1
|
Abramson J, Dobeš J, Lyu M, Sonnenberg GF. The emerging family of RORγt + antigen-presenting cells. Nat Rev Immunol 2024; 24:64-77. [PMID: 37479834 PMCID: PMC10844842 DOI: 10.1038/s41577-023-00906-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/12/2023] [Indexed: 07/23/2023]
Abstract
Antigen-presenting cells (APCs) are master regulators of the immune response by directly interacting with T cells to orchestrate distinct functional outcomes. Several types of professional APC exist, including conventional dendritic cells, B cells and macrophages, and numerous other cell types have non-classical roles in antigen presentation, such as thymic epithelial cells, endothelial cells and granulocytes. Accumulating evidence indicates the presence of a new family of APCs marked by the lineage-specifying transcription factor retinoic acid receptor-related orphan receptor-γt (RORγt) and demonstrates that these APCs have key roles in shaping immunity, inflammation and tolerance, particularly in the context of host-microorganism interactions. These RORγt+ APCs include subsets of group 3 innate lymphoid cells, extrathymic autoimmune regulator-expressing cells and, potentially, other emerging populations. Here, we summarize the major findings that led to the discovery of these RORγt+ APCs and their associated functions. We discuss discordance in recent reports and identify gaps in our knowledge in this burgeoning field, which has tremendous potential to advance our understanding of fundamental immune concepts.
Collapse
Affiliation(s)
- Jakub Abramson
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel.
| | - Jan Dobeš
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Mengze Lyu
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology & Hepatology, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Department of Microbiology & Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Gregory F Sonnenberg
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA.
- Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology & Hepatology, Weill Cornell Medicine, Cornell University, New York, NY, USA.
- Department of Microbiology & Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA.
| |
Collapse
|
2
|
Sjøgren T, Bratland E, Røyrvik EC, Grytaas MA, Benneche A, Knappskog PM, Kämpe O, Oftedal BE, Husebye ES, Wolff ASB. Screening patients with autoimmune endocrine disorders for cytokine autoantibodies reveals monogenic immune deficiencies. J Autoimmun 2022; 133:102917. [PMID: 36191466 DOI: 10.1016/j.jaut.2022.102917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND Autoantibodies against type I interferons (IFN) alpha (α) and omega (ω), and interleukins (IL) 17 and 22 are a hallmark of autoimmune polyendocrine syndrome type 1 (APS-1), caused by mutations in the autoimmune regulator (AIRE) gene. Such antibodies are also seen in a number of monogenic immunodeficiencies. OBJECTIVES To determine whether screening for cytokine autoantibodies (anti-IFN-ω and anti-IL22) can be used to identify patients with monogenic immune disorders. METHODS A novel ELISA assay was employed to measure IL22 autoantibodies in 675 patients with autoimmune primary adrenal insufficiency (PAI) and a radio immune assay (RIA) was used to measure autoantibodies against IFN-ω in 1778 patients with a variety of endocrine diseases, mostly of autoimmune aetiology. Positive cases were sequenced for all coding exons of the AIRE gene. If no AIRE mutations were found, we applied next generation sequencing (NGS) to search for mutations in immune related genes. RESULTS We identified 29 patients with autoantibodies against IFN-ω and/or IL22. Of these, four new APS-1 cases with disease-causing variants in AIRE were found. In addition, we identified two patients with pathogenic heterozygous variants in CTLA4 and NFKB2, respectively. Nine rare variants in other immune genes were identified in six patients, although further studies are needed to determine their disease-causing potential. CONCLUSION Screening of cytokine autoantibodies can efficiently identify patients with previously unknown monogenic and possible oligogenic causes of autoimmune and immune deficiency diseases. This information is crucial for providing personalised treatment and follow-up of patients and their relatives.
