1
|
Hernández-Jiménez E, Plata-Menchaca EP, Berbel D, López de Egea G, Dastis-Arias M, García-Tejada L, Sbraga F, Malchair P, García Muñoz N, Larrad Blasco A, Molina Ramírez E, Pérez Fernández X, Sabater Riera J, Ulsamer A. Assessing sepsis-induced immunosuppression to predict positive blood cultures. Front Immunol 2024; 15:1447523. [PMID: 39559359 PMCID: PMC11570276 DOI: 10.3389/fimmu.2024.1447523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 10/14/2024] [Indexed: 11/20/2024] Open
Abstract
Introduction Bacteremia is a life-threatening condition that can progress to sepsis and septic shock, leading to significant mortality in the emergency department (ED). The standard diagnostic method, blood culture, is time-consuming and prone to false positives and false negatives. Although not widely accepted, several clinical and artificial intelligence-based algorithms have been recently developed to predict bacteremia. However, these strategies require further identification of new variables to improve their diagnostic accuracy. This study proposes a novel strategy to predict positive blood cultures by assessing sepsis-induced immunosuppression status through endotoxin tolerance assessment. Methods Optimal assay conditions have been explored and tested in sepsis-suspected patients meeting the Sepsis-3 criteria. Blood samples were collected at ED admission, and endotoxin (lipopolysaccharide, LPS) challenge was performed to evaluate the innate immune response through cytokine profiling. Results Clinical variables, immune cell population biomarkers, and cytokine levels (tumor necrosis factor [TNFα], IL-1β, IL-6, IL-8, and IL-10) were measured. Patients with positive blood cultures exhibited significantly lower TNFα production after LPS challenge than did those with negative blood cultures. The study also included a validation cohort to confirm that the response was consistent. Discussion The results of this study highlight the innate immune system immunosuppression state as a critical parameter for sepsis diagnosis. Notably, the present study identified a reduction in monocyte populations and specific cytokine profiles as potential predictive markers. This study showed that the LPS challenge can be used to effectively distinguish between patients with bloodstream infection leading to sepsis and those whose blood cultures are negative, providinga rapid and reliable diagnostic tool to predict positive blood cultures. The potential applicability of these findings could enhance clinical practice in terms of the accuracy and promptness of sepsis diagnosis in the ED, improving patient outcomes through timely and appropriate treatment.
Collapse
Affiliation(s)
- Enrique Hernández-Jiménez
- R&D Department, Loop Diagnostics, Barcelona, Spain
- Servei de Medicina Intensiva, Hospital Universitari de Bellvitge, Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, Spain
| | - Erika P. Plata-Menchaca
- Servei de Medicina Intensiva, Hospital Universitari de Bellvitge, Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, Spain
- Vall d’Hebron Research Institute (VHIR), Vall d´Hebron Hospital Campus, Barcelona, Spain
| | - Damaris Berbel
- Departament de Microbiologia, Hospital Universitari de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, Spain
- Research Network for Respiratory Diseases (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Guillem López de Egea
- Departament de Microbiologia, Hospital Universitari de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, Spain
- Research Network for Respiratory Diseases (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Macarena Dastis-Arias
- Division of Emergency Laboratory, Hospital Universitari de Bellvitge, L’Hospitalet de Llobregat, Spain
| | - Laura García-Tejada
- Biochemistry Core of the Clinical Laboratory, Hospital Universitari de Bellvitge, L’Hospitalet de Llobregat, Spain
| | - Fabrizio Sbraga
- Servei de Cirurgia Cardíaca, Hospital Universitari de Bellvitge, L’Hospitalet de Llobregat, Spain
| | - Pierre Malchair
- Departament d’urgències, Hospital Universitari de Bellvitge, L’Hospitalet de Llobregat, Spain
| | - Nadia García Muñoz
- Banc de sang i teixits, Hospital Universitari de Bellvitge, L’Hospitalet de Llobregat, Spain
| | - Alejandra Larrad Blasco
- Servei de Medicina Intensiva, Hospital Universitari de Bellvitge, Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, Spain
| | - Eva Molina Ramírez
- Servei de Medicina Intensiva, Hospital Universitari de Bellvitge, Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, Spain
