1
|
Nunes JPS, Roda VMDP, Andrieux P, Kalil J, Chevillard C, Cunha-Neto E. Inflammation and mitochondria in the pathogenesis of chronic Chagas disease cardiomyopathy. Exp Biol Med (Maywood) 2023; 248:2062-2071. [PMID: 38235691 PMCID: PMC10800136 DOI: 10.1177/15353702231220658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024] Open
Abstract
Chagas disease (CD), caused by the protozoan parasite Trypanosoma cruzi, is a neglected disease affecting around 6 million people. About 30% of CD patients develop chronic Chagas disease cardiomyopathy (CCC), an inflammatory cardiomyopathy that occurs decades after the initial infection, while most infected patients (60%) remain asymptomatic in the so-called indeterminate form (IF). Death results from heart failure or arrhythmia in a subset of CCC patients. Myocardial fibrosis, inflammation, and mitochondrial dysfunction are involved in the arrhythmia substrate and triggering events. Survival in CCC is worse than in other cardiomyopathies, which may be linked to a Th1-T cell rich myocarditis with abundant interferon (IFN)-γ and tumor necrosis factor (TNF)-α, selectively lower levels of mitochondrial energy metabolism enzymes in the heart, and reduced levels of high-energy phosphate, indicating poor adenosine triphosphate (ATP) production. IFN-γ and TNF-α signaling, which are constitutively upregulated in CD patients, negatively affect mitochondrial function in cardiomyocytes, recapitulating findings in CCC heart tissue. Genetic studies such as whole-exome sequencing (WES) in nuclear families with multiple CCC/IF cases has disclosed rare heterozygous pathogenic variants in mitochondrial and inflammatory genes segregating in CCC cases. In this minireview, we summarized studies showing how IFN-γ and TNF-α affect cell energy generation, mitochondrial health, and redox homeostasis in cardiomyocytes, in addition to human CD and mitochondria. We hypothesize that cytokine-induced mitochondrial dysfunction in genetically predisposed patients may be the underlying cause of CCC severity and we believe this mechanism may have a bearing on other inflammatory cardiomyopathies.
Collapse
Affiliation(s)
- João Paulo Silva Nunes
- Laboratory of Immunology, Heart Institute (InCor), Faculdade de Medicina da Universidade de São Paulo, 05403-900 São Paulo, Brazil
- Division of Clinical Immunology and Allergy, Faculdade de Medicina da Universidade de São Paulo, 01246-903 São Paulo, Brazil
- Institute for Investigation in Immunology (III), Instituto Nacional de Ciência e Tecnologia (INCT), 05403-900 São Paulo, Brazil
| | - Vinicius Moraes de Paiva Roda
- Laboratory of Immunology, Heart Institute (InCor), Faculdade de Medicina da Universidade de São Paulo, 05403-900 São Paulo, Brazil
- Division of Clinical Immunology and Allergy, Faculdade de Medicina da Universidade de São Paulo, 01246-903 São Paulo, Brazil
| | - Pauline Andrieux
- Institut National de la Santé Et de la Recherche Médicale (INSERM), Unité Mixte de Recherche (UMR) U1090, Aix Marseille Université, TAGC Theories and Approaches of Genomic Complexity, Institut MarMaRa, 13288 Marseille, France
| | - Jorge Kalil
- Laboratory of Immunology, Heart Institute (InCor), Faculdade de Medicina da Universidade de São Paulo, 05403-900 São Paulo, Brazil
- Division of Clinical Immunology and Allergy, Faculdade de Medicina da Universidade de São Paulo, 01246-903 São Paulo, Brazil
- Institute for Investigation in Immunology (III), Instituto Nacional de Ciência e Tecnologia (INCT), 05403-900 São Paulo, Brazil
| | - Christophe Chevillard
- Institut National de la Santé Et de la Recherche Médicale (INSERM), Unité Mixte de Recherche (UMR) U1090, Aix Marseille Université, TAGC Theories and Approaches of Genomic Complexity, Institut MarMaRa, 13288 Marseille, France
| | - Edecio Cunha-Neto
- Laboratory of Immunology, Heart Institute (InCor), Faculdade de Medicina da Universidade de São Paulo, 05403-900 São Paulo, Brazil
- Division of Clinical Immunology and Allergy, Faculdade de Medicina da Universidade de São Paulo, 01246-903 São Paulo, Brazil
- Institute for Investigation in Immunology (III), Instituto Nacional de Ciência e Tecnologia (INCT), 05403-900 São Paulo, Brazil
| |
Collapse
|
2
|
Marin-Neto JA, Rassi A, Oliveira GMM, Correia LCL, Ramos Júnior AN, Luquetti AO, Hasslocher-Moreno AM, Sousa ASD, Paola AAVD, Sousa ACS, Ribeiro ALP, Correia Filho D, Souza DDSMD, Cunha-Neto E, Ramires FJA, Bacal F, Nunes MDCP, Martinelli Filho M, Scanavacca MI, Saraiva RM, Oliveira Júnior WAD, Lorga-Filho AM, Guimarães ADJBDA, Braga ALL, Oliveira ASD, Sarabanda AVL, Pinto AYDN, Carmo AALD, Schmidt A, Costa ARD, Ianni BM, Markman Filho B, Rochitte CE, Macêdo CT, Mady C, Chevillard C, Virgens CMBD, Castro CND, Britto CFDPDC, Pisani C, Rassi DDC, Sobral Filho DC, Almeida DRD, Bocchi EA, Mesquita ET, Mendes FDSNS, Gondim FTP, Silva GMSD, Peixoto GDL, Lima GGD, Veloso HH, Moreira HT, Lopes HB, Pinto IMF, Ferreira JMBB, Nunes JPS, Barreto-Filho JAS, Saraiva JFK, Lannes-Vieira J, Oliveira JLM, Armaganijan LV, Martins LC, Sangenis LHC, Barbosa MPT, Almeida-Santos MA, Simões MV, Yasuda MAS, Moreira MDCV, Higuchi MDL, Monteiro MRDCC, Mediano MFF, Lima MM, Oliveira MTD, Romano MMD, Araujo NNSLD, Medeiros PDTJ, Alves RV, Teixeira RA, Pedrosa RC, Aras Junior R, Torres RM, Povoa RMDS, Rassi SG, Alves SMM, Tavares SBDN, Palmeira SL, Silva Júnior TLD, Rodrigues TDR, Madrini Junior V, Brant VMDC, Dutra WO, Dias JCP. SBC Guideline on the Diagnosis and Treatment of Patients with Cardiomyopathy of Chagas Disease - 2023. Arq Bras Cardiol 2023; 120:e20230269. [PMID: 37377258 PMCID: PMC10344417 DOI: 10.36660/abc.20230269] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023] Open
Affiliation(s)
- José Antonio Marin-Neto
- Universidade de São Paulo , Faculdade de Medicina de Ribeirão Preto , Ribeirão Preto , SP - Brasil
| | - Anis Rassi
- Hospital do Coração Anis Rassi , Goiânia , GO - Brasil
| | | | | | | | - Alejandro Ostermayer Luquetti
- Centro de Estudos da Doença de Chagas , Hospital das Clínicas da Universidade Federal de Goiás , Goiânia , GO - Brasil
| | | | - Andréa Silvestre de Sousa
- Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz , Rio de Janeiro , RJ - Brasil
| | | | - Antônio Carlos Sobral Sousa
- Universidade Federal de Sergipe , São Cristóvão , SE - Brasil
- Hospital São Lucas , Rede D`Or São Luiz , Aracaju , SE - Brasil
| | | | | | | | - Edecio Cunha-Neto
- Universidade de São Paulo , Faculdade de Medicina da Universidade, São Paulo , SP - Brasil
