1
|
Peh HY, Chen J. Pro-resolving lipid mediators and therapeutic innovations in resolution of inflammation. Pharmacol Ther 2025; 265:108753. [PMID: 39566561 DOI: 10.1016/j.pharmthera.2024.108753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 11/07/2024] [Accepted: 11/13/2024] [Indexed: 11/22/2024]
Abstract
This review summarizes findings presented at the 19th World Congress of Basic & Clinical Pharmacology 2023 (Glasgow, Scotland, July 3rd to 7th, 2023) from 8 speakers in the field of resolution of inflammation, resolution pharmacology and resolution biology. It is now accepted that the acute inflammatory response is protective to defend the host against infection or tissue injury. Acute inflammation is self-limited and programmed to be limited in space and time: this is achieved through endogenous resolution processes that ensure return to homeostasis. Resolution is brought about by agonist mediators that include specialized pro-resolving lipid mediators (SPMs) and pro-resolving proteins and peptides such as annexin A1 and angiotensin-(1-7), all acting to initiate anti-inflammatory and pro-resolving processes. If the inflammatory reaction remains unchecked through dysfunctional resolution mechanism, it can become chronic and contribute to a plethora of human diseases, including respiratory, cardiovascular, metabolic, allergic diseases, and arthritis. Herein, we discuss how non-resolving inflammation plays a role in the pathogenesis of these diseases. In addition to SPMs, we highlight the discovery, biosynthesis, biofunctions, and latest research updates on innovative therapeutics (including annexin-A1 peptide-mimetic RTP-026, small molecule FPR2 agonist BM-986235/LAR-1219, biased agonist for FPR1/FPR2 Cmpd17b, lipoxin mimetics AT-01-KG and AT-02-CT, melanocortin receptor agonist AP1189, gold nanoparticles, angiotensin-(1-7), and CD300a) that can promote resolution of inflammation directly or through modulation of SPMs production. Drug development strategies based on the biology of the resolution of inflammation can offer novel therapeutic means and/or add-on therapies for the treatment of chronic diseases.
Collapse
Affiliation(s)
- Hong Yong Peh
- Immunology Translational Research Programme, Yong Loo Lin School of Medicine, Department of Pharmacology, Singapore; Immunology Programme and Singapore Lipidomics Incubator (SLING), Life Sciences Institute, National University of Singapore, Singapore; Pulmonary and Critical Care Medicine Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| | - Jianmin Chen
- William Harvey Research Institute, Queen Mary University of London, London, United Kingdom; Centre for inflammation and Therapeutic Innovation, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
2
|
Zaidan I, Carvalho AFS, Grossi LC, Souza JAM, Lara ES, Montuori-Andrade ACM, Cardoso C, Carneiro FS, Lima EBDS, Monteiro AHA, Augusto IDL, Caixeta RS, Igídio CED, de Brito CB, de Oliveira LC, Queiroz-Junior CM, Russo RC, Campagnole-Santos MJ, Santos RAS, Costa VV, de Souza DDG, Fagundes CT, Teixeira MM, Tavares LP, Sousa LP. The angiotensin-(1-7)/MasR axis improves pneumonia caused by Pseudomonas aeruginosa: Extending the therapeutic window for antibiotic therapy. FASEB J 2024; 38:e70051. [PMID: 39269436 DOI: 10.1096/fj.202401178r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/06/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024]
Abstract
Pseudomonas aeruginosa is a frequent cause of antimicrobial-resistant hospital-acquired pneumonia, especially in critically ill patients. Inflammation triggered by P. aeruginosa infection is necessary for bacterial clearance but must be spatially and temporally regulated to prevent further tissue damage and bacterial dissemination. Emerging data have shed light on the pro-resolving actions of angiotensin-(1-7) [Ang-(1-7)] signaling through the G protein-coupled receptor Mas (MasR) during infections. Herein, we investigated the role of the Ang-(1-7)/Mas axis in pneumonia caused by P. aeruginosa by using genetic and pharmacological approach and found that Mas receptor-deficient animals developed a more severe form of pneumonia showing higher neutrophilic infiltration into the airways, bacterial load, cytokines, and chemokines production and more severe pulmonary damage. Conversely, treatment of pseudomonas-infected mice with Ang-(1-7) was able to decrease neutrophilic infiltration in airways and lungs, local and systemic levels of pro-inflammatory cytokines and chemokines, and increase the efferocytosis rates, mitigating lung damage/dysfunction caused by infection. Notably, the therapeutic association of Ang-(1-7) with antibiotics improved the survival rates of mice subjected to lethal inoculum of P. aeruginosa, extending the therapeutic window for imipenem. Mechanistically, Ang-(1-7) increased phagocytosis of bacteria by neutrophils and macrophages to accelerate pathogen clearance. Altogether, harnessing the Ang-(1-7) pathway during infection is a potential strategy for the development of host-directed therapies to promote mechanisms of resistance and resilience to pneumonia.