| | - Xose Pérez Fernández
- Servei de Medicina Intensiva, Hospital Universitari de Bellvitge, Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, Spain
| | - Joan Sabater Riera
- Servei de Medicina Intensiva, Hospital Universitari de Bellvitge, Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, Spain
| | - Arnau Ulsamer
- Servei de Medicina Intensiva, Hospital Universitari de Bellvitge, Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, Spain
| |
Collapse
|
2
|
Amarasinghe HE, Zhang P, Whalley JP, Allcock A, Migliorini G, Brown AC, Scozzafava G, Knight JC. Mapping the epigenomic landscape of human monocytes following innate immune activation reveals context-specific mechanisms driving endotoxin tolerance. BMC Genomics 2023; 24:595. [PMID: 37805492 PMCID: PMC10559536 DOI: 10.1186/s12864-023-09663-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 09/08/2023] [Indexed: 10/09/2023] Open
Abstract
BACKGROUND Monocytes are key mediators of innate immunity to infection, undergoing profound and dynamic changes in epigenetic state and immune function which are broadly protective but may be dysregulated in disease. Here, we aimed to advance understanding of epigenetic regulation following innate immune activation, acutely and in endotoxin tolerant states. METHODS We exposed human primary monocytes from healthy donors (n = 6) to interferon-γ or differing combinations of endotoxin (lipopolysaccharide), including acute response (2 h) and two models of endotoxin tolerance: repeated stimulations (6 + 6 h) and prolonged exposure to endotoxin (24 h). Another subset of monocytes was left untreated (naïve). We identified context-specific regulatory elements based on epigenetic signatures for chromatin accessibility (ATAC-seq) and regulatory non-coding RNAs from total RNA sequencing. RESULTS We present an atlas of differential gene expression for endotoxin and interferon response, identifying widespread context specific changes. Across assayed states, only 24-29% of genes showing differential exon usage are also differential at the gene level. Overall, 19.9% (6,884 of 34,616) of repeatedly observed ATAC peaks were differential in at least one condition, the majority upregulated on stimulation and located in distal regions (64.1% vs 45.9% of non-differential peaks) within which sequences were less conserved than non-differential peaks. We identified enhancer-derived RNA signatures specific to different monocyte states that correlated with chromatin accessibility changes. The endotoxin tolerance models showed distinct chromatin accessibility and transcriptomic signatures, with integrated analysis identifying genes and pathways involved in the inflammatory response, detoxification, metabolism and wound healing. We leveraged eQTL mapping for the same monocyte activation states to link potential enhancers with specific genes, identifying 1,946 unique differential ATAC peaks with 1,340 expression associated genes. We further use this to inform understanding of reported GWAS, for example involving FCHO1 and coronary artery disease. CONCLUSION This study reports context-specific regulatory elements based on transcriptomic profiling and epigenetic signatures for enhancer-derived RNAs and chromatin accessibility in immune tolerant monocyte states, and demonstrates the informativeness of linking such elements and eQTL to inform future mechanistic studies aimed at defining therapeutic targets of immunosuppression and diseases.
Collapse
Affiliation(s)
- Harindra E Amarasinghe
- Wellcome Centre for Human Genetics, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7BN, UK.
| | - Ping Zhang
- Wellcome Centre for Human Genetics, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7BN, UK
- Chinese Academy of Medical Science Oxford Institute, University of Oxford, Oxford, OX3 7BN, UK
| | - Justin P Whalley
- Wellcome Centre for Human Genetics, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7BN, UK
| | - Alice Allcock
- Wellcome Centre for Human Genetics, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7BN, UK
| | - Gabriele Migliorini
- Wellcome Centre for Human Genetics, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7BN, UK
| | - Andrew C Brown
- Wellcome Centre for Human Genetics, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7BN, UK
| | - Giuseppe Scozzafava
- Wellcome Centre for Human Genetics, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7BN, UK
| | - Julian C Knight
- Wellcome Centre for Human Genetics, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7BN, UK.