| | - Felix Jose Alvarez Ramires
- Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo , São Paulo , SP - Brasil
| | - Fernando Bacal
- Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo , São Paulo , SP - Brasil
| | | | - Martino Martinelli Filho
- Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo , São Paulo , SP - Brasil
| | - Maurício Ibrahim Scanavacca
- Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo , São Paulo , SP - Brasil
| | - Roberto Magalhães Saraiva
- Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz , Rio de Janeiro , RJ - Brasil
| | | | - Adalberto Menezes Lorga-Filho
- Instituto de Moléstias Cardiovasculares , São José do Rio Preto , SP - Brasil
- Hospital de Base de Rio Preto , São José do Rio Preto , SP - Brasil
| | | | | | - Adriana Sarmento de Oliveira
- Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo , São Paulo , SP - Brasil
| | | | - Ana Yecê das Neves Pinto
- Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz , Rio de Janeiro , RJ - Brasil
| | | | - Andre Schmidt
- Universidade de São Paulo , Faculdade de Medicina de Ribeirão Preto , Ribeirão Preto , SP - Brasil
| | - Andréa Rodrigues da Costa
- Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz , Rio de Janeiro , RJ - Brasil
| | - Barbara Maria Ianni
- Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo , São Paulo , SP - Brasil
| | | | - Carlos Eduardo Rochitte
- Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo , São Paulo , SP - Brasil
- Hcor , Associação Beneficente Síria , São Paulo , SP - Brasil
| | | | - Charles Mady
- Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo , São Paulo , SP - Brasil
| | - Christophe Chevillard
- Institut National de la Santé Et de la Recherche Médicale (INSERM), Marselha - França
| | | | | | | | - Cristiano Pisani
- Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo , São Paulo , SP - Brasil
| | | | | | | | - Edimar Alcides Bocchi
- Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo , São Paulo , SP - Brasil
| | - Evandro Tinoco Mesquita
- Hospital Universitário Antônio Pedro da Faculdade Federal Fluminense , Niterói , RJ - Brasil
| | | | | | | | | | | | - Henrique Horta Veloso
- Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz , Rio de Janeiro , RJ - Brasil
| | - Henrique Turin Moreira
- Hospital das Clínicas , Faculdade de Medicina de Ribeirão Preto , Universidade de São Paulo , Ribeirão Preto , SP - Brasil
| | | | | | | | - João Paulo Silva Nunes
- Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo , São Paulo , SP - Brasil
- Fundação Zerbini, Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo , São Paulo , SP - Brasil
| | | | | | | | | | | | - Luiz Cláudio Martins
- Universidade Estadual de Campinas , Faculdade de Ciências Médicas , Campinas , SP - Brasil
| | | | | | | | - Marcos Vinicius Simões
- Universidade de São Paulo , Faculdade de Medicina de Ribeirão Preto , Ribeirão Preto , SP - Brasil
| | | | | | - Maria de Lourdes Higuchi
- Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo , São Paulo , SP - Brasil
| | | | - Mauro Felippe Felix Mediano
- Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz , Rio de Janeiro , RJ - Brasil
- Instituto Nacional de Cardiologia (INC), Rio de Janeiro, RJ - Brasil
| | - Mayara Maia Lima
- Secretaria de Vigilância em Saúde , Ministério da Saúde , Brasília , DF - Brasil
| | | | | | | | | | - Renato Vieira Alves
- Instituto René Rachou , Fundação Oswaldo Cruz , Belo Horizonte , MG - Brasil
| | - Ricardo Alkmim Teixeira
- Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo , São Paulo , SP - Brasil
| | - Roberto Coury Pedrosa
- Hospital Universitário Clementino Fraga Filho , Instituto do Coração Edson Saad - Universidade Federal do Rio de Janeiro , RJ - Brasil
| | | | | | | | | | - Silvia Marinho Martins Alves
- Ambulatório de Doença de Chagas e Insuficiência Cardíaca do Pronto Socorro Cardiológico Universitário da Universidade de Pernambuco (PROCAPE/UPE), Recife , PE - Brasil
| | | | - Swamy Lima Palmeira
- Secretaria de Vigilância em Saúde , Ministério da Saúde , Brasília , DF - Brasil
| | | | | | - Vagner Madrini Junior
- Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo , São Paulo , SP - Brasil
| | | | | | - João Carlos Pinto Dias
- Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz , Rio de Janeiro , RJ - Brasil
| |
Collapse
|
3
|
Watanabe A, Mizoguchi I, Hasegawa H, Katahira Y, Inoue S, Sakamoto E, Furusaka Y, Sekine A, Miyakawa S, Murakami F, Xu M, Yoneto T, Yoshimoto T. A Chaperone-Like Role for EBI3 in Collaboration With Calnexin Under Inflammatory Conditions. Front Immunol 2021; 12:757669. [PMID: 34603342 PMCID: PMC8484754 DOI: 10.3389/fimmu.2021.757669] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/02/2021] [Indexed: 01/31/2023] Open
Abstract
The interleukin-6 (IL-6)/IL-12 family of cytokines plays critical roles in the induction and regulation of innate and adaptive immune responses. Among the various cytokines, only this family has the unique characteristic of being composed of two distinct subunits, α- and β-subunits, which form a heterodimer with subunits that occur in other cytokines as well. Recently, we found a novel intracellular role for one of the α-subunits, Epstein-Barr virus-induced gene 3 (EBI3), in promoting the proper folding of target proteins and augmenting its expression at the protein level by binding to its target protein and a well-characterized lectin chaperone, calnexin, presumably through enhancing chaperone activity. Because calnexin is ubiquitously and constitutively expressed but EBI3 expression is inducible, these results could open an avenue to establish a new paradigm in which EBI3 plays an important role in further increasing the expression of target molecules at the protein level in collaboration with calnexin under inflammatory conditions. This theory well accounts for the heterodimer formation of EBI3 with p28, and probably with p35 and p19 to produce IL-27, IL-35, and IL-39, respectively. In line with this concept, another β-subunit, p40, plays a critical role in the assembly-induced proper folding of p35 and p19 to produce IL-12 and IL-23, respectively. Thus, chaperone-like activities in proper folding and maturation, which allow the secretion of biologically active heterodimeric cytokines, have recently been highlighted. This review summarizes the current understanding of chaperone-like activities of EBI3 to form heterodimers and other associations together with their possible biological implications.