Collapse
Affiliation(s)
- Thea Sjøgren
- Department of Clinical Science, University of Bergen, Norway; Department of Medicine, Haukeland University Hospital, Bergen, Norway; KG Jebsen Center for Autoimmune Diseases, University of Bergen, Norway
| | - Eirik Bratland
- Department of Clinical Science, University of Bergen, Norway; KG Jebsen Center for Autoimmune Diseases, University of Bergen, Norway; Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Ellen C Røyrvik
- Department of Clinical Science, University of Bergen, Norway; KG Jebsen Center for Autoimmune Diseases, University of Bergen, Norway
| | - Marianne Aa Grytaas
- Department of Medicine, Haukeland University Hospital, Bergen, Norway; KG Jebsen Center for Autoimmune Diseases, University of Bergen, Norway
| | - Andreas Benneche
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Per M Knappskog
- Department of Clinical Science, University of Bergen, Norway; Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Olle Kämpe
- KG Jebsen Center for Autoimmune Diseases, University of Bergen, Norway; Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Bergithe E Oftedal
- Department of Clinical Science, University of Bergen, Norway; Department of Medicine, Haukeland University Hospital, Bergen, Norway; KG Jebsen Center for Autoimmune Diseases, University of Bergen, Norway
| | - Eystein S Husebye
- Department of Clinical Science, University of Bergen, Norway; Department of Medicine, Haukeland University Hospital, Bergen, Norway; KG Jebsen Center for Autoimmune Diseases, University of Bergen, Norway.
| | - Anette S B Wolff
- Department of Clinical Science, University of Bergen, Norway; Department of Medicine, Haukeland University Hospital, Bergen, Norway; KG Jebsen Center for Autoimmune Diseases, University of Bergen, Norway.
| |
Collapse
|
3
|
Primary Immunodeficiency with Severe Multi-Organ Immune Dysregulation. Case Reports Immunol 2020; 2019:8746249. [PMID: 31956453 PMCID: PMC6949663 DOI: 10.1155/2019/8746249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 11/05/2019] [Accepted: 11/12/2019] [Indexed: 11/17/2022] Open
Abstract
Polyglandular autoimmune syndrome type 1, also known as autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED), is a rare primary immunodeficiency disorder with multi-organ involvement. Besides for being predisposed to severe life-threatening infections, patients with APECED are also prone to organ impairment secondary to severe autoimmunity. As this is an autosomal recessive disorder, a biallelic mutation in the AIRE gene is responsible for APECED. The author presents a case of APECED with a single AIRE mutation. Whole exome sequencing identified a mutation in the BTNL2 gene that the author suggests may have contributed to the patient's presentation.
Collapse
|
4
|
de Albuquerque JAT, Banerjee PP, Castoldi A, Ma R, Zurro NB, Ynoue LH, Arslanian C, Barbosa-Carvalho MUW, Correia-Deur JEDM, Weiler FG, Dias-da-Silva MR, Lazaretti-Castro M, Pedroza LA, Câmara NOS, Mace E, Orange JS, Condino-Neto A. The Role of AIRE in the Immunity Against Candida Albicans in a Model of Human Macrophages. Front Immunol 2018; 9:567. [PMID: 29666621 PMCID: PMC5875531 DOI: 10.3389/fimmu.2018.00567] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 03/06/2018] [Indexed: 01/08/2023] Open
Abstract
Autoimmune-polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) is a primary immunodeficiency caused by mutations in the autoimmune regulator gene (AIRE). Patients with AIRE mutations are susceptible to Candida albicans infection and present with autoimmune disorders. We previously demonstrated that cytoplasmic AIRE regulates the Syk-dependent Dectin-1 pathway. In this study, we further evaluated direct contact with fungal elements, synapse formation, and the response of macrophage-like THP-1 cells to C. albicans hyphae to determine the role of AIRE upon Dectin receptors function and signaling. We examined the fungal synapse (FS) formation in wild-type and AIRE-knockdown THP-1 cells differentiated to macrophages, as well as monocyte-derived macrophages from APECED patients. We evaluated Dectin-2 receptor signaling, phagocytosis, and cytokine secretion upon hyphal stimulation. AIRE co-localized with Dectin-2 and Syk at the FS upon hyphal stimulation of macrophage-like THP-1 cells. AIRE-knockdown macrophage-like THP-1 cells exhibited less Dectin-1 and Dectin-2 receptors accumulation, decreased signaling pathway activity at the FS, lower C. albicans phagocytosis, and less lysosome formation. Furthermore, IL-1β, IL-6, or TNF-α secretion by AIRE-knockdown macrophage-like THP-1 cells and AIRE-deficient patient macrophages was decreased compared to control cells. Our results suggest that AIRE modulates the FS formation and hyphal recognition and help to orchestrate an effective immune response against C. albicans.