Collapse
Affiliation(s)
- Isabella Zaidan
- Signaling in Inflammation Laboratory, Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Antônio Felipe Silva Carvalho
- Signaling in Inflammation Laboratory, Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Unidade Laboratório de Análises Clínicas, Hospital das Clínicas da Universidade Federal de Minas Gerais/Ebserh, Belo Horizonte, Brazil
| | - Laís C Grossi
- Signaling in Inflammation Laboratory, Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Jéssica A M Souza
- Signaling in Inflammation Laboratory, Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Edvaldo S Lara
- Signaling in Inflammation Laboratory, Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ana Clara M Montuori-Andrade
- Signaling in Inflammation Laboratory, Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Camila Cardoso
- Signaling in Inflammation Laboratory, Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Fernanda S Carneiro
- Signaling in Inflammation Laboratory, Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Erick Bryan de Sousa Lima
- Signaling in Inflammation Laboratory, Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Unidade Laboratório de Análises Clínicas, Hospital das Clínicas da Universidade Federal de Minas Gerais/Ebserh, Belo Horizonte, Brazil
| | - Adelson Héric Alves Monteiro
- Signaling in Inflammation Laboratory, Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Isabella de Lacerda Augusto
- Signaling in Inflammation Laboratory, Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Rodrigo Severo Caixeta
- Signaling in Inflammation Laboratory, Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Carlos Eduardo Dias Igídio
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Laboratório de Interação Microrganismo-Hospedeiro, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Camila B de Brito
- Laboratório de Interação Microrganismo-Hospedeiro, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Leonardo Camilo de Oliveira
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Celso Martins Queiroz-Junior
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Remo C Russo
- Laboratory of Pulmonary Immunology and Mechanics, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Maria José Campagnole-Santos
- National Institute in Science and Technology in nanobiopharmaceutics, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Robson A S Santos
- National Institute in Science and Technology in nanobiopharmaceutics, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Vivian V Costa
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Daniele da Glória de Souza
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Laboratório de Interação Microrganismo-Hospedeiro, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Caio T Fagundes
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Laboratório de Interação Microrganismo-Hospedeiro, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Mauro M Teixeira
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Luciana P Tavares
- Pulmonary and Critical Care Medicine Division, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Lirlândia P Sousa
- Signaling in Inflammation Laboratory, Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
3
|
Li Q, Liu H, Yin G, Xie Q. Efferocytosis: Current status and future prospects in the treatment of autoimmune diseases. Heliyon 2024; 10:e28399. [PMID: 38596091 PMCID: PMC11002059 DOI: 10.1016/j.heliyon.2024.e28399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 04/11/2024] Open
Abstract
Billions of apoptotic cells are swiftly removed from the human body daily. This clearance process is regulated by efferocytosis, an active anti-inflammatory process during which phagocytes engulf and remove apoptotic cells. However, impaired clearance of apoptotic cells is associated with the development of various autoimmune diseases, such as rheumatoid arthritis, systemic lupus erythematosus, and inflammatory bowel disease. In this review, we conducted a comprehensive search of relevant studies published from January 1, 2000, to the present, focusing on efferocytosis, autoimmune disease pathogenesis, regulatory mechanisms governing efferocytosis, and potential treatments targeting this process. Our review highlights the key molecules involved in different stages of efferocytosis-namely, the "find me," "eat me," and "engulf and digest" phases-while elucidating their relevance to autoimmune disease pathology. Furthermore, we explore the therapeutic potential of modulating efferocytosis to restore immune homeostasis and mitigate autoimmune responses. By providing theoretical underpinnings for the targeting of efferocytosis in the treatment of autoimmune diseases, this review contributes to the advancement of therapeutic strategies in this field.
Collapse
Affiliation(s)
- Qianwei Li
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Huan Liu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Geng Yin
- Department of General Practice, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Qibing Xie
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| |
Collapse
|
4
|
Costa VV, Resende F, Melo EM, Teixeira MM. Resolution pharmacology and the treatment of infectious diseases. Br J Pharmacol 2024; 181:917-937. [PMID: 38355144 DOI: 10.1111/bph.16323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 12/06/2023] [Accepted: 12/28/2023] [Indexed: 02/16/2024] Open
Abstract
Inflammation is elicited by the host in response to microbes, and is believed to be essential for protection against infection. However, we have previously hypothesized that excessive or misplaced inflammation may be a major contributor to tissue dysfunction and death associated with viral and bacterial infections. The resolutive phase of inflammation is a necessary condition to achieve homeostasis after acute inflammation. It is possible that targeting inflammation resolution may be beneficial for the host during infection. In this review, we summarize the evidence demonstrating the expression, roles and effects of the best described pro-resolving molecules in the context of bacterial and viral infections. Pro-resolving molecules play a pivotal role in modulating a spectrum of pathways associated with tissue inflammation and damage during both viral and bacterial infections. These molecules offer a blend of anti-inflammatory, pro-resolving and sometimes anti-infective benefits, all the while circumventing the undesired and immune-suppressive unwanted effects associated with glucocorticoids. Whether these beneficial effects will translate into benefits to patients clearly deserve further investigation.
Collapse
Affiliation(s)
- Vivian Vasconcelos Costa
- Centro de Pesquisa e Desenvolvimento de Fármacos, Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Filipe Resende
- Centro de Pesquisa e Desenvolvimento de Fármacos, Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Eliza Mathias Melo
- Centro de Pesquisa e Desenvolvimento de Fármacos, Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Mauro Martins Teixeira
- Centro de Pesquisa e Desenvolvimento de Fármacos, Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
5
|
Abuohashish H, Shahin S, Alamri A, Salloot Z, Alhawaj H, Omar O. Angiotensin(1-7) attenuates tooth movement and regulates alveolar bone response during orthodontic force application in experimental animal model. Prog Orthod 2023; 24:33. [PMID: 37840086 PMCID: PMC10577116 DOI: 10.1186/s40510-023-00486-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 08/09/2023] [Indexed: 10/17/2023] Open
Abstract
BACKGROUND Renin-angiotensin system and its ACE2/Ang(1-7)/Mas receptor axis regulates skeletal response to multiple physiological and pathological conditions. Recent research suggested a vital role of Ang(1-7) in regulating alveolar bone metabolism and remodeling. In this context, this study evaluated the effects of the Ang(1-7)/Mas receptor axis on orthodontic tooth movement (OTM) and the alveolar bone response to mechanical load. METHODS A coil spring was placed between the right maxillary first molar and the anterior tooth of Wistar rats to apply bidirectional mechanical force. Ang(1-7) with or without a specific Mas receptor antagonist (A779) was infused using subcutaneous osmotic pumps (200 and 400 ng/kg/min: respectively). Animals were killed after 5 and 14 days from the OTM procedure after the clinical evaluation of tooth movement and mobility. Morphometric analysis of alveolar bone structure was conducted using micro-CT and the histological picture was evaluated after H&E staining. Moreover, collagen fiber distribution was assessed using Picro-Sirius red stain. In addition, bone samples were collected from the pressure and tension sites around the anterior tooth for gene expression analysis. RESULTS Ang(1-7) infusion suppressed the tooth movement and mobility after 14 days of the orthodontic force application. Additionally, Ang(1-7) infusion preserved the morphometric and histological structure of the alveolar bone at pressure and tension sides. These effects were abolished by adding A779 infusion. Collagen fiber distribution was dysregulated mainly by the A779 Mas receptor blockage. Ang(1-7) affected the bone formation, remodeling- and vascularity-related genes in the pressure and tension sides, suggesting a prominent suppression of osteoclastogenesis. Ang(1-7) also improved osteoblasts-related genes on the tension side, whereas the osteoclasts-related genes were augmented by A779 on the pressure side. CONCLUSION Collectively, the activation of Ang(1-7)/Mas receptor axis appears to hinder tooth movement and regulates alveolar bone remodeling in response to mechanical force.
