80 and CD86 from adjacent cells. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 115:103882. [PMID: 33039410 DOI: 10.1016/j.dci.2020.103882] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 08/20/2020] [Accepted: 08/20/2020] [Indexed: 06/11/2023]
Abstract
Immune checkpoint immunotherapy is a pillar of human oncology treatment with potential for non-human species. The first checkpoint immunotherapy approved for human cancers targeted the CTLA4 protein. CTLA4 can inhibit T cell activation by capturing and internalizing CD80 and CD86 from antigen presenting cells, a process called trans-endocytosis. Similarly, CD28 can capture CD80 and CD86 via trogocytosis and retain the captured ligands on the surface of the CD28-expressing cells. The wild Tasmanian devil (Sarcophilus harrisii) population has declined by 77% due to transmissible cancers that evade immune defenses despite genetic mismatches between the host and tumors. We used a live cell-based assay to demonstrate that devil CTLA4 and CD28 can capture CD80 and CD86. Mutation of evolutionarily conserved motifs in CTLA4 altered functional interactions with CD80 and CD86 in accordance with patterns observed in other species. These results suggest that checkpoint immunotherapies can be translated to evolutionarily divergent species.
Collapse
Affiliation(s)
- Candida Wong
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, TAS, 7000, Australia
| | - Jocelyn M Darby
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, TAS, 7000, Australia
| | - Peter R Murphy
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, TAS, 7000, Australia; University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Terry L Pinfold
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, TAS, 7000, Australia
| | - Patrick R Lennard
- The Roslin Institute and Royal School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, UK
| | - Gregory M Woods
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, TAS, 7000, Australia
| | - A Bruce Lyons
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, TAS, 7000, Australia
| | - Andrew S Flies
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, TAS, 7000, Australia.
| |
Collapse
|
8
|
Ohmer MEB, Costantini D, Czirják GÁ, Downs CJ, Ferguson LV, Flies A, Franklin CE, Kayigwe AN, Knutie S, Richards-Zawacki CL, Cramp RL. Applied ecoimmunology: using immunological tools to improve conservation efforts in a changing world. CONSERVATION PHYSIOLOGY 2021; 9:coab074. [PMID: 34512994 PMCID: PMC8422949 DOI: 10.1093/conphys/coab074] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/27/2021] [Accepted: 08/09/2021] [Indexed: 05/11/2023]
Abstract
Ecoimmunology is a rapidly developing field that explores how the environment shapes immune function, which in turn influences host-parasite relationships and disease outcomes. Host immune defence is a key fitness determinant because it underlies the capacity of animals to resist or tolerate potential infections. Importantly, immune function can be suppressed, depressed, reconfigured or stimulated by exposure to rapidly changing environmental drivers like temperature, pollutants and food availability. Thus, hosts may experience trade-offs resulting from altered investment in immune function under environmental stressors. As such, approaches in ecoimmunology can provide powerful tools to assist in the conservation of wildlife. Here, we provide case studies that explore the diverse ways that ecoimmunology can inform and advance conservation efforts, from understanding how Galapagos finches will fare with introduced parasites, to using methods from human oncology to design vaccines against a transmissible cancer in Tasmanian devils. In addition, we discuss the future of ecoimmunology and present 10 questions that can help guide this emerging field to better inform conservation decisions and biodiversity protection. From better linking changes in immune function to disease outcomes under different environmental conditions, to understanding how individual variation contributes to disease dynamics in wild populations, there is immense potential for ecoimmunology to inform the conservation of imperilled hosts in the face of new and re-emerging pathogens, in addition to improving the detection and management of emerging potential zoonoses.
