1
|
Avina SL, Pawar S, Rivera A, Xue C. Will the Real Immunogens Please Stand Up: Exploiting the Immunogenic Potential of Cryptococcal Cell Antigens in Fungal Vaccine Development. J Fungi (Basel) 2024; 10:840. [PMID: 39728336 DOI: 10.3390/jof10120840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/19/2024] [Accepted: 11/30/2024] [Indexed: 12/28/2024] Open
Abstract
Cryptococcus neoformans is an opportunistic fungal pathogen that is a continuous global health concern, especially for immunocompromised populations. The World Health Organization recognized C. neoformans as one of four critical fungal pathogens, thus emphasizing the need for increased research efforts and clinical resource expansion. Currently, there are no fungal vaccines available for clinical use. Exciting new findings in cryptococcal vaccine development have identified whole cell-based and subunit-based vaccinations to help mitigate health risks and make commercialization attainable. Importantly, recent work has focused on how different cryptococcal cell-wall antigens modified in these vaccine candidates allow us to manipulate their immunogenicity to produce a desired long-term protective anti-fungal immune response. In this review, we discuss the different cryptococcal cell immunogens, namely the polysaccharide capsule, glucans, chitin/chitosan, mannoproteins, and extracellular vesicles, and their role in novel cryptococcal vaccination approaches. Additionally, we examine the immunological mechanisms responsible for protection in these vaccine candidates and the similar host response-stimulation pathways induced through different immunogen exposure.
Collapse
Affiliation(s)
- Samantha L Avina
- Graduate School of Biomedical Sciences, Rutgers University, Newark, NJ 07103, USA
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| | - Siddhi Pawar
- Graduate School of Biomedical Sciences, Rutgers University, Newark, NJ 07103, USA
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| | - Amariliz Rivera
- Graduate School of Biomedical Sciences, Rutgers University, Newark, NJ 07103, USA
- Department of Pediatrics and Center for Immunity and Inflammation, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| | - Chaoyang Xue
- Graduate School of Biomedical Sciences, Rutgers University, Newark, NJ 07103, USA
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| |
Collapse
|
2
|
Gong X, Wani MY, Al-Bogami AS, Ahmad A, Robinson K, Khan A. The Road Ahead: Advancing Antifungal Vaccines and Addressing Fungal Infections in the Post-COVID World. ACS Infect Dis 2024; 10:3475-3495. [PMID: 39255073 DOI: 10.1021/acsinfecdis.4c00245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
In impoverished nations, the COVID-19 pandemic has led to a widespread occurrence of deadly fungal diseases like mucormycosis. The limited availability of effective antifungal treatments and the emergence of drug-resistant fungal strains further exacerbate the situation. Factors such as systemic steroid use, intravenous drug misuse, and overutilization of broad-spectrum antimicrobials contribute to the prevalence of hospital-acquired infections caused by drug-resistant fungi. Fungal infections exploit compromised immune status and employ intricate mechanisms to evade immune surveillance. The immune response involves the innate and adaptive immune systems, leading to phagocytic and complement-mediated elimination of fungi. However, resistance to antifungals poses a challenge, highlighting the importance of antifungal prophylaxis and therapeutic vaccination. Understanding the host-fungal immunological interactions and developing vaccines are vital in combating fungal infections. Further research is needed to address the high mortality and morbidity associated with multidrug-resistant fungal pathogens and to develop innovative treatment drugs and vaccines. This review focuses on the global epidemiological burden of fungal infections, host-fungal immunological interactions, recent advancements in vaccine development and the road ahead.