Collapse
Affiliation(s)
- Hatem Abuohashish
- Department of Biomedical Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441, Dammam, Saudi Arabia.
| | - Suliman Shahin
- Department of Preventive Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441, Dammam, Saudi Arabia
| | - Abdulaziz Alamri
- Department of Preventive Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441, Dammam, Saudi Arabia
| | - Zainah Salloot
- Department of Preventive Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441, Dammam, Saudi Arabia
| | - Hussain Alhawaj
- Department of Environmental Health Research, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441, Dammam, Saudi Arabia
| | - Omar Omar
- Department of Biomedical Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441, Dammam, Saudi Arabia
| |
Collapse
|
6
|
Anti-Inflammatory Effects of Ang-(1-7) Bone-Targeting Conjugate in an Adjuvant-Induced Arthritis Rat Model. Pharmaceuticals (Basel) 2022; 15:ph15091157. [PMID: 36145378 PMCID: PMC9502795 DOI: 10.3390/ph15091157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/25/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory condition of synovial joints that causes disability and systemic complications. Ang-(1-7), one of the main peptides in the renin-angiotensin (Ang) system (RAS), imposes its protective effects through Mas receptor (MasR) signaling. It has a short half-life, limiting its feasibility as a therapeutic agent. In this study, we evaluated the anti-inflammatory effects of Ang-(1-7)’s novel and stable conjugate (Ang. Conj.) by utilizing its affinity for bone through bisphosphonate (BP) moiety in an adjuvant-induced arthritis (AIA) rat model. The rats received subcutaneous injections of vehicle, plain Ang-(1-7), or an equivalent dose of Ang. Conj. The rats’ body weights, paws, and joints’ diameters were measured thrice weekly. After 14 days, the rats were euthanized, and the blood and tissue samples were harvested for further analysis of nitric oxide (NO) and RAS components’ gene and protein expression. The administration of Ang. Conj. reduced body weight loss, joint edema, and serum NO. Moreover, the Ang. Conj. treatment significantly reduced the classical arm components at peptide, enzyme, and receptor levels while augmenting them for the protective arm. The results of this study introduce a novel class of bone-targeting natural peptides for RA caused by an inflammation-induced imbalance in the activated RAS. Our results indicate that extending the half-life of Ang-(1-7) augments the RAS protective arm and exerts enhanced therapeutic effects in the AIA model in rats.
Collapse
|
7
|
Zhang J, Ding W, Zhao M, Liu J, Xu Y, Wan J, Wang M. Mechanisms of efferocytosis in determining inflammation resolution: Therapeutic potential and the association with cardiovascular disease. Br J Pharmacol 2022; 179:5151-5171. [PMID: 36028471 DOI: 10.1111/bph.15939] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/16/2022] [Accepted: 08/19/2022] [Indexed: 11/29/2022] Open
Abstract
Efferocytosis is defined as the clearance of apoptotic cells (ACs) in physiological and pathological states and is performed by efferocytes, such as macrophages. Efferocytosis can lead to the resolution of inflammation and restore tissue homoeostasis; however, the mechanisms of efferocytosis in determining inflammation resolution are still not completely understood, and the effects of efferocytosis on other proresolving properties need to be explored and explained. In this review, the process of efferocytosis will be summarized briefly, and then these mechanisms and effects will be thoroughly discussed. In addition, the association between the mechanisms of efferocytosis in determining inflammation resolution and cardiovascular diseases will also be reviewed, as an understanding of this association may provide information on novel treatment targets.
Collapse
Affiliation(s)
- Jishou Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Wen Ding
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China.,department of radiology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Mengmeng Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jianfang Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Yao Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jun Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Menglong Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| |
Collapse
|
8
|
Add-On Cyclic Angiotensin-(1-7) with Cyclophosphamide Arrests Progressive Kidney Disease in Rats with ANCA Associated Glomerulonephritis. Cells 2022; 11:cells11152434. [PMID: 35954280 PMCID: PMC9368583 DOI: 10.3390/cells11152434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/28/2022] [Accepted: 08/03/2022] [Indexed: 11/16/2022] Open
Abstract
Rapidly progressive crescentic glomerulonephritis associated with anti-neutrophil cytoplasmic antibodies (ANCA-GN) is a major cause of renal failure. Current immunosuppressive therapies are associated with severe side effects, intensifying the need for new therapeutic strategies. The activation of Mas receptor/Angiotensin-(1-7) axis exerted renoprotection in chronic kidney disease. Here, we investigated the effect of adding the lanthionine-stabilized cyclic form of angiotensin-1-7 [cAng-(1-7)] to cyclophosphamide in a rat model of ANCA-GN. At the onset of proteinuria, Wistar Kyoto rats with ANCA-GN received vehicle or a single bolus of cyclophosphamide, with or without daily cAng-(1-7). Treatment with cAng-(1-7) plus cyclophosphamide reduced proteinuria by 85% vs. vehicle, and by 60% vs. cyclophosphamide, and dramatically limited glomerular crescents to less than 10%. The addition of cAng-(1-7) to cyclophosphamide protected against glomerular inflammation and endothelial rarefaction and restored the normal distribution of parietal epithelial cells. Ultrastructural analysis revealed a preserved GBM, glomerular endothelium and podocyte structure, demonstrating that combination therapy provided an additional layer of renoprotection. This study demonstrates that adding cAng-(1-7) to a partially effective dose of cyclophosphamide arrests the progression of renal disease in rats with ANCA-GN, suggesting that cAng-(1-7) could be a novel clinical approach for sparing immunosuppressants.