- Chinese Academy of Medical Science Oxford Institute, University of Oxford, Oxford, OX3 7BN, UK.
| |
Collapse
|
3
|
Qiu R, Zhou L, Ma Y, Zhou L, Liang T, Shi L, Long J, Yuan D. Regulatory T Cell Plasticity and Stability and Autoimmune Diseases. Clin Rev Allergy Immunol 2020; 58:52-70. [PMID: 30449014 DOI: 10.1007/s12016-018-8721-0] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
CD4+CD25+ regulatory T cells (Tregs) are a class of CD4+ T cells with immunosuppressive functions that play a critical role in maintaining immune homeostasis. However, in certain disease settings, Tregs demonstrate plastic differentiation, and the stability of these Tregs, which is characterized by the stable expression or protective epigenetic modifications of the transcription factor Foxp3, becomes abnormal. Plastic Tregs have some features of helper T (Th) cells, such as the secretion of Th-related cytokines and the expression of specific transcription factors in Th cells, but also still retain the expression of Foxp3, a feature of Tregs. Although such Th-like Tregs can secrete pro-inflammatory cytokines, they still possess a strong ability to inhibit specific Th cell responses. Therefore, the plastic differentiation of Tregs not only increases the complexity of the immune circumstances under pathological conditions, especially autoimmune diseases, but also shows an association with changes in the stability of Tregs. The plastic differentiation and stability change of Tregs play vital roles in the progression of diseases. This review focuses on the phenotypic characteristics, functions, and formation conditions of several plastic Tregs and also summarizes the changes of Treg stability and their effects on inhibitory function. Additionally, the effects of Treg plasticity and stability on disease prognosis for several autoimmune diseases were also investigated in order to better understand the relationship between Tregs and autoimmune diseases.
Collapse
Affiliation(s)
- Runze Qiu
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Xianlin Dadao 138, Nanjing, 210023, People's Republic of China
| | - Liyu Zhou
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Xianlin Dadao 138, Nanjing, 210023, People's Republic of China
| | - Yuanjing Ma
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Xianlin Dadao 138, Nanjing, 210023, People's Republic of China
| | - Lingling Zhou
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Xianlin Dadao 138, Nanjing, 210023, People's Republic of China
| | - Tao Liang
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Xianlin Dadao 138, Nanjing, 210023, People's Republic of China
| | - Le Shi
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Xianlin Dadao 138, Nanjing, 210023, People's Republic of China
| | - Jun Long
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Xianlin Dadao 138, Nanjing, 210023, People's Republic of China.
| | - Dongping Yuan
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Xianlin Dadao 138, Nanjing, 210023, People's Republic of China.
| |
Collapse
|
4
|
Cassidy T, Humphries AR, Craig M, Mackey MC. Characterizing Chemotherapy-Induced Neutropenia and Monocytopenia Through Mathematical Modelling. Bull Math Biol 2020; 82:104. [PMID: 32737602 DOI: 10.1007/s11538-020-00777-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 07/11/2020] [Indexed: 12/18/2022]
Abstract
In spite of the recent focus on the development of novel targeted drugs to treat cancer, cytotoxic chemotherapy remains the standard treatment for the vast majority of patients. Unfortunately, chemotherapy is associated with high hematopoietic toxicity that may limit its efficacy. We have previously established potential strategies to mitigate chemotherapy-induced neutropenia (a lack of circulating neutrophils) using a mechanistic model of granulopoiesis to predict the interactions defining the neutrophil response to chemotherapy and to define optimal strategies for concurrent chemotherapy/prophylactic granulocyte colony-stimulating factor (G-CSF). Here, we extend our analyses to include monocyte production by constructing and parameterizing a model of monocytopoiesis. Using data for neutrophil and monocyte concentrations during chemotherapy in a large cohort of childhood acute lymphoblastic leukemia patients, we leveraged our model to determine the relationship between the monocyte and neutrophil nadirs during cyclic chemotherapy. We show that monocytopenia precedes neutropenia by 3 days, and rationalize the use of G-CSF during chemotherapy by establishing that the onset of monocytopenia can be used as a clinical marker for G-CSF dosing post-chemotherapy. This work therefore has important clinical applications as a comprehensive approach to understanding the relationship between monocyte and neutrophils after cyclic chemotherapy with or without G-CSF support.