Collapse
Affiliation(s)
- Aruma Watanabe
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Izuru Mizoguchi
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Hideaki Hasegawa
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Yasuhiro Katahira
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Shinya Inoue
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Eri Sakamoto
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Yuma Furusaka
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Ami Sekine
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Satomi Miyakawa
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Fumihiro Murakami
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Mingli Xu
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Toshihiko Yoneto
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Takayuki Yoshimoto
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
4
|
Quintero WL, Moreno EM, Pinto SML, Sanabria SM, Stashenko E, García LT. Immunomodulatory, trypanocide, and antioxidant properties of essential oil fractions of Lippia alba (Verbenaceae). BMC Complement Med Ther 2021; 21:187. [PMID: 34215249 PMCID: PMC8254251 DOI: 10.1186/s12906-021-03347-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/07/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Parasite persistence, exacerbated and sustained immune response, and continuous oxidative stress have been described to contribute to the development of the cardiac manifestations in Chronic Chagas Disease. Nevertheless, there are no efficient therapies to resolve the Trypanosoma cruzi infection and prevent the disease progression. Interestingly, trypanocide, antioxidant, and immunodulatory properties have been reported separately for some major terpenes, as citral (neral plus geranial), limonene, and caryophyllene oxide, presents in essential oils (EO) extracted from two chemotypes (Citral and Carvone) of Lippia alba. The aim of this study was to obtain L. alba essential oil fractions enriched with the aforementioned bioactive terpenes and to evaluate the impact of these therapies on trypanocide, oxidative stress, mitochondrial bioenergetics, genotoxicity, and inflammatory markers on T. cruzi-infected macrophages. METHODS T. cruzi-infected J774A.1 macrophage were treated with limonene-enriched (ACT1) and citral/caryophyllene oxide-enriched (ACT2) essential oils fractions derived from Carvone and Citral-L. alba chemotypes, respectively. RESULTS ACT1 (IC50 = 45 ± 1.7 μg/mL) and ACT2 (IC50 = 80 ± 1.9 μg/mL) exhibit similar trypanocidal effects to Benznidazole (BZN) (IC50 = 48 ± 2.5 μg/mL), against amastigotes. Synergistic antiparasitic activity was observed when ACT1 was combined with BZN (∑FIC = 0.52 ± 0.13 μg/mL) or ACT2 (∑FIC = 0.46 ± 1.7 μg/mL). ACT1 also decreased the oxidative stress, mitochondrial metabolism, and genotoxicity of the therapies. The ACT1 + ACT2 and ACT1 + BZN experimental treatments reduced the pro-inflammatory cytokines (IFN-γ, IL-2, and TNF-α) and increased the anti-inflammatory cytokines (IL-4 and IL-10). CONCLUSION Due to its highly trypanocidal and immunomodulatory properties, ACT1 (whether alone or in combination with BZN or ACT2) represents a promising L. alba essential oil fraction for further studies in drug development towards the Chagas disease control.
Collapse
Affiliation(s)
- Wendy Lorena Quintero
- Infectious Disease Research Program, Universidad de Santander, Bucaramanga, Santander Colombia 680006
| | - Erika Marcela Moreno
- Infectious Disease Research Program, Universidad de Santander, Bucaramanga, Santander Colombia 680006
| | - Sandra Milena Leal Pinto
- Infectious Disease Research Program, Universidad de Santander, Bucaramanga, Santander Colombia 680006
| | | | - Elena Stashenko
- National Research Center for the Agroindustrialization of Aromatic and Medicinal Tropical Species (CENIVAM), Universidad Industrial de Santander, Bucaramanga, Colombia 680002
| | - Liliana Torcoroma García
- Infectious Disease Research Program, Universidad de Santander, Bucaramanga, Santander Colombia 680006
| |
Collapse
|
5
|
Natale MA, Minning T, Albareda MC, Castro Eiro MD, Álvarez MG, Lococo B, Cesar G, Bertocchi G, Elias MJ, Caputo MB, Tarleton RL, Laucella SA. Immune exhaustion in chronic Chagas disease: Pro-inflammatory and immunomodulatory action of IL-27 in vitro. PLoS Negl Trop Dis 2021; 15:e0009473. [PMID: 34061845 PMCID: PMC8195349 DOI: 10.1371/journal.pntd.0009473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 06/11/2021] [Accepted: 05/13/2021] [Indexed: 01/07/2023] Open
Abstract
In chronic Chagas disease, Trypanosoma cruzi-specific T-cell function decreases over time, and alterations in the homeostatic IL-7/IL-7R axis are evident, consistent with a process of immune exhaustion. IL-27 is an important immunoregulatory cytokine that shares T-cell signaling with IL-7 and other cytokines of the IL-12 family and might be involved in the transcriptional regulation of T-cell function. Here, we evaluated the expression and function of IL-27R in antigen-experienced T cells from subjects with chronic Chagas disease and assessed whether in vitro treatment with IL-27 and IL-7 might improve T. cruzi-specific polyfunctional T-cell responses. In vitro exposure of PBMCs to T. cruzi induced a downregulation of IL-27R in CD4+ T cells and an upregulation in CD8+ T cells in subjects without heart disease, while IL-27R expression remained unaltered in subjects with more severe clinical stages. The modulation of IL-27R was associated with functional signaling through STAT3 and STAT5 and induction of the downstream genes TBX21, EOMES and CXCL9 in response to IL-27. In vitro treatment of PBMCs with IL-27 and IL-7 improved monofunctional and polyfunctional Th1 responses, accompanied by the induction of IL-10 and Bcl-2 expression in subjects without heart disease but did not improve those in subjects with cardiomyopathy. Our findings support the process of desensitization of the IL-27/IL-27R pathway along with disease severity and that the pro-inflammatory and immunomodulatory mechanisms of IL-27 might be interconnected.