Collapse
|
9
|
Cramer A, Galvão I, Venturini de Sá N, Gaio P, Fernanda de Melo Oliveira N, Rates Gonzaga Santos M, Henrique Campolina-Silva G, Vinicius Santos Valiate B, Rezende Souza F, Dantas Cassali G, Martins Teixeira M, Almeida Amaral F, Simão Machado F. Role of Suppressor of cytokine signaling 2 during the development and resolution of an experimental arthritis. Cell Immunol 2022; 372:104476. [PMID: 35033752 DOI: 10.1016/j.cellimm.2021.104476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 12/15/2021] [Accepted: 12/31/2021] [Indexed: 01/31/2023]
|
10
|
Tavares LP, Melo EM, Sousa LP, Teixeira MM. Pro-resolving therapies as potential adjunct treatment for infectious diseases: Evidence from studies with annexin A1 and angiotensin-(1-7). Semin Immunol 2022; 59:101601. [PMID: 35219595 DOI: 10.1016/j.smim.2022.101601] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/06/2022] [Accepted: 02/17/2022] [Indexed: 01/15/2023]
Abstract
Infectious diseases, once believed to be an eradicable public health threat, still represent a leading cause of death worldwide. Environmental and social changes continuously favor the emergence of new pathogens and rapid dissemination around the world. The limited availability of anti-viral therapies and increased antibiotic resistance has made the therapeutic management of infectious disease a major challenge. Inflammation is a primordial defense to protect the host against invading microorganisms. However, dysfunctional inflammatory responses contribute to disease severity and mortality during infections. In recent years, a few studies have examined the relevance of resolution of inflammation in the context of infections. Inflammation resolution is an active integrated process transduced by several pro-resolving mediators, including Annexin A1 and Angiotensin-(1-7). Here, we examine some of the cellular and molecular circuits triggered by pro-resolving molecules and that may be beneficial in the context of infectious diseases.
Collapse
Affiliation(s)
- Luciana Pádua Tavares
- Pulmonary and Critical Care Medicine Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Eliza Mathias Melo
- Immunopharmacology Laboratory, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Lirlândia Pires Sousa
- Signaling in Inflammation Laboratory, Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| | - Mauro Martins Teixeira
- Immunopharmacology Laboratory, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
11
|
Zaidan I, Tavares LP, Sugimoto MA, Lima KM, Negreiros-Lima GL, Teixeira LC, Miranda TC, Valiate BV, Cramer A, Vago JP, Campolina-Silva GH, Souza JA, Grossi LC, Pinho V, Campagnole-Santos MJ, Santos RAS, Teixeira MM, Galvão I, Sousa LP. Angiotensin-(1-7)/MasR axis promotes migration of monocytes/macrophages with a regulatory phenotype to perform phagocytosis and efferocytosis. JCI Insight 2021; 7:147819. [PMID: 34874920 PMCID: PMC8765051 DOI: 10.1172/jci.insight.147819] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 11/24/2021] [Indexed: 11/17/2022] Open
Abstract
Nonphlogistic migration of macrophages contributes to the clearance of pathogens and apoptotic cells, a critical step for the resolution of inflammation and return to homeostasis. Angiotensin-(1-7) [Ang-(1-7)] is a heptapeptide of the renin-angiotensin system that acts through Mas receptor (MasR). Ang-(1-7) has recently emerged as a novel proresolving mediator, yet Ang-(1-7) resolution mechanisms are not fully determined. Herein, Ang-(1-7) stimulated migration of human and murine monocytes/macrophages in a MasR-, CCR2-, and MEK/ERK1/2–dependent manner. Pleural injection of Ang-(1-7) promoted nonphlogistic mononuclear cell influx alongside increased levels of CCL2, IL-10, and macrophage polarization toward a regulatory phenotype. Ang-(1-7) induction of CCL2 and mononuclear cell migration was also dependent on MasR and MEK/ERK. Of note, MasR was upregulated during the resolution phase of inflammation, and its pharmacological inhibition or genetic deficiency impaired mononuclear cell recruitment during self-resolving models of LPS pleurisy and E. coli peritonitis. Inhibition/absence of MasR was associated with reduced CCL2 levels, impaired phagocytosis of bacteria, efferocytosis, and delayed resolution of inflammation. In summary, we have uncovered a potentially novel proresolving feature of Ang-(1-7), namely the recruitment of mononuclear cells favoring efferocytosis, phagocytosis, and resolution of inflammation. Mechanistically, cell migration was dependent on MasR, CCR2, and the MEK/ERK pathway.