Collapse
Affiliation(s)
- Michel E B Ohmer
- Living Earth Collaborative, Washington University in St. Louis, MO 63130, USA
| | - David Costantini
- Unité Physiologie Moléculaire et Adaptation (PhyMA), Muséum National d’Histoire Naturelle, CNRS, 57 Rue Cuvier, CP32, 75005, Paris, France
| | - Gábor Á Czirják
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research, 10315 Berlin, Germany
| | - Cynthia J Downs
- Department of Environmental Biology, SUNY College of Environmental Science and Forestry, Syracuse, NY 13210, USA
| | - Laura V Ferguson
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Andy Flies
- Menzies Institute for Medical Research, University of Tasmania, Tasmania 7001, Australia
| | - Craig E Franklin
- School of Biological Sciences, The University of Queensland, Queensland 4072, Australia
| | - Ahab N Kayigwe
- Menzies Institute for Medical Research, University of Tasmania, Tasmania 7001, Australia
| | - Sarah Knutie
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06268, USA
- Institute for Systems Genomics, University of Connecticut, Storrs, CT 06268, USA
| | | | - Rebecca L Cramp
- School of Biological Sciences, The University of Queensland, Queensland 4072, Australia
- Corresponding author: School of Biological Sciences, The University of Queensland, Queensland 4072, Australia.
| |
Collapse
|
9
|
Patchett AL, Flies AS, Lyons AB, Woods GM. Curse of the devil: molecular insights into the emergence of transmissible cancers in the Tasmanian devil (Sarcophilus harrisii). Cell Mol Life Sci 2020; 77:2507-2525. [PMID: 31900624 PMCID: PMC11104928 DOI: 10.1007/s00018-019-03435-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/17/2019] [Accepted: 12/19/2019] [Indexed: 12/22/2022]
Abstract
The Tasmanian devil (Sarcophilus harrisii) is the only mammalian species known to be affected by multiple transmissible cancers. Devil facial tumours 1 and 2 (DFT1 and DFT2) are independent neoplastic cell lineages that produce large, disfiguring cancers known as devil facial tumour disease (DFTD). The long-term persistence of wild Tasmanian devils is threatened due to the ability of DFTD cells to propagate as contagious allografts and the high mortality rate of DFTD. Recent studies have demonstrated that both DFT1 and DFT2 cancers originated from founder cells of the Schwann cell lineage, an uncommon origin of malignant cancer in humans. This unprecedented finding has revealed a potential predisposition of Tasmanian devils to transmissible cancers of the Schwann cell lineage. In this review, we compare the molecular nature of human Schwann cells and nerve sheath tumours with DFT1 and DFT2 to gain insights into the emergence of transmissible cancers in the Tasmanian devil. We discuss a potential mechanism, whereby Schwann cell plasticity and frequent wounding in Tasmanian devils combine with an inherent cancer predisposition and low genetic diversity to give rise to transmissible Schwann cell cancers in devils on rare occasions.
Collapse
Affiliation(s)
- Amanda L Patchett
- Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool Street, Hobart, TAS, 7000, Australia
| | - Andrew S Flies
- Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool Street, Hobart, TAS, 7000, Australia
| | - A Bruce Lyons
- School of Medicine, University of Tasmania, Hobart, TAS, 7000, Australia
| | - Gregory M Woods
- Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool Street, Hobart, TAS, 7000, Australia.
| |
Collapse
|
10
|
Flies AS, Darby JM, Lennard PR, Murphy PR, Ong CEB, Pinfold TL, De Luca A, Lyons AB, Woods GM, Patchett AL. A novel system to map protein interactions reveals evolutionarily conserved immune evasion pathways on transmissible cancers. SCIENCE ADVANCES 2020; 6:6/27/eaba5031. [PMID: 32937435 PMCID: PMC7458443 DOI: 10.1126/sciadv.aba5031] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 04/20/2020] [Indexed: 05/02/2023]
Abstract
Around 40% of humans and Tasmanian devils (Sarcophilus harrisii) develop cancer in their lifetime, compared to less than 10% for most species. In addition, devils are affected by two of the three known transmissible cancers in mammals. Immune checkpoint immunotherapy has transformed human medicine, but a lack of species-specific reagents has limited checkpoint immunology in most species. We developed a cut-and-paste reagent development system and used the fluorescent fusion protein system to show that immune checkpoint interactions are conserved across 160,000,000 years of evolution, CD200 is highly expressed on transmissible tumor cells, and coexpression of CD200R1 can block CD200 surface expression. The system's versatility across species was demonstrated by fusing a fluorescent reporter to a camelid-derived nanobody that binds human programmed death ligand 1. The evolutionarily conserved pathways suggest that naturally occurring cancers in devils and other species can be used to advance our understanding of cancer and immunological tolerance.