Collapse
Affiliation(s)
- Xiaolong Gong
- Clinical Microbiology and Infectious Diseases, School of Pathology, Health Sciences, University of the Witwatersrand, Johannesburg, 2193, South Africa
| | - Mohmmad Younus Wani
- Department of Chemistry, College of Science, University of Jeddah, 21589, Jeddah, Saudi Arabia
| | - Abdullah Saad Al-Bogami
- Department of Chemistry, College of Science, University of Jeddah, 21589, Jeddah, Saudi Arabia
| | - Aijaz Ahmad
- Clinical Microbiology and Infectious Diseases, School of Pathology, Health Sciences, University of the Witwatersrand, Johannesburg, 2193, South Africa
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania 15213, United States
| | - Keven Robinson
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania 15213, United States
| | - Amber Khan
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
3
|
Specht CA, Wang R, Oliveira LVN, Hester MM, Gomez C, Mou Z, Carlson D, Lee CK, Hole CR, Lam WC, Upadhya R, Lodge JK, Levitz SM. Immunological correlates of protection mediated by a whole organism, Cryptococcus neoformans, vaccine deficient in chitosan. mBio 2024; 15:e0174624. [PMID: 38980038 PMCID: PMC11323574 DOI: 10.1128/mbio.01746-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 06/17/2024] [Indexed: 07/10/2024] Open
Abstract
The global burden of infections due to the pathogenic fungus Cryptococcus is substantial in persons with low CD4+ T-cell counts. Previously, we deleted three chitin deacetylase genes from Cryptococcus neoformans to create a chitosan-deficient, avirulent strain, designated as cda1∆2∆3∆, which, when used as a vaccine, protected mice from challenge with virulent C. neoformans strain KN99. Here, we explored the immunological basis for protection. Vaccine-mediated protection was maintained in mice lacking B cells or CD8+ T cells. In contrast, protection was lost in mice lacking α/β T cells or CD4+ T cells. Moreover, CD4+ T cells from vaccinated mice conferred protection upon adoptive transfer to naive mice. Importantly, while monoclonal antibody-mediated depletion of CD4+ T cells just prior to vaccination resulted in complete loss of protection, significant protection was retained in mice depleted of CD4+ T cells after vaccination but prior to challenge. Vaccine-mediated protection was lost in mice genetically deficient in interferon-γ (IFNγ), tumor necrosis factor alpha (TNFα), or interleukin (IL)-23p19. A robust influx of leukocytes and IFNγ- and TNFα-expressing CD4+ T cells was seen in the lungs of vaccinated and challenged mice. Finally, a higher level of IFNγ production by lung cells stimulated ex vivo correlated with lower fungal burden in the lungs. Thus, while B cells and CD8+ T cells are dispensable, IFNγ and CD4+ T cells have overlapping roles in generating protective immunity prior to cda1∆2∆3∆ vaccination. However, once vaccinated, protection becomes less dependent on CD4+ T cells, suggesting a strategy for vaccinating HIV+ persons prior to loss of CD4+ T cells. IMPORTANCE The fungus Cryptococcus neoformans is responsible for >100,000 deaths annually, mostly in persons with impaired CD4+ T-cell function such as AIDS. There are no approved human vaccines. We previously created a genetically engineered avirulent strain of C. neoformans, designated as cda1∆2∆3∆. When used as a vaccine, cda1∆2∆3∆ protects mice against a subsequent challenge with a virulent C. neoformans strain. Here, we defined components of the immune system responsible for vaccine-mediated protection. We found that while B cells and CD8+ T cells were dispensible, protection was lost in mice genetically deficient in CD4+ T cells and the cytokines IFNγ, TNFα, or IL-23. A robust influx of cytokine-producing CD4+ T cells was seen in the lungs of vaccinated mice following infection. Importantly, protection was retained in mice depleted of CD4+ T cells following vaccination, suggesting a strategy to protect persons who are at risk of future CD4+ T-cell dysfunction.
Collapse
Affiliation(s)
- Charles A. Specht
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Ruiying Wang
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Lorena V. N. Oliveira
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Maureen M. Hester
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Christina Gomez
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Zhongming Mou
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Diana Carlson
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Chrono K. Lee
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Camaron R. Hole
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Woei C. Lam
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Rajendra Upadhya
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jennifer K. Lodge
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Stuart M. Levitz
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
4
|
Ding M, Nielsen K. Inbred Mouse Models in Cryptococcus neoformans Research. J Fungi (Basel) 2024; 10:426. [PMID: 38921412 PMCID: PMC11204852 DOI: 10.3390/jof10060426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/01/2024] [Accepted: 06/14/2024] [Indexed: 06/27/2024] Open
Abstract
Animal models are frequently used as surrogates to understand human disease. In the fungal pathogen Cryptococcus species complex, several variations of a mouse model of disease were developed that recapitulate different aspects of human disease. These mouse models have been implemented using various inbred and outbred mouse backgrounds, many of which have genetic differences that can influence host response and disease outcome. In this review, we will discuss the most commonly used inbred mouse backgrounds in C. neoformans infection models.