Collapse
Affiliation(s)
- Isabella Zaidan
- Departamento de Análises Clínicas e Toxicológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Luciana P Tavares
- Departamento Bioquimica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Michelle A Sugimoto
- Departamento Bioquimica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Kátia M Lima
- Departamento de Análises Clínicas e Toxicológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Graziele L Negreiros-Lima
- Departamento de Análises Clínicas e Toxicológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Lívia Cr Teixeira
- Departamento de Análises Clínicas e Toxicológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Thais C Miranda
- Departamento de Análises Clínicas e Toxicológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Bruno Vs Valiate
- Departamento Bioquimica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Allysson Cramer
- Departamento Bioquimica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Juliana Priscila Vago
- Departamento de Análises Clínicas e Toxicológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Jéssica Am Souza
- Departamento de Análises Clínicas e Toxicológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Laís C Grossi
- Departamento de Análises Clínicas e Toxicológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Vanessa Pinho
- Departamento Bioquimica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Robson A S Santos
- Departamento de Fisiologia e Farmacologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Mauro M Teixeira
- Departamento Bioquimica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Izabela Galvão
- Departamento Bioquimica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Lirlândia P Sousa
- Department of Clinical and Toxicological Analysis from the School of Pharma, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
12
|
Gregório JF, Magalhães GS, Rodrigues-Machado MG, Gonzaga KER, Motta-Santos D, Cassini-Vieira P, Barcelos LS, Vieira MAR, Santos RAS, Campagnole-Santos MJ. Angiotensin-(1-7)/Mas receptor modulates anti-inflammatory effects of exercise training in a model of chronic allergic lung inflammation. Life Sci 2021; 282:119792. [PMID: 34229006 DOI: 10.1016/j.lfs.2021.119792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/16/2021] [Accepted: 06/29/2021] [Indexed: 11/20/2022]
Abstract
AIMS Exercise training increases circulating and tissue levels of angiotensin-(1-7) [Ang-(1-7)], which was shown to attenuate inflammation and fibrosis in different diseases. Here, we evaluated whether Ang-(1-7)/Mas receptor is involved in the beneficial effects of aerobic training in a chronic model of asthma. MATERIAL AND METHODS BALB/c mice were subjected to a protocol of asthma induced by ovalbumin sensitization (OVA; 4 i.p. injections) and OVA challenge (3 times/week for 4 weeks). Simultaneously to the challenge period, part of the animals was continuously treated with Mas receptor antagonist (A779, 1 μg/h; for 28 days) and trained in a treadmill (TRE; 60% of the maximal capacity, 1 h/day, 5 days/week during 4 weeks). PGC1-α mRNA expression (qRT-PCR), plasma IgE and lung cytokines (ELISA), inflammatory cells infiltration (enzymatic activity assay) and airway remodeling (by histology) were evaluated. KEY FINDINGS Blocking the Mas receptor with A779 increased IgE and IL-13 levels and prevented the reduction in extracellular matrix deposition in airways in OVA-TRE mice. Mas receptor blockade prevented the reduction of myeloperoxidase activity, as well as, prevented exercise-induced IL-10 increase. These data show that activation of Ang-(1-7)/Mas receptor pathway is involved in the anti-inflammatory and anti-fibrotic effects of aerobic training in an experimental model of chronic asthma. SIGNIFICANCE Our results support exercise training as a non-pharmacological tool to defeat lung remodeling induced by chronic pulmonary inflammation. Further, our result also supports development of new therapy based on Ang-(1-7) or Mas agonists as important tool for asthma treatment in those patients that cannot perform aerobic training.
Collapse
Affiliation(s)
- Juliana Fabiana Gregório
- Department of Physiology and Biophysics, National Institute of Science and Technology in Nanobiopharmaceutics (INCT-Nanobiofar), Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Giselle Santos Magalhães
- Department of Physiology and Biophysics, National Institute of Science and Technology in Nanobiopharmaceutics (INCT-Nanobiofar), Federal University of Minas Gerais, Belo Horizonte, MG, Brazil; Post-Graduate Program in Healthy Sciences of Faculty of Medical Sciences of Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Kézia Emanoeli Ramos Gonzaga
- Department of Physiology and Biophysics, National Institute of Science and Technology in Nanobiopharmaceutics (INCT-Nanobiofar), Federal University of Minas Gerais, Belo Horizonte, MG, Brazil; Post-Graduate Program in Healthy Sciences of Faculty of Medical Sciences of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Daisy Motta-Santos
- Department of Physiology and Biophysics, National Institute of Science and Technology in Nanobiopharmaceutics (INCT-Nanobiofar), Federal University of Minas Gerais, Belo Horizonte, MG, Brazil; Sports Department, School of Physical Education, Physiotherapy and Occupational Therapy, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Puebla Cassini-Vieira
- Department of Physiology and Biophysics, National Institute of Science and Technology in Nanobiopharmaceutics (INCT-Nanobiofar), Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Lucíola Silva Barcelos
- Department of Physiology and Biophysics, National Institute of Science and Technology in Nanobiopharmaceutics (INCT-Nanobiofar), Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Maria Aparecida Ribeiro Vieira
- Department of Physiology and Biophysics, National Institute of Science and Technology in Nanobiopharmaceutics (INCT-Nanobiofar), Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Robson Augusto Souza Santos
- Department of Physiology and Biophysics, National Institute of Science and Technology in Nanobiopharmaceutics (INCT-Nanobiofar), Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Maria Jose Campagnole-Santos
- Department of Physiology and Biophysics, National Institute of Science and Technology in Nanobiopharmaceutics (INCT-Nanobiofar), Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
13
|
Gregório JF, Rodrigues-Machado MDG, Santos RAS, Carvalho Ribeiro IA, Nunes OM, Aguiar Oliveira IF, Vasconcelos AV, Campagnole-Santos MJ, Magalhães GS. ASTHMA: ROLE OF THE ANGIOTENSIN-(1-7)/MAS PATHWAY IN PATHOPHYSIOLOGY AND THERAPY. Br J Pharmacol 2021; 178:4428-4439. [PMID: 34235725 DOI: 10.1111/bph.15619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/06/2021] [Accepted: 06/30/2021] [Indexed: 11/29/2022] Open
Abstract
The incidence of asthma is a global health problem, requiring studies aimed at developing new treatments to improve clinical management, thereby reducing personal and economic burdens on the health system. Therefore, the discovery of mediators that promote anti-inflammatory and pro-resolutive events are highly desirable to improve lung function and quality of life in asthmatic patients. In that regard, experimental studies have shown that the Angiotensin-(1-7)/Mas receptor of the renin-angiotensin system (RAS) is a potential candidate for the treatment of asthma. Therefore, we reviewed findings related to the function of the Angiotensin-(1-7)/Mas pathway in regulating the processes associated with inflammation and exacerbations in asthma, including leukocyte influx, fibrogenesis, pulmonary dysfunction and resolution of inflammation. Thus, knowledge of the role of the Angiotensin-(1-7)/Mas can help pave the way for the development of new treatments for this disease with high morbidity and mortality through new experimental and clinical trials.