Collapse
Affiliation(s)
- Andrew S Flies
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, TAS 7000, Australia.
| | - Jocelyn M Darby
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, TAS 7000, Australia
| | - Patrick R Lennard
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, TAS 7000, Australia
- The Roslin Institute and Royal School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK
| | - Peter R Murphy
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, TAS 7000, Australia
- University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Woolloongabba, QLD, Australia
| | - Chrissie E B Ong
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, TAS 7000, Australia
| | - Terry L Pinfold
- School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, TAS 7000, Australia
| | - Alana De Luca
- School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, TAS 7000, Australia
| | - A Bruce Lyons
- School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, TAS 7000, Australia
| | - Gregory M Woods
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, TAS 7000, Australia
| | - Amanda L Patchett
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, TAS 7000, Australia
| |
Collapse
|
11
|
Flies AS, Flies EJ, Fox S, Gilbert A, Johnson SR, Liu GS, Lyons AB, Patchett AL, Pemberton D, Pye RJ. An oral bait vaccination approach for the Tasmanian devil facial tumor diseases. Expert Rev Vaccines 2020; 19:1-10. [PMID: 31971036 DOI: 10.1080/14760584.2020.1711058] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Introduction: The Tasmanian devil (Sarcophilus harrisii) is the largest extant carnivorous marsupial. Since 1996, its population has declined by 77% primarily due to a clonal transmissible tumor, known as devil facial tumor (DFT1) disease. In 2014, a second transmissible devil facial tumor (DFT2) was discovered. DFT1 and DFT2 are nearly 100% fatal.Areas covered: We review DFT control approaches and propose a rabies-style oral bait vaccine (OBV) platform for DFTs. This approach has an extensive safety record and was a primary tool in large-scale rabies virus elimination from wild carnivores across diverse landscapes. Like rabies virus, DFTs are transmitted by oral contact, so immunizing the oral cavity and stimulating resident memory cells could be advantageous. Additionally, exposing infected devils that already have tumors to OBVs could serve as an oncolytic virus immunotherapy. The primary challenges may be identifying appropriate DFT-specific antigens and optimization of field delivery methods.Expert opinion: DFT2 is currently found on a peninsula in southern Tasmania, so an OBV that could eliminate DFT2 should be the priority for this vaccine approach. Translation of an OBV approach to control DFTs will be challenging, but the approach is feasible for combatting ongoing and future disease threats.
Collapse
Affiliation(s)
- Andrew S Flies
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, Australia
| | - Emily J Flies
- School of Natural Sciences, College of Sciences and Engineering, University of Tasmania, Sandy Bay, Australia
| | - Samantha Fox
- Save the Tasmanian Devil Program, DPIPWE, Hobart, Australia.,Toledo Zoo, Toledo, OH, USA
| | - Amy Gilbert
- National Wildlife Research Center, USDA, APHIS, Wildlife Services, Fort Collins, CO, USA
| | - Shylo R Johnson
- National Wildlife Research Center, USDA, APHIS, Wildlife Services, Fort Collins, CO, USA
| | - Guei-Sheung Liu
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, Australia.,Ophthalmology, Department of Surgery, University of Melbourne, East Melbourne, Australia
| | - A Bruce Lyons
- School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Australia
| | - Amanda L Patchett
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, Australia
| | | | - Ruth J Pye
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, Australia
| |
Collapse
|
12
|
Jiang X, Xu J, Liu M, Xing H, Wang Z, Huang L, Mellor AL, Wang W, Wu S. Adoptive CD8 + T cell therapy against cancer:Challenges and opportunities. Cancer Lett 2019; 462:23-32. [PMID: 31356845 DOI: 10.1016/j.canlet.2019.07.017] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/11/2019] [Accepted: 07/23/2019] [Indexed: 12/12/2022]
Abstract