Collapse
Affiliation(s)
| | - Kirsten Nielsen
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
5
|
Hester MM, Carlson D, Lodge JK, Levitz SM, Specht CA. Immune evasion by Cryptococcus gattii in vaccinated mice coinfected with C. neoformans. Front Immunol 2024; 15:1356651. [PMID: 38469300 PMCID: PMC10925662 DOI: 10.3389/fimmu.2024.1356651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/05/2024] [Indexed: 03/13/2024] Open
Abstract
Cryptococcus neoformans and C. gattii, the etiologic agents of cryptococcosis, cause over 100,000 deaths worldwide every year, yet no cryptococcal vaccine has progressed to clinical trials. In preclinical studies, mice vaccinated with an attenuated strain of C. neoformans deleted of three cryptococcal chitin deacetylases (Cn-cda1Δ2Δ3Δ) were protected against a lethal challenge with C. neoformans strain KN99. While Cn-cda1Δ2Δ3Δ extended the survival of mice infected with C. gattii strain R265 compared to unvaccinated groups, we were unable to demonstrate fungal clearance as robust as that seen following KN99 challenge. In stark contrast to vaccinated mice challenged with KN99, we also found that R265-challenged mice failed to induce the production of protection-associated cytokines and chemokines in the lungs. To investigate deficiencies in the vaccine response to R265 infection, we developed a KN99-R265 coinfection model. In unvaccinated mice, the strains behaved in a manner which mirrored single infections, wherein only KN99 disseminated to the brain and spleen. We expanded the coinfection model to Cn-cda1Δ2Δ3Δ-vaccinated mice. Fungal burden, cytokine production, and immune cell infiltration in the lungs of vaccinated, coinfected mice were indicative of immune evasion by C. gattii R265 as the presence of R265 neither compromised the immunophenotype established in response to KN99 nor inhibited clearance of KN99. Collectively, these data indicate that R265 does not dampen a protective vaccine response, but rather suggest that R265 remains largely undetected by the immune system.
Collapse
Affiliation(s)
- Maureen M. Hester
- Department of Medicine, The University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Diana Carlson
- Department of Medicine, The University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Jennifer K. Lodge
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, United States
| | - Stuart M. Levitz
- Department of Medicine, The University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Charles A. Specht
- Department of Medicine, The University of Massachusetts Chan Medical School, Worcester, MA, United States
| |
Collapse
|
6
|
Abstract
The respiratory tree maintains sterilizing immunity against human fungal pathogens. Humans inhale ubiquitous filamentous molds and geographically restricted dimorphic fungal pathogens that form small airborne conidia. In addition, pathogenic yeasts, exemplified by encapsulated Cryptococcus species, and Pneumocystis pose significant fungal threats to the lung. Classically, fungal pneumonia occurs in immune compromised individuals, specifically in patients with HIV/AIDS, in patients with hematologic malignancies, in organ transplant recipients, and in patients treated with corticosteroids and targeted biologics that impair fungal immune surveillance in the lung. The emergence of fungal co-infections during severe influenza and COVID-19 underscores the impairment of fungus-specific host defense pathways in the lung by respiratory viruses and by medical therapies to treat viral infections. Beyond life-threatening invasive syndromes, fungal antigen exposure can exacerbate allergenic disease in the lung. In this review, we discuss emerging principles of lung-specific antifungal immunity, integrate the contributions and cooperation of lung epithelial, innate immune, and adaptive immune cells to mucosal barrier immunity, and highlight the pathogenesis of fungal-associated allergenic disease. Improved understanding of fungus-specific immunity in the respiratory tree has paved the way to develop improved diagnostic, pre-emptive, therapeutic, and vaccine approaches for fungal diseases of the lung.