Collapse
Affiliation(s)
- Juliana Fabiana Gregório
- Department of Physiology and Biophysics, National Institute of Science and Technology - INCT-Nanobiopharmaceutical, Biological Sciences Institute, Federal University of Minas Gerais
| | | | - Robson A S Santos
- Department of Physiology and Biophysics, National Institute of Science and Technology - INCT-Nanobiopharmaceutical, Biological Sciences Institute, Federal University of Minas Gerais
| | | | - Olivia Mendonça Nunes
- Medical Sciences Faculty of Minas Gerais, Post-Graduation Program in Health Sciences, Belo Horizonte, Brazil
| | | | - Ana Victoria Vasconcelos
- Medical Sciences Faculty of Minas Gerais, Post-Graduation Program in Health Sciences, Belo Horizonte, Brazil
| | - Maria José Campagnole-Santos
- Department of Physiology and Biophysics, National Institute of Science and Technology - INCT-Nanobiopharmaceutical, Biological Sciences Institute, Federal University of Minas Gerais
| | - Giselle Santos Magalhães
- Department of Physiology and Biophysics, National Institute of Science and Technology - INCT-Nanobiopharmaceutical, Biological Sciences Institute, Federal University of Minas Gerais.,Medical Sciences Faculty of Minas Gerais, Post-Graduation Program in Health Sciences, Belo Horizonte, Brazil
| |
Collapse
|
14
|
Vago JP, Amaral FA, van de Loo FAJ. Resolving inflammation by TAM receptor activation. Pharmacol Ther 2021; 227:107893. [PMID: 33992683 DOI: 10.1016/j.pharmthera.2021.107893] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/06/2021] [Accepted: 05/10/2021] [Indexed: 12/12/2022]
Abstract
The control of inflammation is strictly regulated to ensure the adequate intensity and duration of an inflammatory response, enabling the removal of the trigger factors and the restoration of the integrity of the tissues and their functions. This process is coordinated by anti-inflammatory and pro-resolving mediators that regulate the cellular and molecular events necessary to restore homeostasis, and defects in this control are associated with the development of chronic and autoimmune diseases. The TAM family of receptor tyrosine kinases-Tyro3, Axl, and MerTK-plays an essential role in efferocytosis, a key process for the resolution of inflammation. However, new studies have demonstrated that TAM receptor activation not only reduces the synthesis of pro-inflammatory mediators by different cell types in response to some stimuli but also stimulates the production of anti-inflammatory and pro-resolving molecules that control the inflammation. This review provides a comprehensive view of TAM receptor family members as important players in controlling inflammatory responses through anti-inflammatory and pro-resolving actions.
Collapse
Affiliation(s)
- Juliana P Vago
- Experimental Rheumatology, Department of Rheumatology, Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, the Netherlands
| | - Flávio A Amaral
- Experimental Rheumatology, Department of Rheumatology, Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, the Netherlands; Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Fons A J van de Loo
- Experimental Rheumatology, Department of Rheumatology, Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, the Netherlands.
| |
Collapse
|
15
|
Felix FB, Vago JP, Fernandes DDO, Martins DG, Moreira IZ, Gonçalves WA, Costa WC, Araújo JMD, Queiroz-Junior CM, Campolina-Silva GH, Soriani FM, Sousa LP, Grespan R, Teixeira MM, Pinho V. Biochanin A Regulates Key Steps of Inflammation Resolution in a Model of Antigen-Induced Arthritis via GPR30/PKA-Dependent Mechanism. Front Pharmacol 2021; 12:662308. [PMID: 33995086 PMCID: PMC8114065 DOI: 10.3389/fphar.2021.662308] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/29/2021] [Indexed: 12/12/2022] Open
Abstract
Biochanin A (BCA) is a natural organic compound of the class of phytochemicals known as flavonoids and isoflavone subclass predominantly found in red clover (Trifolium pratense). It has anti-inflammatory activity and some pro-resolving actions, such as neutrophil apoptosis. However, the effect of BCA in the resolution of inflammation is still poorly understood. In this study, we investigated the effects of BCA on the neutrophilic inflammatory response and its resolution in a model of antigen-induced arthritis. Male wild-type BALB/c mice were treated with BCA at the peak of the inflammatory process (12 h). BCA decreased the accumulation of migrated neutrophils, and this effect was associated with reduction of myeloperoxidase activity, IL-1β and CXCL1 levels, and the histological score in periarticular tissues. Joint dysfunction, as seen by mechanical hypernociception, was improved by treatment with BCA. The resolution interval (Ri) was also quantified, defining profiles of acute inflammatory parameters that include the amplitude and duration of the inflammatory response monitored by the neutrophil infiltration. BCA treatment shortened Ri from ∼23 h observed in vehicle-treated mice to ∼5.5 h, associated with an increase in apoptotic events and efferocytosis, both key steps for the resolution of inflammation. These effects of BCA were prevented by H89, an inhibitor of protein kinase A (PKA) and G15, a selective G protein–coupled receptor 30 (GPR30) antagonist. In line with the in vivo data, BCA also increased the efferocytic ability of murine bone marrow–derived macrophages. Collectively, these data indicate for the first time that BCA resolves neutrophilic inflammation acting in key steps of the resolution of inflammation, requiring activation of GPR30 and via stimulation of cAMP-dependent signaling.