Cancer immunotherapy is a new and promising option for cancer treatment. Unlike traditional chemo- and radiotherapy, immunotherapy actives host immune system to attack malignancies, and this potentially offers long-term protection from recurrence with less toxicity in comparison to conventional chemo- and radiation therapy. In adoptive CD8+ T cell therapy (ACT), large numbers of tumor-specific T cells are sourced from patients and expanded in vitro and infused back to patients. T cells can be expanded from naturally-induced tumor-specific CD8+ T cells isolated from tumor infiltrating lymphocytes (TIL) or genetically-modified autologous circulating CD8+ T cells. The engineered T cells expressed tumor-specific antigen receptors including chimeric antigen receptors (CARs) and T cell receptors (TCRs), prepared from cultured B and T cell clones, respectively. The most successful ACT, anti-CD19 chimeric antigen receptor T (CAR-T) cell therapy directed against B cell lymphoma, is already approved for use based on evidence of efficacy. Efficacy of solid tumors is not yet forthcoming. This review summarizes current technology developments using ACT in clinical trials. In this review, differences between various ACT approaches are discussed. Furthermore, resistance factors in the tumor microenvironment are also considered, as are immune related adverse effects, critical clinic monitoring parameters and potential mitigation approaches.
Collapse
Affiliation(s)
- Xiaotao Jiang
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangdong Provincial Key Laboratory of Proteomics, Guangzhou, Guangdong, People's Republic of China.
| | - Jiang Xu
- Department of Rehabilitation, Huai'an Second People's Hospital, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, Jiangsu, People's Republic of China
| | - Mingfeng Liu
- Department of Breast, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China.
| | - Hui Xing
- Department of Obstetrics and Gynecology, Xiangyang Central Hospital, Xiangyang, Hubei, People's Republic of China.
| | - Zhiming Wang
- Sino-British Research Center for Molecular Oncology, National Center for the International Research in Cell and Gene Therapy, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, People's Republic of China.
| | - Lei Huang
- Institute of Cellular Medicine, Faculty of Medical Sciences, Framlington Place, Newcastle University, Newcastle-Upon-Tyne, United Kingdom.
| | - Andrew L Mellor
- Institute of Cellular Medicine, Faculty of Medical Sciences, Framlington Place, Newcastle University, Newcastle-Upon-Tyne, United Kingdom.
| | - Wei Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China.
| | - Sha Wu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangdong Provincial Key Laboratory of Proteomics, Guangzhou, Guangdong, People's Republic of China.
| |
Collapse
|
13
|
Woods GM, Fox S, Flies AS, Tovar CD, Jones M, Hamede R, Pemberton D, Lyons AB, Bettiol SS. Two Decades of the Impact of Tasmanian Devil Facial Tumor Disease. Integr Comp Biol 2019; 58:1043-1054. [PMID: 30252058 DOI: 10.1093/icb/icy118] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The Tasmanian devil, a marsupial carnivore, has been restricted to the island state of Tasmania since its extinction on the Australian mainland about 3000 years ago. In the past two decades, this species has experienced severe population decline due to the emergence of devil facial tumor disease (DFTD), a transmissible cancer. During these 20 years, scientists have puzzled over the immunological and evolutionary responses by the Tasmanian devil to this transmissible cancer. Targeted strategies in population management and disease control have been developed as well as comparative processes to identify variation in tumor and host genetics. A multi-disciplinary approach with multi-institutional teams has produced considerable advances over the last decade. This has led to a greater understanding of the molecular pathogenesis and genomic classification of this cancer. New and promising developments in the Tasmanian devil's story include evidence that most immunized, and some wild devils, can produce an immune response to DFTD. Furthermore, epidemiology combined with genomic studies suggest a rapid evolution to the disease and that DFTD will become an endemic disease. Since 1998 there have been more than 350 publications, distributed over 37 Web of Science categories. A unique endemic island species has become an international curiosity that is in the spotlight of integrative and comparative biology research.