Collapse
Affiliation(s)
- María Ailén Natale
- Instituto Nacional de Parasitología Dr. Mario Fatala Chaben, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Todd Minning
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, United States of America
| | - María Cecilia Albareda
- Instituto Nacional de Parasitología Dr. Mario Fatala Chaben, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Melisa Daiana Castro Eiro
- Instituto Nacional de Parasitología Dr. Mario Fatala Chaben, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | | | - Bruno Lococo
- Hospital Interzonal General de Agudos “Eva Perón”, San Martín, Argentina
| | - Gonzalo Cesar
- Instituto Nacional de Parasitología Dr. Mario Fatala Chaben, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Graciela Bertocchi
- Hospital Interzonal General de Agudos “Eva Perón”, San Martín, Argentina
| | - María Josefina Elias
- Instituto Nacional de Parasitología Dr. Mario Fatala Chaben, Buenos Aires, Argentina
| | - María Belén Caputo
- Instituto Nacional de Parasitología Dr. Mario Fatala Chaben, Buenos Aires, Argentina
| | - Rick Lee Tarleton
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, United States of America
| | - Susana Adriana Laucella
- Instituto Nacional de Parasitología Dr. Mario Fatala Chaben, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Hospital Interzonal General de Agudos “Eva Perón”, San Martín, Argentina
| |
Collapse
|
6
|
Pérez‐Mazliah D, Ward AI, Lewis MD. Host-parasite dynamics in Chagas disease from systemic to hyper-local scales. Parasite Immunol 2021; 43:e12786. [PMID: 32799361 PMCID: PMC11475410 DOI: 10.1111/pim.12786] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/11/2020] [Accepted: 08/13/2020] [Indexed: 12/14/2022]
Abstract
Trypanosoma cruzi is a remarkably versatile parasite. It can parasitize almost any nucleated cell type and naturally infects hundreds of mammal species across much of the Americas. In humans, it is the cause of Chagas disease, a set of mainly chronic conditions predominantly affecting the heart and gastrointestinal tract, which can progress to become life threatening. Yet around two thirds of infected people are long-term asymptomatic carriers. Clinical outcomes depend on many factors, but the central determinant is the nature of the host-parasite interactions that play out over the years of chronic infection in diverse tissue environments. In this review, we aim to integrate recent developments in the understanding of the spatial and temporal dynamics of T. cruzi infections with established and emerging concepts in host immune responses in the corresponding phases and tissues.
Collapse
Affiliation(s)
- Damián Pérez‐Mazliah
- York Biomedical Research InstituteHull York Medical SchoolUniversity of YorkYorkUK
| | - Alexander I. Ward
- Department of Infection BiologyFaculty of Infectious and Tropical DiseasesLondon School of Hygiene and Tropical MedicineLondonUK
| | - Michael D. Lewis
- Department of Infection BiologyFaculty of Infectious and Tropical DiseasesLondon School of Hygiene and Tropical MedicineLondonUK
| |
Collapse
|
7
|
Frade-Barros AF, Ianni BM, Cabantous S, Pissetti CW, Saba B, Lin-Wang HT, Buck P, Marin-Neto JA, Schmidt A, Dias F, Hirata MH, Sampaio M, Fragata A, Pereira AC, Donadi E, Rodrigues V, Kalil J, Chevillard C, Cunha-Neto E. Polymorphisms in Genes Affecting Interferon-γ Production and Th1 T Cell Differentiation Are Associated With Progression to Chagas Disease Cardiomyopathy. Front Immunol 2020; 11:1386. [PMID: 32733459 PMCID: PMC7358543 DOI: 10.3389/fimmu.2020.01386] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 05/29/2020] [Indexed: 12/17/2022] Open
Abstract
Background: Chagas disease, caused by the protozoan Trypanosoma cruzi, is endemic in Latin America. Thirty percent of infected individuals develop chronic Chagas cardiomyopathy (CCC), an inflammatory dilated cardiomyopathy that is the most important clinical consequence of T. cruzi infection, while the others remain asymptomatic (ASY). IFN-γ and IFN-γ-producing Th1-type T cells are increased in peripheral blood and CCC myocardium as compared to ASY patients, while the Th1-antagonizing cytokine IL-10 is more expressed in ASY patients. Importantly IFN-γ-producing Th1-type T cells are the most frequent cytokine-producing T cell subset in CCC myocardium, while expression of Th1-antagonizing cytokines IL-10 and IL-4 is unaltered. The control of IFN-γ production by Th1-type T cells may be a key event for progression toward CCC. A genetic component to disease progression was suggested by the familial aggregation of cases and the association of gene polymorphisms with CCC development. We here investigate the role of gene polymorphisms (SNPs) in several genes involved in the control of IFN-γ production and Th1 T cell differentiation in CCC development. Methods: We studied a Brazilian population including 315 CCC cases and 118 ASY subjects. We assessed 35 Tag SNPs designed to represent all the genetic information contained in the IL12B, IL10, IFNG, and IL4 genes. Results: We found 2 IL12 SNPs (rs2546893, rs919766) and a trend of association for a IL10 SNP (rs3024496) to be significantly associated with the ASY group. these associations were confirmed by multivariate analysis and allele tests. The rs919766C, 12rs2546893G, and rs3024496C alleles were associated to an increase risk to CCC development. Conclusions: Our data show that novel polymorphisms affecting IL12B and IL10, but not IFNG or IL4 genes play a role in genetic susceptibility to CCC development. This might indicate that the increased Th1 differentiation and IFN-γ production associated with CCC is genetically controlled.