Collapse
Affiliation(s)
- Franciel Batista Felix
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Juliana Priscila Vago
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Débora de Oliveira Fernandes
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Débora Gonzaga Martins
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Isabella Zaidan Moreira
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - William Antonio Gonçalves
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Walyson Coelho Costa
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Celso Martins Queiroz-Junior
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Frederico Marianetti Soriani
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Lirlândia Pires Sousa
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Renata Grespan
- Departamento de Fisiologia, Universidade Federal de Sergipe, São Cristovão, Brazil
| | - Mauro Martins Teixeira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Vanessa Pinho
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
16
|
Magalhães GS, Gregório JF, Cançado Ribeiro ATP, Baroni IF, Vasconcellos AVDO, Nakashima GP, Oliveira IFA, de Matos NA, Castro TDF, Bezerra FS, Sinisterra RD, Pinho V, Teixeira MM, Santos RAS, Rodrigues-Machado MG, Campagnole-Santos MJ. Oral Formulation of Angiotensin-(1-7) Promotes Therapeutic Actions in a Model of Eosinophilic and Neutrophilic Asthma. Front Pharmacol 2021; 12:557962. [PMID: 33762930 PMCID: PMC7982577 DOI: 10.3389/fphar.2021.557962] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 01/20/2021] [Indexed: 11/13/2022] Open
Abstract
The presence of eosinophils and neutrophils in the lungs of asthmatic patients is associated with the severity of the disease and resistance to corticosteroids. Thus, defective resolution of eosinophilic and neutrophilic inflammation is importantly related to exacerbation of asthma. In this study, we investigated a therapeutic action of angiotensin-(1-7) (Ang-(1-7)) in a model of asthma induced by ovalbumin (OVA) and lipopolysaccharide (LPS). Balb-c mice were sensitized and challenged with OVA. Twenty-three hours after the last OVA challenge, experimental groups received LPS, and 1 h and 7 h later, mice were treated with oral formulation of Ang-(1-7). On the next day, 45 h after the last challenge with OVA, mice were subjected to a test of motor and exploratory behavior; 3 h later, lung function was evaluated, and bronchoalveolar lavage fluid (BALF) and lungs were collected. Motor and exploratory activities were lower in OVA + LPS-challenged mice. Treatment with Ang-(1-7) improved these behaviors, normalized lung function, and reduced eosinophil, neutrophil, myeloperoxidase (MPO), eosinophilic peroxidase (EPO), and ERK1/2 phosphorylation (p-ERK1/2) in the lungs. In addition, Ang-(1-7) decreased the deposition of mucus and extracellular matrix in the airways. These results extended those of previous studies by demonstrating that oral administration of Ang-(1-7) at the peak of pulmonary inflammation can be valuable for the treatment of neutrophil- and eosinophil-mediated asthma. Therefore, these findings potentially provide a new drug to reverse the natural history of the disease, unlike the current standards of care that manage the disease symptoms at best.
Collapse
Affiliation(s)
- Giselle Santos Magalhães
- Department of Physiology and Biophysics, National Institute of Science and Technology in Nanobiopharmaceutics, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil.,Post-Graduation Program in Health Sciences, Medical Sciences Faculty of Minas Gerais, Belo Horizonte, Brazil
| | - Juliana Fabiana Gregório
- Department of Physiology and Biophysics, National Institute of Science and Technology in Nanobiopharmaceutics, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Isis Felippe Baroni
- Post-Graduation Program in Health Sciences, Medical Sciences Faculty of Minas Gerais, Belo Horizonte, Brazil
| | | | | | | | - Natália Alves de Matos
- Laboratory of Experimental Pathophysiology, Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Brazil
| | - Thalles de Freitas Castro
- Laboratory of Experimental Pathophysiology, Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Brazil
| | - Frank Silva Bezerra
- Laboratory of Experimental Pathophysiology, Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Brazil
| | - Ruben D Sinisterra
- Chemistry Department, Institute of Exact Sciences, Belo Horizonte, Brazil
| | - Vanessa Pinho
- Department of Morphology, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Mauro Martins Teixeira
- Department of Biochemistry and Immunology, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Robson Augusto Souza Santos
- Department of Physiology and Biophysics, National Institute of Science and Technology in Nanobiopharmaceutics, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Maria José Campagnole-Santos
- Department of Physiology and Biophysics, National Institute of Science and Technology in Nanobiopharmaceutics, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
17
|
Hong L, Wang Q, Chen M, Shi J, Guo Y, Liu S, Pan R, Yuan X, Jiang S. Mas receptor activation attenuates allergic airway inflammation via inhibiting JNK/CCL2-induced macrophage recruitment. Biomed Pharmacother 2021; 137:111365. [PMID: 33588264 DOI: 10.1016/j.biopha.2021.111365] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 01/26/2021] [Accepted: 02/02/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Defective absorption of acute allergic airway inflammation is involved in the initiation and development of chronic asthma. After allergen exposure, there is a rapid recruitment of macrophages around the airways, which promote acute inflammatory responses. The Ang-(1-7)/Mas receptor axis reportedly plays protective roles in various tissue inflammation and remodeling processes in vivo. However, the exact role of Mas receptor and their underlying mechanisms during the pathology of acute allergic airway inflammation remains unclear. OBJECTIVE We investigated the role of Mas receptor in acute allergic asthma and explored its underlying mechanisms in vitro, aiming to find critical molecules and signal pathways. METHODS Mas receptor expression was assessed in ovalbumin (OVA)-induced acute asthmatic murine model. Then we estimated the anti-inflammatory role of Mas receptor in vivo and explored expressions of several known inflammatory cytokines as well as phosphorylation levels of MAPK pathways. Mas receptor functions and underlying mechanisms were studied further in the human bronchial epithelial cell line (16HBE). RESULTS Mas receptor expression decreased in acute allergic airway inflammation. Multiplex immunofluorescence co-localized Mas receptor and EpCAM, indicated that Mas receptor may function in the bronchial epithelium. Activating Mas receptor through AVE0991 significantly alleviated macrophage infiltration in airway inflammation, accompanied with down-regulation of CCL2 and phosphorylation levels of MAPK pathways. Further studies in 16HBE showed that AVE0991 pre-treatment inhibited LPS-induced or anisomycin-induced CCL2 increase and THP-1 macrophages migration via JNK pathways. CONCLUSION Our findings suggested that Mas receptor activation significantly attenuated CCL2 dependent macrophage recruitments in acute allergic airway inflammation through JNK pathways, which indicated that Mas receptor, CCL2 and phospho-JNK could be potential targets against allergic airway inflammation.