Collapse
Affiliation(s)
- Gregory M Woods
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania 7005, Australia
| | - Samantha Fox
- Save the Tasmanian Devil Program, DPIPWE, GPO Box 44, Hobart, Tasmania 7001, Australia.,Toledo Zoo, 2605 Broadway, Toledo, OH 43609, USA
| | - Andrew S Flies
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania 7005, Australia
| | - Cesar D Tovar
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania 7005, Australia.,School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Tasmania 7005, Australia
| | - Menna Jones
- School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, Tasmania 7001, Australia
| | - Rodrigo Hamede
- School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, Tasmania 7001, Australia
| | - David Pemberton
- Save the Tasmanian Devil Program, DPIPWE, GPO Box 44, Hobart, Tasmania 7001, Australia
| | - A Bruce Lyons
- School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Tasmania 7005, Australia
| | - Silvana S Bettiol
- School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Tasmania 7005, Australia
| |
Collapse
|
14
|
Li X, Darby J, Lyons AB, Woods GM, Körner H. TNF May Negatively Regulate Phagocytosis of Devil Facial Tumour Disease Cells by Activated Macrophages. Immunol Invest 2019; 48:691-703. [PMID: 30663448 DOI: 10.1080/08820139.2018.1515222] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Introduction: Macrophage phagocytosis of pathogens and tumour cells is an important early event in protection against infectious disease and cancer. As tumour necrosis factor α (TNF) is an important cytokine in macrophage activation, we investigated the involvement of TNF in macrophage phagocytosis of tumour cells. Methods: We used Devil Facial Tumour Disease (DFTD) cancer cells as the target tumour cells. The Tasmanian devil (Sarcophilus harrisii) population is threatened by the transmissible DFTD. Using DFTD cells provided the opportunity to determine if these cells can be phagocytosed and investigate requirement for TNF. As effector cells, bone marrow derived macrophages (BMDMs), generated from C57BL/6 wild type (B6.WT) and C57BL/6 TNF-/- (B6.TNF-/-) mice were used. Phagocytosis of DFTD cells was investigated by confocal microscopy and flow cytometry. Results: DFTD cells were consistently phagocytosed by B6.WT and B6.TNF-/- BMDMs with similar efficiency in vitro. Consequently the DFTD cells are not resistant to phagocytosis. Following activation by exposure to IFNγ and LPS or LPS alone, B6.TNF-/- BMDMs had higher phagocytic efficiency and lower nitric oxide (NO) production compared to wild-type controls. In addition, NO seems to be unlikely to be the involved in phagocytosis efficiency in IFNγ and LPS activated B6.TNF-/- macrophages and consequences thereof. Conclusion: Our results indicate that TNF is not required for IFNγ and LPS or LPS alone activation of macrophage phagocytosis. TNF may negatively regulate macrophage phagocytosis of tumour cells.