Collapse
Affiliation(s)
- Amanda Farage Frade-Barros
- Heart Institute (InCor), University of São Paulo School of Medicine (FMUSP), São Paulo, Brazil.,Institute for Investigation in Immunology (iii), INCT, São Paulo, Brazil.,Aix-Marseille Université, INSERM, GIMP UMR_S906, Marseille, France.,Division of Clinical Immunology and Allergy, University of São Paulo School of Medicine, São Paulo, Brazil.,Bioengineering Program, Instituto Tecnológico, Universidade Brasil, São Paulo, Brazil
| | - Barbara Maria Ianni
- Heart Institute (InCor), University of São Paulo School of Medicine (FMUSP), São Paulo, Brazil
| | | | - Cristina Wide Pissetti
- Laboratory of Immunology, Universidade Federal Do Triângulo Mineiro (UFTM), Uberaba, Brazil
| | - Bruno Saba
- Laboratório de Investigação Molecular em Cardiologia, Instituto de Cardiologia Dante Pazzanese (IDPC), São Paulo, Brazil
| | - Hui Tzu Lin-Wang
- Laboratório de Investigação Molecular em Cardiologia, Instituto de Cardiologia Dante Pazzanese (IDPC), São Paulo, Brazil
| | - Paula Buck
- Heart Institute (InCor), University of São Paulo School of Medicine (FMUSP), São Paulo, Brazil
| | - José Antonio Marin-Neto
- School of Medicine of Ribeirão Preto (FMRP), University of São Paulo, Ribeirão Preto, Brazil
| | - André Schmidt
- School of Medicine of Ribeirão Preto (FMRP), University of São Paulo, Ribeirão Preto, Brazil
| | - Fabrício Dias
- School of Medicine of Ribeirão Preto (FMRP), University of São Paulo, Ribeirão Preto, Brazil
| | - Mario Hiroyuki Hirata
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Marcelo Sampaio
- Laboratório de Investigação Molecular em Cardiologia, Instituto de Cardiologia Dante Pazzanese (IDPC), São Paulo, Brazil
| | - Abílio Fragata
- Laboratório de Investigação Molecular em Cardiologia, Instituto de Cardiologia Dante Pazzanese (IDPC), São Paulo, Brazil
| | - Alexandre Costa Pereira
- Heart Institute (InCor), University of São Paulo School of Medicine (FMUSP), São Paulo, Brazil
| | - Eduardo Donadi
- School of Medicine of Ribeirão Preto (FMRP), University of São Paulo, Ribeirão Preto, Brazil
| | - Virmondes Rodrigues
- Laboratory of Immunology, Universidade Federal Do Triângulo Mineiro (UFTM), Uberaba, Brazil
| | - Jorge Kalil
- Heart Institute (InCor), University of São Paulo School of Medicine (FMUSP), São Paulo, Brazil.,Institute for Investigation in Immunology (iii), INCT, São Paulo, Brazil.,Bioengineering Program, Instituto Tecnológico, Universidade Brasil, São Paulo, Brazil
| | - Christophe Chevillard
- Aix Marseille Université, INSERM, TAGC Theories and Approaches of Genomic Complexity, UMR_1090, Marseille, France
| | - Edecio Cunha-Neto
- Heart Institute (InCor), University of São Paulo School of Medicine (FMUSP), São Paulo, Brazil.,Institute for Investigation in Immunology (iii), INCT, São Paulo, Brazil.,Division of Clinical Immunology and Allergy, University of São Paulo School of Medicine, São Paulo, Brazil
| |
Collapse
|
8
|
Martins FA, Dos Santos MA, Santos JDG, da Silva AA, Borges BC, da Costa MS, Tavares PCB, Teixeira SC, Brígido RTES, Teixeira TL, Rodrigues CC, Silva NSDL, de Oliveira RC, de Faria LC, Lemes MR, Zanon RG, Tomiosso TC, Machado JR, da Silva MV, Oliveira CJF, da Silva CV. The Recombinant Form of Trypanosoma cruzi P21 Controls Infection by Modulating Host Immune Response. Front Immunol 2020; 11:1010. [PMID: 32655546 PMCID: PMC7325895 DOI: 10.3389/fimmu.2020.01010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 04/28/2020] [Indexed: 12/22/2022] Open
Abstract
Trypanosoma cruzi P21 protein (P21) is a putative secreted and immunomodulatory molecule with potent bioactive properties such as induction of phagocytosis and actin cytoskeleton polymerization. Despite the bioactive properties described so far, the action of P21 on parasite replication in muscle cell lineage or T. cruzi parasitism during acute experimental infection is unclear. We observed that recombinant P21 (rP21) decreased the multiplication of T. cruzi in C2C12 myoblasts, phenomenon associated with greater actin polymerization and IFN-γ and IL-4 higher expression. During experimental infection, lower cardiac nests, inflammatory infiltrate and fibrosis were observed in mice infected and treated with rP21. These results were correlated with large expression of IFN-γ counterbalanced by high levels of IL-10, which was consistent with the lower cardiac tissue injury found in these mice. We have also observed that upon stress, such as that induced by the presence of the IFN-γ cytokine, T. cruzi produced more P21. The effect of P21 in controlling the replication of T. cruzi, may indicate an evolutionary mechanism of survival developed by the parasite. Thus, when subjected to different stress conditions, the protozoan produces more P21, which induces T. cruzi latency in the host organism, enabling the protozoan to evade the host's immune system.
Collapse
Affiliation(s)
- Flávia Alves Martins
- Laboratório de Tripanosomatídeos, Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Marlus Alves Dos Santos
- Laboratório de Tripanosomatídeos, Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Júlia de Gouveia Santos
- Laboratório de Tripanosomatídeos, Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Aline Alves da Silva
- Laboratório de Tripanosomatídeos, Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Bruna Cristina Borges
- Laboratório de Tripanosomatídeos, Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Mylla Spirandelli da Costa
- Laboratório de Tripanosomatídeos, Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Paula Cristina Brígido Tavares
- Laboratório de Tripanosomatídeos, Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Samuel Cota Teixeira
- Laboratório de Tripanosomatídeos, Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Rebecca Tavares E Silva Brígido
- Laboratório de Tripanosomatídeos, Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Thaise Lara Teixeira
- Laboratório de Tripanosomatídeos, Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Brazil.,Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Cassiano Costa Rodrigues
- Laboratório de Tripanosomatídeos, Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | | | - Rayane Cristina de Oliveira
- Laboratório de Tripanosomatídeos, Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Laura Caroline de Faria
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal do Triângulo Mineiro, Uberaba, Brazil
| | - Marcela Rezende Lemes
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal do Triângulo Mineiro, Uberaba, Brazil
| | - Renata Graciele Zanon
- Departamento de Anatomia Humana, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Tatiana Carla Tomiosso
- Setor de Histologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Juliana Reis Machado
- Departamento de Patologia, Genética e Evolução, Universidade Federal do Triangulo Mineiro, Uberaba, Brazil
| | - Marcos Vinicius da Silva
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal do Triângulo Mineiro, Uberaba, Brazil
| | - Carlo José Freire Oliveira
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal do Triângulo Mineiro, Uberaba, Brazil
| | - Claudio Vieira da Silva
- Laboratório de Tripanosomatídeos, Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Brazil
| |
Collapse
|
9
|
Cassatella MA, Gardiman E, Arruda-Silva F, Bianchetto-Aguilera F, Gasperini S, Bugatti M, Vermi W, Larousserie F, Devergne O, Tamassia N. Human neutrophils activated by TLR8 agonists, with or without IFNγ, synthesize and release EBI3, but not IL-12, IL-27, IL-35, or IL-39. J Leukoc Biol 2020; 108:1515-1526. [PMID: 32480433 DOI: 10.1002/jlb.3ma0520-054r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 05/08/2020] [Indexed: 12/14/2022] Open
Abstract
The IL-12 family of cytokines plays crucial functions in innate and adaptive immunity. These cytokines include heterodimers sharing distinct α (IL-12A, IL-23A, and IL-27A) with two β (IL-12B and Epstein-Barr virus induced gene 3 [EBI3]) chains, respectively, IL-12 (IL-12B plus IL-12A) and IL-23 (IL-12B plus IL-23A) sharing IL-12B, IL-27 (EBI3 plus IL-27A), IL-35 (EBI3 plus IL-12A), and IL-39 (EBI3 plus IL-23A) sharing EBI3. In this context, we have recently reported that highly pure neutrophils incubated with TLR8 agonists produce functional IL-23. Previously, we showed that neutrophils incubated with LPS plus IFNγ for 20 h produce IL-12. Herein, we investigated whether highly pure, TLR8-activated, neutrophils produce EBI3, and in turn IL-27, IL-35, and IL-39, the IL-12 members containing it. We report that neutrophils incubated with TLR8 ligands, TNFα and, to a lesser extent, LPS, produce and release remarkable amounts of EBI3, but not IL-27A, consequently excluding the possibility for an IL-27 production. We also report a series of unsuccessful experiments performed to investigate whether neutrophil-derived EBI3 associates with IL-23A to form IL-39. Furthermore, we show that neutrophils incubated with IFNγ in combination with either TLR8 or TLR4 ligands express/produce neither IL-12, nor IL-35, due to the inability of IFNγ, contrary to previous findings, to activate IL12A transcription. Even IL-27 was undetectable in supernatants harvested from IFNγ plus R848-treated neutrophils, although they were found to accumulate IL27A transcripts. Finally, by immunohistochemistry experiments, EBI3-positive neutrophils were found in discrete pathologies only, including diverticulitis, cholecystitis, Gorham disease, and Bartonella Henselae infection, implying a specific role of neutrophil-derived EBI3 in vivo.