Collapse
Affiliation(s)
- Lena J Heung
- Division of Infectious Diseases, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Research Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Darin L Wiesner
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
| | - Keyi Wang
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
| | - Amariliz Rivera
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
| | - Tobias M Hohl
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
7
|
Hester MM, Oliveira LVN, Wang R, Mou Z, Lourenco D, Ostroff GR, Specht CA, Levitz SM. Cross-reactivity between vaccine antigens from the chitin deacetylase protein family improves survival in a mouse model of cryptococcosis. Front Immunol 2022; 13:1015586. [PMID: 36248898 PMCID: PMC9554598 DOI: 10.3389/fimmu.2022.1015586] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 08/31/2022] [Indexed: 12/15/2022] Open
Abstract
Meningitis due to the fungal pathogen Cryptococcus neoformans is estimated to cause nearly 200,000 deaths annually, mostly in resource-limited regions. We previously identified cryptococcal protein antigens which, when delivered in glucan particles, afford vaccine-mediated protection against an otherwise lethal infection. Many of these proteins exhibit significant homology to other similar cryptococcal proteins leading us to hypothesize that protection may be augmented by immunologic cross-reactivity to multiple members of a protein family. To examine the significance of protein cross-reactivity in vaccination, we utilized strains of Cryptococcus that are genetically deficient in select antigens, yet are still lethal in mice. Vaccination with a protein without homologs (e.g., Mep1 and Lhc1) protected against challenge with wild-type Cryptococcus, but not against a deletion strain lacking that protein. Contrastingly, vaccination with a single chitin deacetylase (Cda) protein protected against the corresponding deletion strain, presumably due to host recognition of one or more other family members still expressed in this strain. Vaccination with a single Cda protein induced cross-reactive antibody and interferon-gamma (IFNγ) immune responses to other Cda protein family members. Paradoxically, we saw no evidence of cross-protection within the carboxypeptidase family of proteins. Factors such as in vivo protein expression and the degree of homology across the family could inform the extent to which vaccine-mediated immunity is amplified. Together, these data suggest a role for prioritizing protein families in fungal vaccine design: increasing the number of immune targets generated by a single antigen may improve efficacy while diminishing the risk of vaccine-resistant strains arising from gene mutations.
Collapse
Affiliation(s)
- Maureen M. Hester
- Department of Medicine, The University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Lorena V. N. Oliveira
- Department of Medicine, The University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Ruiying Wang
- Department of Medicine, The University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Zhongming Mou
- Department of Medicine, The University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Diana Lourenco
- Department of Medicine, The University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Gary R. Ostroff
- Program in Molecular Medicine, The University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Charles A. Specht
- Department of Medicine, The University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Stuart M. Levitz
- Department of Medicine, The University of Massachusetts Chan Medical School, Worcester, MA, United States
| |
Collapse
|
8
|
Specht CA, Homan EJ, Lee CK, Mou Z, Gomez CL, Hester MM, Abraham A, Rus F, Ostroff GR, Levitz SM. Protection of Mice against Experimental Cryptococcosis by Synthesized Peptides Delivered in Glucan Particles. mBio 2021; 13:e0336721. [PMID: 35089095 PMCID: PMC8725579 DOI: 10.1128/mbio.03367-21] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 11/23/2021] [Indexed: 12/22/2022] Open
Abstract
The high global burden of cryptococcosis has made development of a protective vaccine a public health priority. We previously demonstrated that a vaccine composed of recombinant Cryptococcus neoformans chitin deacetylase 2 (Cda2) delivered in glucan particles (GPs) protects BALB/c and C57BL/6 mice from an otherwise lethal challenge with a highly virulent C. neoformans strain. An immunoinformatic analysis of Cda2 revealed a peptide sequence predicted to have strong binding to the major histocompatibility complex class II (MHC II) H2-IAd allele found in BALB/c mice. BALB/c mice vaccinated with GPs containing a 32-amino-acid peptide (Cda2-Pep1) that included this strong binding region were protected from cryptococcosis. Protection was lost with GP-based vaccines containing versions of recombinant Cda2 protein and Cda2-Pep1 with mutations predicted to greatly diminish MHC II binding. Cda2 has homology to the three other C. neoformans chitin deacetylases, Cda1, Cda3, and Fpd1, in the high-MHC II-binding region. GPs loaded with homologous peptides of Cda1, Cda3, and Fpd1 protected BALB/c mice from experimental cryptococcosis, albeit not as robustly as the Cda2-Pep1 vaccine. Finally, seven other peptides were synthesized based on regions in Cda2 predicted to contain promising CD4+ T cell epitopes in BALB/c or C57BL/6 mice. While five peptide vaccines significantly protected BALB/c mice, only one protected C57BL/6 mice. Thus, GP-based vaccines containing a single peptide can protect mice against cryptococcosis. However, given the diversity of human MHC II alleles, a peptide-based Cryptococcus vaccine for use in humans would be challenging and likely need to contain multiple peptide sequences. IMPORTANCE Cryptococcosis, due to infection by fungi of the Cryptococcus neoformans species complex, is responsible for substantial morbidity and mortality in immunocompromised persons, particularly those with AIDS. Cryptococcal vaccines are a public health priority yet are not available for human use. We previously demonstrated mice could be protected from experimental cryptococcosis with vaccines composed of recombinant cryptococcal proteins encased in hollow highly purified yeast cell walls (glucan particles). In this study, we examined one such protective protein, Cda2, and using bioinformatics, we identified a region predicted to stimulate strong T cell responses. A peptide containing this region formulated in glucan particle-based vaccines protected mice as well as the recombinant protein. Other peptide vaccines also protected, including peptides containing sequences from proteins homologous to Cda2. These preclinical mouse studies provide a proof of principle that peptides can be effective as vaccines to protect against cryptococcosis and that bioinformatic approaches can guide peptide selection.