Collapse
Affiliation(s)
- Xinying Li
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania , Hobart , Tasmania , Australia.,School of Life Science, Anhui Medical University , Hefei , People's Republic of China
| | - Jocelyn Darby
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania , Hobart , Tasmania , Australia.,School of Medicine, College of Health and Medicine, University of Tasmania , Hobart , Tasmania , Australia
| | - A Bruce Lyons
- School of Medicine, College of Health and Medicine, University of Tasmania , Hobart , Tasmania , Australia
| | - Gregory M Woods
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania , Hobart , Tasmania , Australia.,School of Medicine, College of Health and Medicine, University of Tasmania , Hobart , Tasmania , Australia
| | - Heinrich Körner
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania , Hobart , Tasmania , Australia.,Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Engineering Technology Research Centre of Anti-inflammatory and Immunodrugs in Anhui Province, Institute of Clinical Pharmacology, Anhui Medical University , Hefei, Anhui , People's Republic of China
| |
Collapse
|
15
|
Abstract
We have previously reported that overexpression of Programmed Death -1 Homolog (PD-1H) in human monocytes leads to activation and spontaneous secretion of multiple pro inflammatory cytokines. Here we evaluate changes in monocytes gene expression after enforced PD-1H expression by gene array. The results show that there are significant alterations in 51 potential candidate genes that relate to immune response, cell adhesion and metabolism. Genes corresponding to pro-inflammatory cytokines showed the highest upregulation, 7, 3.2, 3.0, 5.8, 4.4 and 3.1 fold upregulation of TNF-α, IL-1 β, IFN-α, γ, λ and IL-27 relative to vector control. The data are in agreement with cytometric bead array analysis showing induction of proinflammatory cytokines, IL-6, IL-1β and TNF-α by PD-1H. Other genes related to inflammation, include transglutaminase 2 (TG2), NF-κB (p65 and p50) and toll like receptors (TLR) 3 and 4 were upregulated 5, 4.5 and 2.5 fold, respectively. Gene set enrichment analysis (GSEA) also revealed that signaling pathways related to inflammatory response, such as NFκB, AT1R, PYK2, MAPK, RELA, TNFR1, MTOR and proteasomal degradation, were significantly upregulated in response to PD-1H overexpression. We validated the results utilizing a standard inflammatory sepsis model in humanized BLT mice, finding that PD-1H expression was highly correlated with proinflammatory cytokine production. We therefore conclude that PD-1H functions to enhance monocyte activation and the induction of a pro-inflammatory gene expression profile.
Collapse
|
16
|
de Souza HADS, Costa-Correa EH, Bianco-Junior C, Andrade MCR, Lima-Junior JDC, Pratt-Riccio LR, Daniel-Ribeiro CT, Totino PRR. Detection of Signal Regulatory Protein α in Saimiri sciureus (Squirrel Monkey) by Anti-Human Monoclonal Antibody. Front Immunol 2017; 8:1814. [PMID: 29312325 PMCID: PMC5735064 DOI: 10.3389/fimmu.2017.01814] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 12/01/2017] [Indexed: 12/18/2022] Open
Abstract
Non-human primates (NHP) are suitable models for studying different aspects of the human system, including pathogenesis and protective immunity to many diseases. However, the lack of specific immunological reagents for neo-tropical monkeys, such as Saimiri sciureus, is still a major factor limiting studies in these models. An alternative strategy to circumvent this obstacle has been the selection of immunological reagents directed to humans, which present cross-reactivity with NHP molecules. In this context and considering the key role of inhibitory immunoreceptors—such as the signal regulatory protein α (SIRPα)—in the regulation of immune responses, in the present study, we attempted to evaluate the ability of anti-human SIRPα monoclonal antibodies to recognize SIRPα in antigen-presenting S. sciureus peripheral blood mononuclear cells (PBMC). As shown by flow cytometry analysis, the profile of anti-SIRPα staining as well as the levels of SIRPα-positive cells in PBMC from S. sciureus were similar to those observed in human PBMC. Furthermore, using anti-SIRPα monoclonal antibody, it was possible to detect a decrease of the SIRPα levels on surface of S. sciureus cells after in vitro stimulation with lipopolysaccharides. Finally, using computed-based analysis, we observed a high degree of conservation of SIRPα across six species of primates and the presence of shared epitopes in the extracellular domain between humans and Saimiri genus that could be targeted by antibodies. In conclusion, we have identified a commercially available anti-human monoclonal antibody that is able to detect SIRPα of S. sciureus monkeys and that, therefore, can facilitate the study of the immunomodulatory role of SIRPα when S. sciureus is used as a model.
Collapse
Affiliation(s)
| | - Edmar Henrique Costa-Correa
- Laboratory for Malaria Research, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Cesare Bianco-Junior
- Laboratory for Malaria Research, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | | | | | - Lilian Rose Pratt-Riccio
- Laboratory for Malaria Research, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Cláudio Tadeu Daniel-Ribeiro
- Laboratory for Malaria Research, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Paulo Renato Rivas Totino
- Laboratory for Malaria Research, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| |
Collapse
|