Collapse
Affiliation(s)
- Marco A Cassatella
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy
| | - Elisa Gardiman
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy
| | - Fabio Arruda-Silva
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy
| | | | - Sara Gasperini
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy
| | - Mattia Bugatti
- Department of Molecular and Translational Medicine, Section of Pathology, University of Brescia, Brescia, Italy
| | - William Vermi
- Department of Molecular and Translational Medicine, Section of Pathology, University of Brescia, Brescia, Italy
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Frederique Larousserie
- Sorbonne Université, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses, Paris, France
- Département de Pathologie, Hôpital Cochin, AP-HP, Université de Paris, Paris, France
| | - Odile Devergne
- Sorbonne Université, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses, Paris, France
| | - Nicola Tamassia
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy
| |
Collapse
|
10
|
Rios LE, Vázquez-Chagoyán JC, Pacheco AO, Zago MP, Garg NJ. Immunity and vaccine development efforts against Trypanosoma cruzi. Acta Trop 2019; 200:105168. [PMID: 31513763 PMCID: PMC7409534 DOI: 10.1016/j.actatropica.2019.105168] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 08/27/2019] [Accepted: 09/07/2019] [Indexed: 12/28/2022]
Abstract
Trypanosoma cruzi (T. cruzi) is the causative agent for Chagas disease (CD). There is a critical lack of methods for prevention of infection or treatment of acute infection and chronic disease. Studies in experimental models have suggested that the protective immunity against T. cruzi infection requires the elicitation of Th1 cytokines, lytic antibodies and the concerted activities of macrophages, T helper cells, and cytotoxic T lymphocytes (CTLs). In this review, we summarize the research efforts in vaccine development to date and the challenges faced in achieving an efficient prophylactic or therapeutic vaccine against human CD.
Collapse
Affiliation(s)
- Lizette E Rios
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555-1070, USA
| | - Juan Carlos Vázquez-Chagoyán
- Centro de Investigación y Estudios Avanzados en Salud Animal, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Toluca, México
| | - Antonio Ortega Pacheco
- Departamento de Salud Animal y Medicina Preventiva, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Yucatán, Mérida, Yucatán, México
| | - M Paola Zago
- Instituto de Patología Experimental, Universidad Nacional de Salta - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Salta, Argentina
| | - Nisha J Garg
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555-1070, USA; Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX.
| |
Collapse
|
11
|
Acosta Rodríguez EV, Araujo Furlan CL, Fiocca Vernengo F, Montes CL, Gruppi A. Understanding CD8 + T Cell Immunity to Trypanosoma cruzi and How to Improve It. Trends Parasitol 2019; 35:899-917. [PMID: 31607632 PMCID: PMC6815727 DOI: 10.1016/j.pt.2019.08.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/24/2019] [Accepted: 08/26/2019] [Indexed: 12/30/2022]
Abstract
The protozoan Trypanosoma cruzi is the causative agent of Chagas' disease, endemic in Latin America but present worldwide. Research efforts have focused on the examination of immune mechanisms that mediate host protection as well as immunopathology during this parasitic infection. The study of CD8+ T cell immunity emerges as a key aspect given the critical importance of parasite-specific CD8+ T cells for host resistance throughout the infection. In recent years, new research has shed light on novel pathways that modulate the induction, maintenance, and regulation of CD8+ T cell responses to T. cruzi. This new knowledge is setting the ground for future vaccines and/or immunotherapies. Herein, we critically review and analyze the latest results published in the field.
Collapse
Affiliation(s)
- Eva V Acosta Rodríguez
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI)-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA Córdoba, Argentina.
| | - Cintia L Araujo Furlan
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI)-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA Córdoba, Argentina
| | - Facundo Fiocca Vernengo
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI)-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA Córdoba, Argentina
| | - Carolina L Montes
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI)-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA Córdoba, Argentina
| | - Adriana Gruppi
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI)-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA Córdoba, Argentina
| |
Collapse
|
12
|
Subverting bradykinin-evoked inflammation by co-opting the contact system: lessons from survival strategies of Trypanosoma cruzi. Curr Opin Hematol 2019; 25:347-357. [PMID: 30028741 DOI: 10.1097/moh.0000000000000444] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
PURPOSE OF REVIEW During Chagas disease, Trypanosoma cruzi alternates between intracellular and extracellular developmental forms. After presenting an overview about the roles of the contact system in immunity, I will review experimental studies showing that activation of the kallikrein-kinin system (KKS) translates into mutual benefits to the host/parasite relationship. RECENT FINDINGS T. cruzi trypomastigotes initiate inflammation by activating tissue-resident innate sentinel cells via the TLR2/CXCR2 pathway. Following neutrophil-evoked microvascular leakage, the parasite's major cysteine protease (cruzipain) cleaves plasma-borne kininogens and complement C5. Tightly regulated by angiotensin-converting enzyme (ACE), kinins and C5a in turn further propagate inflammation via iterative cycles of mast cell degranulation, contact system activation, bradykinin release and activation of endothelial bradykinin B2 receptors (B2R). Recently, studies in the intracardiac model of infection revealed a dichotomic role for bradykinin and endothelin-1: generated upon contact activation (mast cell/KKS pathway), these pro-oedematogenic peptides reciprocally stimulate trypomastigote invasion of heart cells that naturally overexpress B2R and endothelin receptors (ETaR/ETbR). SUMMARY Studies focusing on the immunopathogenesis of Chagas disease revealed that the contact system plays a dual role in host/parasite balance: T. cruzi co-opts bradykinin-induced plasma leakage as a strategy to increment heart parasitism and increase immune resistance by upregulating type-1 effector T-cell production in secondary lymphoid tissues.