Collapse
Affiliation(s)
- Charles A. Specht
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | | | - Chrono K. Lee
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Zhongming Mou
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Christina L. Gomez
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Maureen M. Hester
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Ambily Abraham
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Florentina Rus
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Gary R. Ostroff
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Stuart M. Levitz
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
9
|
Ueno K, Yanagihara N, Shimizu K, Miyazaki Y. Vaccines and Protective Immune Memory against Cryptococcosis. Biol Pharm Bull 2020; 43:230-239. [PMID: 32009111 DOI: 10.1248/bpb.b19-00841] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cryptococcosis is a potentially lethal disease caused by fungal pathogens including Cryptococcus neoformans and Cryptococcus gattii species complex. These fungal pathogens live in the environment and are associated with certain tree species and bird droppings. This infectious disease is not contagious, and healthy individuals may contract cryptococcal infections by inhaling the airborne pathogens from the environment. Although cleaning a contaminated environment is a feasible approach to control environmental fungal pathogens, prophylactic immunization is also considered a promising method to regulate cryptococcal infections. We review the history of the development of cryptococcal vaccines, vaccine components, and the various forms of immune memory induced by cryptococcal vaccines.
Collapse
Affiliation(s)
- Keigo Ueno
- Department of Chemotherapy and Mycoses, National Institute of Infectious Diseases
| | - Nao Yanagihara
- Department of Chemotherapy and Mycoses, National Institute of Infectious Diseases.,Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science
| | - Kiminori Shimizu
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science
| | - Yoshitsugu Miyazaki
- Department of Chemotherapy and Mycoses, National Institute of Infectious Diseases
| |
Collapse
|
10
|
Normile TG, Bryan AM, Del Poeta M. Animal Models of Cryptococcus neoformans in Identifying Immune Parameters Associated With Primary Infection and Reactivation of Latent Infection. Front Immunol 2020; 11:581750. [PMID: 33042164 PMCID: PMC7522366 DOI: 10.3389/fimmu.2020.581750] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 08/12/2020] [Indexed: 12/13/2022] Open
Abstract
Cryptococcus species are environmental fungal pathogens and the causative agents of cryptococcosis. Infection occurs upon inhalation of infectious particles, which proliferate in the lung causing a primary infection. From this primary lung infection, fungal cells can eventually disseminate to other organs, particularly the brain, causing lethal meningoencephalitis. However, in most cases, the primary infection resolves with the formation of a lung granuloma. Upon severe immunodeficiency, dormant cryptococcal cells will start proliferating in the lung granuloma and eventually will disseminate to the brain. Many investigators have sought to study the protective host immune response to this pathogen in search of host parameters that keep the proliferation of cryptococcal cells under control. The majority of the work assimilates research carried out using the primary infection animal model, mainly because a reactivation model has been available only very recently. This review will focus on anti-cryptococcal immunity in both the primary and reactivation models. An understanding of the differences in host immunity between the primary and reactivation models will help to define the key host parameters that control the infections and are important for the research and development of new therapeutic and vaccine strategies against cryptococcosis.