Collapse
Affiliation(s)
- Tyler Cassidy
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Antony R Humphries
- Department of Mathematics and Statistics, McGill University, Montréal, QC, H3A 0B9, Canada.,Department of Physiology, McGill University, Montréal, QC, H3A 0B9, Canada
| | - Morgan Craig
- Department of Mathematics and Statistics, Université de Montréal, Montréal, Canada. .,CHU Sainte-Justine Research Centre, University of Montreal, Montréal, Canada.
| | - Michael C Mackey
- Department of Physiology, McGill University, 3655 Drummond, Montréal, QC, H3G 1Y6, Canada.,Department of Mathematics and Statistics, McGill University, 3655 Drummond, Montréal, QC, H3G 1Y6, Canada.,Department of Physics, McGill University, 3655 Drummond, Montréal, QC, H3G 1Y6, Canada
| |
Collapse
|
5
|
Stringa P, Toledano V, Papa-Gobbi R, Arreola M, Largo C, Machuca M, Aguirre LA, Rumbo M, López-Collazo E, Hernández Oliveros F. Galactomannan as a Potential Modulator of Intestinal Ischemia-Reperfusion Injury. J Surg Res 2019; 249:232-240. [PMID: 31796217 DOI: 10.1016/j.jss.2019.10.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/30/2019] [Accepted: 10/20/2019] [Indexed: 01/20/2023]
Abstract
BACKGROUND Galactomannan (GAL), a polysaccharide present on the cell wall of several fungi, has shown an ability to modulate inflammatory responses through the dectin-1 receptor in human macrophages. However, studies evaluating the modulatory properties of this polysaccharide in in vivo inflammatory scenarios are scarce. We hypothesized that GAL pretreatment would modulate local and remote damage related to intestinal reperfusion after an ischemic insult. MATERIALS AND METHODS Adult male Balb/c mice were subjected to intestinal ischemia-reperfusion injury by reversible occlusion of the superior mesenteric artery, consisting of 45 min of ischemia followed by 3 or 24 h of reperfusion. Intragastric GAL (70 mg/kg) was administered 12 h before ischemia, and saline solution was used in the control animals. Jejunum, lung, and blood samples were taken for the analysis of histology, gene expression, plasma cytokine levels, and nitrosative stress. RESULTS Intestinal and lung histologic alterations were attenuated by GAL pretreatment, showing significant differences compared with nontreated animals. Interleukin 1β, monocyte chemoattractant protein 1, and IL-6 messenger RNA expression were considerably downregulated in the small intestine of the GAL group. In addition, GAL treatment significantly prevented plasma interleukin 6 and monocyte chemoattractant protein 1 upregulation and diminished nitrate and nitrite levels after 3 h of intestinal reperfusion. CONCLUSIONS GAL pretreatment constitutes a novel and promising therapy to reduce local and remote damage triggered by intestinal ischemia-reperfusion injury. Further in vivo and in vitro studies to understand GAL's modulatory effects are warranted.
Collapse
Affiliation(s)
- Pablo Stringa
- Transplant Group, Experimental Surgery, IdiPAZ, La Paz University Hospital, Madrid, Spain; Tumor Immunology Laboratory, IdiPAZ, La Paz University Hospital, Madrid, Spain
| | - Victor Toledano
- Tumor Immunology Laboratory, IdiPAZ, La Paz University Hospital, Madrid, Spain; Innate Immunity Group, IdiPAZ, La Paz University Hospital, Madrid, Spain
| | - Rodrigo Papa-Gobbi
- Transplant Group, Experimental Surgery, IdiPAZ, La Paz University Hospital, Madrid, Spain
| | - Miguel Arreola
- Transplant Group, Experimental Surgery, IdiPAZ, La Paz University Hospital, Madrid, Spain
| | - Carlota Largo
- Transplant Group, Experimental Surgery, IdiPAZ, La Paz University Hospital, Madrid, Spain
| | - Mariana Machuca
- Special Pathology Laboratory, Faculty of Veterinary Sciences, National University of La Plata, La Plata, Buenos Aires, Argentina
| | - Luis A Aguirre
- Tumor Immunology Laboratory, IdiPAZ, La Paz University Hospital, Madrid, Spain; Innate Immunity Group, IdiPAZ, La Paz University Hospital, Madrid, Spain
| | - Martin Rumbo
- Institute for Immunological and Physiopathological Studies (IIFP-CONICET-UNLP), National University of La Plata, La Plata, Buenos Aires, Argentina
| | - Eduardo López-Collazo
- Tumor Immunology Laboratory, IdiPAZ, La Paz University Hospital, Madrid, Spain; Innate Immunity Group, IdiPAZ, La Paz University Hospital, Madrid, Spain.