Collapse
|
13
|
Ma W, Zhang J, Guo L, Wang Y, Lu S, Wang Z, Lu Q, Wei F. Suppressed androgen receptor expression promotes M2 macrophage reprogramming through the STAT3/SOCS3 pathway. EXCLI JOURNAL 2019; 18:21-29. [PMID: 30956636 PMCID: PMC6449667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 12/12/2018] [Indexed: 11/05/2022]
Abstract
Macrophages are important mediators of inflammatory cardiovascular diseases, and various macrophage phenotypes exert opposite effects during inflammation. In our previous study, we proved that suppressed androgen receptor (AR) alleviated inflammation during experimental autoimmune myocarditis (EAM). As anti-inflammatory cells, whether M2 macrophages are involved in this process remains unclear. Here, we showed that anti-inflammatory cytokines and M2 macrophages were elevated when AR was suppressed during EAM. In IL-4 stimulation-induced M2 macrophages, impaired AR with ASC-J9 increased the expression of M2 macrophage-related factors. Moreover, suppressed AR expression resulted in macrophage M2 polarization by reducing SOCS3 production and enhancing STAT3 activation. Taken together, our data suggest that AR plays a critical role in macrophage polarization and suppressed redundant AR expression promotes anti-inflammatory M2 macrophages reprogramming. This study suggests a potential therapeutic agent for inflammatory cardiomyopathy through the use of ASC-J9.
Collapse
Affiliation(s)
- Wenhan Ma
- Department of Internal Cardiology, the Second Hospital of Shandong University, Jinan, China
| | - Jingbo Zhang
- Department of Internal Cardiology, the Second Hospital of Shandong University, Jinan, China
| | - Linlin Guo
- Department of Internal Cardiology, the Second Hospital of Shandong University, Jinan, China
| | - Ya Wang
- Laboratory of Cardiovascular Immunology, Institute of Cardiology, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Shuai Lu
- Laboratory of Cardiovascular Immunology, Institute of Cardiology, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - ZhaoHui Wang
- Laboratory of Cardiovascular Immunology, Institute of Cardiology, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Qinghua Lu
- Department of Internal Cardiology, the Second Hospital of Shandong University, Jinan, China
| | - Fengtao Wei
- Department of Internal Cardiology, the Second Hospital of Shandong University, Jinan, China,*To whom correspondence should be addressed: Fengtao Wei, Beiyuan Avenue 247#, Department of Internal Cardiology, the Second Hospital of Shandong University, Jinan, China; Tel: +86-85875464, Fax:+86-85875464, E-mail:
| |
Collapse
|
14
|
Chevillard C, Nunes JPS, Frade AF, Almeida RR, Pandey RP, Nascimento MS, Kalil J, Cunha-Neto E. Disease Tolerance and Pathogen Resistance Genes May Underlie Trypanosoma cruzi Persistence and Differential Progression to Chagas Disease Cardiomyopathy. Front Immunol 2018; 9:2791. [PMID: 30559742 PMCID: PMC6286977 DOI: 10.3389/fimmu.2018.02791] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 11/13/2018] [Indexed: 01/01/2023] Open
Abstract
Chagas disease is caused by infection with the protozoan Trypanosoma cruzi and affects over 8 million people worldwide. In spite of a powerful innate and adaptive immune response in acute infection, the parasite evades eradication, leading to a chronic persistent infection with low parasitism. Chronically infected subjects display differential patterns of disease progression. While 30% develop chronic Chagas disease cardiomyopathy (CCC)—a severe inflammatory dilated cardiomyopathy—decades after infection, 60% of the patients remain disease-free, in the asymptomatic/indeterminate (ASY) form, and 10% develop gastrointestinal disease. Infection of genetically deficient mice provided a map of genes relevant for resistance to T. cruzi infection, leading to the identification of multiple genes linked to survival to infection. These include pathogen resistance genes (PRG) needed for intracellular parasite destruction, and genes involved in disease tolerance (protection against tissue damage and acute phase death—DTG). All identified DTGs were found to directly or indirectly inhibit IFN-γ production or Th1 differentiation. We hypothesize that the absolute need for DTG to control potentially lethal IFN-γ PRG activity leads to T. cruzi persistence and establishment of chronic infection. IFN-γ production is higher in CCC than ASY patients, and is the most highly expressed cytokine in CCC hearts. Key DTGs that downmodulate IFN-γ, like IL-10, and Ebi3/IL27p28, are higher in ASY patients. Polymorphisms in PRG and DTG are associated with differential disease progression. We thus hypothesize that ASY patients are disease tolerant, while an imbalance of DTG and IFN-γ PRG activity leads to the inflammatory heart damage of CCC.