Collapse
Affiliation(s)
- Tyler G Normile
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, United States
| | - Arielle M Bryan
- Ingenious Targeting Laboratory Incorporated, Ronkonkoma, NY, United States
| | - Maurizio Del Poeta
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, United States.,Division of Infectious Diseases, School of Medicine, Stony Brook University, Stony Brook, NY, United States.,Veterans Administration Medical Center, Northport, NY, United States
| |
Collapse
|
11
|
Coelho C, Farrer RA. Pathogen and host genetics underpinning cryptococcal disease. ADVANCES IN GENETICS 2020; 105:1-66. [PMID: 32560785 DOI: 10.1016/bs.adgen.2020.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cryptococcosis is a severe fungal disease causing 220,000 cases of cryptococcal meningitis yearly. The etiological agents of cryptococcosis are taxonomically grouped into at least two species complexes belonging to the genus Cryptococcus. All of these yeasts are environmentally ubiquitous fungi (often found in soil, leaves and decaying wood, tree hollows, and associated with bird feces especially pigeon guano). Infection in a range of animals including humans begins following inhalation of spores or aerosolized yeasts. Recent advances provide fundamental insights into the factors from both the pathogen and its hosts which influence pathogenesis and disease. The complex interactions leading to disease in mammalian hosts have also updated from the availability of better genomic tools and datasets. In this review, we discuss recent genetic research on Cryptococcus, covering the epidemiology, ecology, and evolution of Cryptococcus pathogenic species. We also discuss the insights into the host immune response obtained from the latest genetic modified host models as well as insights from monogenic disorders in humans. Finally we highlight outstanding questions that can be answered in the near future using bioinformatics and genomic tools.
Collapse
Affiliation(s)
- Carolina Coelho
- Medical Research Council Centre for Medical Mycology at the University of Exeter, Exeter, United Kingdom
| | - Rhys A Farrer
- Medical Research Council Centre for Medical Mycology at the University of Exeter, Exeter, United Kingdom.
| |
Collapse
|
12
|
Ueno K, Yanagihara N, Otani Y, Shimizu K, Kinjo Y, Miyazaki Y. Neutrophil-mediated antifungal activity against highly virulent Cryptococcus gattii strain R265. Med Mycol 2020; 57:1046-1054. [PMID: 30668754 DOI: 10.1093/mmy/myy153] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 12/10/2018] [Accepted: 12/13/2018] [Indexed: 01/08/2023] Open
Abstract
Vaccine-induced immune responses, including neutrophil, macrophage, and T-cell responses, ameliorate cryptococcosis caused by Cryptococcus gattii. However, whether neutrophils can exert fungicidal activity against C. gattii remains to be elucidated. Therefore, in this study, we investigated the neutrophil-mediated fungicidal effect against C. gattii R265 in vitro and compared it to the related fungal pathogen, Cryptococcus neoformans standard strain H99. We found that neutrophils recognized, phagocytosed, and killed C. gattii R265 in the presence of fresh mouse serum. This antifungal effect required phagocytosis and serine protease activity but not nicotinamide adenine dinucleotide phosphate oxidase activity. We also demonstrated that C. gattii R265 was more resistant to oxidative and nitrosative stress than C. neoformans H99. Together, these findings indicate that neutrophils can exert fungicidal activity against highly virulent C. gattii, at least under in vitro conditions.
Collapse
Affiliation(s)
- Keigo Ueno
- Department of Chemotherapy and Mycoses, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Nao Yanagihara
- Department of Chemotherapy and Mycoses, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan.,Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Yoshiko Otani
- Department of Chemotherapy and Mycoses, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan.,Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Kiminori Shimizu
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Yuki Kinjo
- Department of Chemotherapy and Mycoses, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan.,Department of Bacteriology, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan.,Jikei Center for Biofilm Science and Technology, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Yoshitsugu Miyazaki
- Department of Chemotherapy and Mycoses, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| |
Collapse
|
13
|
Maybruck BT, Lam WC, Specht CA, Ilagan MXG, Donlin MJ, Lodge JK. The Aminoalkylindole BML-190 Negatively Regulates Chitosan Synthesis via the Cyclic AMP/Protein Kinase A1 Pathway in Cryptococcus neoformans. mBio 2019; 10:e02264-19. [PMID: 31848271 PMCID: PMC6918072 DOI: 10.1128/mbio.02264-19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 10/31/2019] [Indexed: 02/06/2023] Open
Abstract
Cryptococcus neoformans can cause fatal meningoencephalitis in patients with AIDS or other immunocompromising conditions. Current antifungals are suboptimal to treat this disease; therefore, novel targets and new therapies are needed. Previously, we have shown that chitosan is a critical component of the cryptococcal cell wall and is required for survival in the mammalian host and that chitosan deficiency results in rapid clearance from the mammalian host. We had also identified several specific proteins that were required for chitosan biosynthesis, and we hypothesize that screening for compounds that inhibit chitosan biosynthesis would identify additional genes/proteins that influence chitosan biosynthesis. To identify these compounds, we developed a robust and novel cell-based flow cytometry screening method to identify small-molecule inhibitors of chitosan production. We screened the ICCB Known Bioactives library and identified 8 compounds that reduced chitosan in C. neoformans We used flow cytometry-based counterscreens and confirmatory screens, followed by a biochemical secondary screen to refine our primary screening hits to 2 confirmed hits. One of the