Collapse
Affiliation(s)
| | - Pinaki Prosad Banerjee
- Center for Human Immunobiology, Texas Children’s Hospital, Houston, TX, United States
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| | - Angela Castoldi
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Royce Ma
- Center for Human Immunobiology, Texas Children’s Hospital, Houston, TX, United States
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| | - Nuria Bengala Zurro
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Leandro Hideki Ynoue
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Christina Arslanian
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | | | | | | | | | - Luis Alberto Pedroza
- Colegio de Ciencias de la Salud, Escuela de Medicina, Hospital de los Valles, Universidad San Francisco de Quito, Quito, Ecuador
| | | | - Emily Mace
- Center for Human Immunobiology, Texas Children’s Hospital, Houston, TX, United States
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| | - Jordan Scott Orange
- Center for Human Immunobiology, Texas Children’s Hospital, Houston, TX, United States
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| | - Antonio Condino-Neto
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- Institute of Tropical Medicine, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
5
|
Bichele R, Kärner J, Truusalu K, Smidt I, Mändar R, Conti HR, Gaffen SL, Peterson P, Laan M, Kisand K. IL-22 neutralizing autoantibodies impair fungal clearance in murine oropharyngeal candidiasis model. Eur J Immunol 2018; 48:464-470. [PMID: 29150834 PMCID: PMC5844855 DOI: 10.1002/eji.201747209] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 10/31/2017] [Accepted: 11/14/2017] [Indexed: 12/30/2022]
Abstract
Protection against mucocutaneous candidiasis depends on the T helper (Th)17 pathway, as gene defects affecting its integrity result in inability to clear Candida albicans infection on body surfaces. Moreover, autoantibodies neutralizing Th17 cytokines have been related to chronic candidiasis in a rare inherited disorder called autoimmune polyendocriopathy candidiasis ectodermal dystrophy (APECED) caused by mutations in autoimmune regulator (AIRE) gene. However, the direct pathogenicity of these autoantibodies has not yet been addressed. Here we show that the level of anti-IL17A autoantibodies that develop in aged Aire-deficient mice is not sufficient for conferring susceptibility to oropharyngeal candidiasis. However, patient-derived monoclonal antibodies that cross-react with murine IL-22 increase the fungal burden on C. albicans infected mucosa. Nevertheless, the lack of macroscopically evident infectious pathology on the oral mucosa of infected mice suggests that additional susceptibility factors are needed to precipitate a clinical disease.
Collapse
MESH Headings
- Animals
- Antibodies, Neutralizing/immunology
- Autoantibodies/immunology
- Candida albicans/immunology
- Candidiasis, Chronic Mucocutaneous/immunology
- Candidiasis, Chronic Mucocutaneous/microbiology
- Candidiasis, Oral/immunology
- Candidiasis, Oral/microbiology
- Colony Count, Microbial
- Cross Reactions
- Disease Models, Animal
- Disease Susceptibility
- Female
- Humans
- Interleukin-17/immunology
- Interleukins/immunology
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Polyendocrinopathies, Autoimmune/immunology
- Th17 Cells/immunology
- Transcription Factors/deficiency
- Transcription Factors/genetics
- Transcription Factors/immunology
- AIRE Protein
- Interleukin-22
Collapse
Affiliation(s)
- Rudolf Bichele
- Department of Molecular Pathology, Institute of Biomedical and Translational Medicine, University of Tartu, Estonia
| | - Jaanika Kärner
- Department of Molecular Pathology, Institute of Biomedical and Translational Medicine, University of Tartu, Estonia
| | - Kai Truusalu
- Department of Microbiology, Institute of Biomedical and Translational Medicine, University of Tartu, Estonia
| | - Imbi Smidt
- Department of Microbiology, Institute of Biomedical and Translational Medicine, University of Tartu, Estonia
| | - Reet Mändar
- Department of Microbiology, Institute of Biomedical and Translational Medicine, University of Tartu, Estonia
| | - Heather R. Conti
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania
- University of Toledo, Toledo, Ohio
| | - Sarah L. Gaffen
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Pärt Peterson
- Department of Molecular Pathology, Institute of Biomedical and Translational Medicine, University of Tartu, Estonia
| | - Martti Laan
- Department of Molecular Pathology, Institute of Biomedical and Translational Medicine, University of Tartu, Estonia
| | - Kai Kisand
- Department of Molecular Pathology, Institute of Biomedical and Translational Medicine, University of Tartu, Estonia
| |
Collapse
|