Collapse
Affiliation(s)
| | - João Paulo Silva Nunes
- Laboratorio de Imunologia, Instituto do Coracao, Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, São Paulo, Brazil.,Disciplina de Imunologia Clínica e Alergia, Faculdade de Medicina da Universidade de Sao Paulo, São Paulo, Brazil.,Institute for Investigation in Immunology (iii), INCT, São Paulo, Brazil
| | - Amanda Farage Frade
- Laboratorio de Imunologia, Instituto do Coracao, Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, São Paulo, Brazil.,Institute for Investigation in Immunology (iii), INCT, São Paulo, Brazil.,Department of Bioengineering, Brazil University, São Paulo, Brazil
| | - Rafael Ribeiro Almeida
- Laboratorio de Imunologia, Instituto do Coracao, Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, São Paulo, Brazil.,Disciplina de Imunologia Clínica e Alergia, Faculdade de Medicina da Universidade de Sao Paulo, São Paulo, Brazil.,Institute for Investigation in Immunology (iii), INCT, São Paulo, Brazil
| | - Ramendra Pati Pandey
- Laboratorio de Imunologia, Instituto do Coracao, Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, São Paulo, Brazil.,Disciplina de Imunologia Clínica e Alergia, Faculdade de Medicina da Universidade de Sao Paulo, São Paulo, Brazil.,Institute for Investigation in Immunology (iii), INCT, São Paulo, Brazil
| | - Marilda Savóia Nascimento
- Laboratorio de Imunologia, Instituto do Coracao, Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, São Paulo, Brazil.,Disciplina de Imunologia Clínica e Alergia, Faculdade de Medicina da Universidade de Sao Paulo, São Paulo, Brazil.,Institute for Investigation in Immunology (iii), INCT, São Paulo, Brazil
| | - Jorge Kalil
- Laboratorio de Imunologia, Instituto do Coracao, Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, São Paulo, Brazil.,Disciplina de Imunologia Clínica e Alergia, Faculdade de Medicina da Universidade de Sao Paulo, São Paulo, Brazil.,Institute for Investigation in Immunology (iii), INCT, São Paulo, Brazil
| | - Edecio Cunha-Neto
- Laboratorio de Imunologia, Instituto do Coracao, Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, São Paulo, Brazil.,Disciplina de Imunologia Clínica e Alergia, Faculdade de Medicina da Universidade de Sao Paulo, São Paulo, Brazil.,Institute for Investigation in Immunology (iii), INCT, São Paulo, Brazil
| |
Collapse
|
15
|
Acevedo GR, Girard MC, Gómez KA. The Unsolved Jigsaw Puzzle of the Immune Response in Chagas Disease. Front Immunol 2018; 9:1929. [PMID: 30197647 PMCID: PMC6117404 DOI: 10.3389/fimmu.2018.01929] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 08/06/2018] [Indexed: 12/26/2022] Open
Abstract
Trypanosoma cruzi interacts with the different arms of the innate and adaptive host's immune response in a very complex and flowery manner. The history of host-parasite co-evolution has provided this protozoan with means of resisting, escaping or subverting the mechanisms of immunity and establishing a chronic infection. Despite many decades of research on the subject, the infection remains incurable, and the factors that steer chronic Chagas disease from an asymptomatic state to clinical onset are still unclear. As the relationship between T. cruzi and the host immune system is intricate, so is the amount and diversity of scientific knowledge on the matter. Many of the mechanisms of immunity are fairly well understood, but unveiling the factors that lead each of these to success or failure, within the coordinated response as a whole, requires further research. The intention behind this Review is to compile the available information on the different aspects of the immune response, with an emphasis on those phenomena that have been studied and confirmed in the human host. For ease of comprehension, it has been subdivided in sections that cover the main humoral and cell-mediated components involved therein. However, we also intend to underline that these elements are not independent, but function intimately and concertedly. Here, we summarize years of investigation carried out to unravel the puzzling interplay between the host and the parasite.
Collapse
Affiliation(s)
| | | | - Karina A. Gómez
- Laboratorio de Inmunología de las Infecciones por Tripanosomátidos, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
16
|
Regulatory Role of CD4 + T Cells in Myocarditis. J Immunol Res 2018; 2018:4396351. [PMID: 30035131 PMCID: PMC6032977 DOI: 10.1155/2018/4396351] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 05/21/2018] [Accepted: 05/29/2018] [Indexed: 12/13/2022] Open
Abstract
Myocarditis is an important cause of heart failure in young patients. Autoreactive, most often, infection-triggered CD4+ T cells were confirmed to be critical for myocarditis induction. Due to a defect in clonal deletion of heart-reactive CD4+ T cells in the thymus of mice and humans, significant numbers of heart-specific autoreactive CD4+ T cells circulate in the blood. Normally, regulatory T cells maintain peripheral tolerance and prevent spontaneous myocarditis development. In the presence of tissue damage and innate immune activation, however, activated self-antigen-loaded dendritic cells promote CD4+ effector T cell expansion and myocarditis. So far, a direct pathogenic role has been described for both activated Th17 and Th1 effector CD4+ T cell subsets, though Th1 effector T cell-derived interferon-gamma was shown to limit myocarditis severity and prevent transition to inflammatory dilated cardiomyopathy. Interestingly, recent observations point out that various CD4+ T cell subsets demonstrate high plasticity in maintaining immune homeostasis and modulating disease phenotypes in myocarditis. These subsets include Th1 and Th17 effector cells and regulatory T cells, despite the fact that there are still sparse and controversial data on the specific role of FOXP3-expressing Treg in myocarditis. Understanding the specific roles of these T cell populations at different stages of the disease progression might provide a key for the development of successful therapeutic strategies.
Collapse
|
17
|
Fresno M, Gironès N. Regulatory Lymphoid and Myeloid Cells Determine the Cardiac Immunopathogenesis of Trypanosoma cruzi Infection. Front Microbiol 2018; 9:351. [PMID: 29545782 PMCID: PMC5838393 DOI: 10.3389/fmicb.2018.00351] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 02/14/2018] [Indexed: 01/19/2023] Open
Abstract
Chagas disease is a multisystemic disorder caused by the protozoan parasite Trypanosoma cruzi, which affects ~8 million people in Latin America, killing 7,000 people annually. Chagas disease is one of the main causes of death in the endemic area and the leading cause of infectious myocarditis in the world. T. cruzi infection induces two phases, acute and chronic, where the infection is initially asymptomatic and the majority of patients will remain clinically indeterminate for life. However, over a period of 10–30 years, ~30% of infected individuals will develop irreversible, potentially fatal cardiac syndromes (chronic chagasic cardiomyopathy [CCC]), and/or dilatation of the gastro-intestinal tract (megacolon or megaesophagus). Myocarditis is the most serious and frequent manifestation of chronic Chagas heart disease and appears in about 30% of infected individuals several years after infection occurs. Myocarditis is characterized by a mononuclear cell infiltrate that includes different types of myeloid and lymphoid cells and it can occur also in the acute phase. T. cruzi infects and replicates in macrophages and cardiomyocytes as well as in other nucleated cells. The pathogenesis of the chronic phase is thought to be dependent on an immune-inflammatory reaction to a low-grade replicative infection. It is known that cytokines produced by type 1 helper CD4+ T cells are able to control infection. However, the role that infiltrating lymphoid and myeloid cells may play in experimental and natural Chagas disease pathogenesis has not been completely elucidated, and several reports indicate that it depends on the mouse genetic background and parasite strain and/or inoculum. Here, we review the role that T cell CD4+ subsets, myeloid subclasses including myeloid-derived suppressor cells may play in the immunopathogenesis of Chagas disease with special focus on myocarditis, by comparing results obtained with different experimental animal models.
Collapse
Affiliation(s)
- Manuel Fresno
- Centro de Biología Molecular Severo Ochoa (CSIC), Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa, Madrid, Spain
| | - Núria Gironès
- Centro de Biología Molecular Severo Ochoa (CSIC), Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa, Madrid, Spain
| |
Collapse
|