confirmed hits that reduced chitosan content was the aminoalkylindole BML-190, a known inverse agonist of mammalian cannabinoid receptors. We demonstrated that BML-190 likely targets the C. neoformans G-protein-coupled receptor Gpr4 and, via the cyclic AMP (cAMP)/protein kinase A (PKA) signaling pathway, contributes to an intracellular accumulation of cAMP that results in decreased chitosan. Our discovery suggests that this approach could be used to identify additional compounds and pathways that reduce chitosan biosynthesis and could lead to potential novel therapeutics against C. neoformansIMPORTANCECryptococcus neoformans is a fungal pathogen that kills ∼200,000 people every year. The cell wall is an essential organelle that protects fungi from the environment. Chitosan, the deacetylated form of chitin, has been shown to be an essential component of the cryptococcal cell wall during infection of a mammalian host. In this study, we screened a set of 480 compounds, which are known to have defined biological activities, for activity that reduced chitosan production in C. neoformans Two of these compounds were confirmed using an alternative method of measuring chitosan, and one of these was demonstrated to impact the cAMP signal transduction pathway. This work demonstrates that the cAMP pathway regulates chitosan biosynthesis in C. neoformans and validates that this screening approach could be used to find potential antifungal agents.
Collapse
Affiliation(s)
- Brian T Maybruck
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Woei C Lam
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Charles A Specht
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Ma Xenia G Ilagan
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Maureen J Donlin
- Department of Biochemistry and Molecular Biology, Saint Louis University, St. Louis, Missouri, USA
| | - Jennifer K Lodge
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
14
|
Van Dyke MCC, Thompson GR, Galgiani JN, Barker BM. The Rise of Coccidioides: Forces Against the Dust Devil Unleashed. Front Immunol 2019; 10:2188. [PMID: 31572393 PMCID: PMC6749157 DOI: 10.3389/fimmu.2019.02188] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 08/30/2019] [Indexed: 12/13/2022] Open
Abstract
Coccidioidomycosis (Valley fever) is a fungal disease caused by the inhalation of Coccidioides posadasii or C. immitis. This neglected disease occurs in the desert areas of the western United States, most notably in California and Arizona, where infections continue to rise. Clinically, coccidioidomycosis ranges from asymptomatic to severe pulmonary disease and can disseminate to the brain, skin, bones, and elsewhere. New estimates suggest as many as 350,000 new cases of coccidioidomycosis occur in the United States each year. Thus, there is an urgent need for the development of a vaccine and new therapeutic drugs against Coccidioides infection. In this review, we discuss the battle against Coccidioides including the development of potential vaccines, the quest for new therapeutic drugs, and our current understanding of the protective host immune response to Coccidioides infection.
Collapse
Affiliation(s)
| | - George R Thompson
- Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA, United States.,Division of Infectious Diseases, Department of Internal Medicine, University of California Davis Medical Center, Sacramento, CA, United States
| | - John N Galgiani
- Valley Fever Center for Excellence, Department of Medicine, University of Arizona College of Medicine-Tucson, Tucson, AZ, United States
| | - Bridget M Barker
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, United States
| |
Collapse
|
15
|
Guess TE, Rosen J, Castro-Lopez N, Wormley FL, McClelland EE. An inherent T cell deficit in healthy males to C. neoformans infection may begin to explain the sex susceptibility in incidence of cryptococcosis. Biol Sex Differ 2019; 10:44. [PMID: 31477151 PMCID: PMC6720413 DOI: 10.1186/s13293-019-0258-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 08/16/2019] [Indexed: 02/07/2023] Open
Abstract
Background Cryptococcus neoformans, the causative agent of cryptococcosis, causes ~ 181,000 deaths annually, with males having a higher incidence of disease than females (7M:3F). The reason for this sex bias remains unclear. We hypothesized that this disparity was due to biological differences between the male and female immune response. Methods Peripheral blood mononuclear cells (PBMCs) from healthy donors were isolated and infected with C. neoformans ± exogenous testosterone or 17-β-estradiol. C. neoformans, B, T, and NK cell proliferation was quantified by flow cytometry. Cytokine analysis was conducted via protein array or ELISA. Serological testing was conducted to determine previous exposure to C. neoformans. Results C. neoformans proliferated more in male PBMCs. T cell percentages in both sexes were lower in infected versus uninfected cells. Male PBMCs had lower CD3+, CD4+, and CD8+ T cells percentages during infection compared to females. Cytokine profiles showed differences in uninfected male and female PBMCs, which subsided during infection. Only one donor was sero-negative for prior C. neoformans exposure. There was an effect of estrogen in one dataset. Conclusions These results suggest that males show an inherent deficit in T cell response during infection, which may contribute to the increased incidence of disease in males. Electronic supplementary material The online version of this article (10.1186/s13293-019-0258-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tiffany E Guess
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN, USA
| | - Joseph Rosen
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN, USA
| | - Natalia Castro-Lopez
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX, USA.,South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, USA
| | - Floyd L Wormley
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX, USA.,South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, USA
| | - Erin E McClelland
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN, USA.