| | | |
Collapse
|
6
|
Computational Health Engineering Applied to Model Infectious Diseases and Antimicrobial Resistance Spread. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9122486] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Infectious diseases are the primary cause of mortality worldwide. The dangers of infectious disease are compounded with antimicrobial resistance, which remains the greatest concern for human health. Although novel approaches are under investigation, the World Health Organization predicts that by 2050, septicaemia caused by antimicrobial resistant bacteria could result in 10 million deaths per year. One of the main challenges in medical microbiology is to develop novel experimental approaches, which enable a better understanding of bacterial infections and antimicrobial resistance. After the introduction of whole genome sequencing, there was a great improvement in bacterial detection and identification, which also enabled the characterization of virulence factors and antimicrobial resistance genes. Today, the use of in silico experiments jointly with computational and machine learning offer an in depth understanding of systems biology, allowing us to use this knowledge for the prevention, prediction, and control of infectious disease. Herein, the aim of this review is to discuss the latest advances in human health engineering and their applicability in the control of infectious diseases. An in-depth knowledge of host–pathogen–protein interactions, combined with a better understanding of a host’s immune response and bacterial fitness, are key determinants for halting infectious diseases and antimicrobial resistance dissemination.
Collapse
|
7
|
Aghasafari P, George U, Pidaparti R. A review of inflammatory mechanism in airway diseases. Inflamm Res 2018; 68:59-74. [PMID: 30306206 DOI: 10.1007/s00011-018-1191-2] [Citation(s) in RCA: 151] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 09/12/2018] [Accepted: 09/27/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Inflammation in the lung is the body's natural response to injury. It acts to remove harmful stimuli such as pathogens, irritants, and damaged cells and initiate the healing process. Acute and chronic pulmonary inflammation are seen in different respiratory diseases such as; acute respiratory distress syndrome, chronic obstructive pulmonary disease (COPD), asthma, and cystic fibrosis (CF). FINDINGS In this review, we found that inflammatory response in COPD is determined by the activation of epithelial cells and macrophages in the respiratory tract. Epithelial cells and macrophages discharge transforming growth factor-β (TGF-β), which trigger fibroblast proliferation and tissue remodeling. Asthma leads to airway hyper-responsiveness, obstruction, mucus hyper-production, and airway-wall remodeling. Cytokines, allergens, chemokines, and infectious agents are the main stimuli that activate signaling pathways in epithelial cells in asthma. Mutation of the CF transmembrane conductance regulator (CFTR) gene results in CF. Mutations in CFTR influence the lung epithelial innate immune function that leads to exaggerated and ineffective airway inflammation that fails to abolish pulmonary pathogens. We present mechanistic computational models (based on ordinary differential equations, partial differential equations and agent-based models) that have been applied in studying the complex physiological and pathological mechanisms of chronic inflammation in different airway diseases. CONCLUSION The scope of the present review is to explore the inflammatory mechanism in airway diseases and highlight the influence of aging on airways' inflammation mechanism. The main goal of this review is to encourage research collaborations between experimentalist and modelers to promote our understanding of the physiological and pathological mechanisms that control inflammation in different airway diseases.
Collapse
Affiliation(s)
| | - Uduak George
- College of Engineering, University of Georgia, Athens, GA, USA.,Department of Mathematics and Statistics, San Diego State University, San Diego, CA, USA
| | | |
Collapse
|