| |
Collapse
|
16
|
Leopold Wager CM, Hole CR, Campuzano A, Castro-Lopez N, Cai H, Caballero Van Dyke MC, Wozniak KL, Wang Y, Wormley FL. IFN-γ immune priming of macrophages in vivo induces prolonged STAT1 binding and protection against Cryptococcus neoformans. PLoS Pathog 2018; 14:e1007358. [PMID: 30304063 PMCID: PMC6197699 DOI: 10.1371/journal.ppat.1007358] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 10/22/2018] [Accepted: 09/26/2018] [Indexed: 12/30/2022] Open
Abstract
Development of vaccines against opportunistic infections is difficult as patients most at risk of developing disease are deficient in aspects of the adaptive immune system. Here, we utilized an experimental immunization strategy to induce innate memory in macrophages in vivo. Unlike current trained immunity models, we present an innate memory-like phenotype in macrophages that is maintained for at least 70 days post-immunization and results in complete protection against secondary challenge in the absence of adaptive immune cells. RNA-seq analysis of in vivo IFN-γ primed macrophages revealed a rapid up-regulation of IFN-γ and STAT1 signaling pathways following secondary challenge. The enhanced cytokine recall responses appeared to be pathogen-specific, dependent on changes in histone methylation and acetylation, and correlated with increased STAT1 binding to promoter regions of genes associated with protective anti-fungal immunity. Thus, we demonstrate an alternative mechanism to induce macrophage innate memory in vivo that facilitates pathogen-specific vaccine-mediated immune responses. Fungal infections are a significant global health problem that can affect anyone, however, individuals with a weakened immune system are most at risk. Cryptococcus neoformans infections can progress to meningitis in immune compromised individuals accounting for nearly 220,000 new cases annually, resulting in 181,000 deaths. Vaccine strategies tend to target CD4+ T cells for the generation of protective memory responses. However, immune compromised individuals have decreased numbers of these adaptive cells, providing a challenge for anti-fungal vaccine design. Here, we define a cellular mechanism by which macrophages, an innate cell population, generate protective immune responses against C. neoformans following initial exposure to a C. neoformans strain that secretes IFN-γ. We determined that the macrophages primed in vivo have heightened proinflammatory cytokine responses upon secondary exposure to C. neoformans in a manner that is mTOR-independent, yet dependent on histone modification dynamics. We show that IFN-γ primed macrophages can maintain STAT1 binding to the promoter regions of key proinflammatory genes long after the initial exposure. Remarkably, our studies show long-lived, cryptococcal-specific protective immunity in vivo. The results presented herein demonstrate that innate cell populations, namely macrophages, can be utilized as vaccine targets to protect against cryptococcal infections in immune compromised populations.
Collapse
Affiliation(s)
- Chrissy M. Leopold Wager
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX, United States of America
- The South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, United States of America
| | - Camaron R. Hole
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX, United States of America
- The South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, United States of America
| | - Althea Campuzano
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX, United States of America
- The South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, United States of America
| | - Natalia Castro-Lopez
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX, United States of America
- The South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, United States of America
| | - Hong Cai
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX, United States of America
- The South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, United States of America
| | - Marley C. Caballero Van Dyke
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX, United States of America
- The South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, United States of America
| | - Karen L. Wozniak
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX, United States of America
- The South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, United States of America
| | - Yufeng Wang
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX, United States of America
- The South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, United States of America
| | - Floyd L. Wormley
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX, United States of America
- The South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, United States of America
- * E-mail:
| |
Collapse
|