Collapse
Affiliation(s)
- Luna Hong
- Department of Pulmonary and Critical Care Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Institute of Pulmonary Diseases, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Qiujie Wang
- Department of Pulmonary and Critical Care Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Institute of Pulmonary Diseases, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ming Chen
- Department of Pulmonary and Critical Care Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Institute of Pulmonary Diseases, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jianting Shi
- Department of Pulmonary and Critical Care Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Institute of Pulmonary Diseases, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yimin Guo
- Department of Pulmonary and Critical Care Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Institute of Pulmonary Diseases, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shanying Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Research Center of Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ruijian Pan
- Departments of Electric Power Engineering, South China University of Technology, Guangzhou, China
| | - Xiaoqing Yuan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China.
| | - Shanping Jiang
- Department of Pulmonary and Critical Care Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Institute of Pulmonary Diseases, Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
18
|
Galvão I, Melo EM, de Oliveira VLS, Vago JP, Queiroz-Junior C, de Gaetano M, Brennan E, Gahan K, Guiry PJ, Godson C, Teixeira MM. Therapeutic potential of the FPR2/ALX agonist AT-01-KG in the resolution of articular inflammation. Pharmacol Res 2021; 165:105445. [PMID: 33493655 DOI: 10.1016/j.phrs.2021.105445] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 12/16/2022]
Abstract
The resolution of inflammation is a dynamic process, characterized by the biosynthesis of pro-resolving mediators, including the lipid Lipoxin A4 (LXA4). LXA4 acts on the N-formyl peptide receptor 2 (FPR2/ALX) to mediate anti-inflammatory and pro-resolving effects. In order to exploit the therapeutic potential of endogenous LXA4 in the context of inflammation we have recently developed synthetic LXA4 mimetics (sLXms) including a dimethyl-imidazole-containing FPR2/ALX agonist designated AT-01-KG. Here, we have investigated the effect of treatment with AT-01-KG in established models of articular inflammation. In a model of gout, mice were injected with MSU crystals and treated with AT-01-KG at the peak of inflammatory response. The treatment decreased the number of neutrophils in the knee exudate, an effect which was accompanied by low levels of myeloperoxidase, CXCL1 and IL-1β in periarticular tissue. AT-01-KG treatment led to reduced tissue damage and hypernociception. The effects of AT-01-KG on neutrophil accumulation were not observed in MSU treated FPR2/3-/-mice. Importantly, AT-01-KG induced resolution of articular inflammation by increasing neutrophil apoptosis and subsequent efficient efferocytosis. In a model of antigen-induced arthritis, AT-01-KG treatment also attenuated inflammatory responses. These data suggest that AT-01-KG may be a potential new therapy for neutrophilic inflammation of the joints.
Collapse
Affiliation(s)
- Izabela Galvão
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Eliza M Melo
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Vivian L S de Oliveira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Juliana P Vago
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Celso Queiroz-Junior
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Monica de Gaetano
- UCD Diabetes Complications Research Centre, UCD Conway Institute School of Medicine, University College Dublin, Dublin, Ireland
| | - Eoin Brennan
- UCD Diabetes Complications Research Centre, UCD Conway Institute School of Medicine, University College Dublin, Dublin, Ireland
| | - Kevin Gahan
- Centre for Synthesis and Chemical Biology, School of Chemistry, University College Dublin, Dublin, Ireland
| | - Patrick J Guiry
- Centre for Synthesis and Chemical Biology, School of Chemistry, University College Dublin, Dublin, Ireland
| | - Catherine Godson
- UCD Diabetes Complications Research Centre, UCD Conway Institute School of Medicine, University College Dublin, Dublin, Ireland
| | - Mauro M Teixeira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
19
|
Liu J, Liu Y, Pan W, Li Y. Angiotensin-(1-7) attenuates collagen-induced arthritis via inhibiting oxidative stress in rats. Amino Acids 2021; 53:171-181. [PMID: 33398523 DOI: 10.1007/s00726-020-02935-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 12/19/2020] [Indexed: 12/24/2022]
Abstract
The present study was designed to investigate the anti-rheumatic effects and the mechanism of angiotensin (Ang)-(1-7) in rat models with collagen-induced arthritis (CIA). The CIA model was established using male Wistar rats by intradermal injection of bovine collagen-II in complete Freund's adjuvant at the base of the tail. The levels of angiotensin converting enzyme 2 (ACE2)/Ang-(1-7)/Mas receptor (MasR) were reduced in CIA rats. The attenuation of paw swelling and arthritis scores and improvement of indexes of spleen and thymus were done by Ang-(1-7) injection in CIA rats. The increased levels of inflammatory cytokines, such as interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α, and interferon (IFN)-γ in the serum and hind paw were blocked by Ang-(1-7) administration. In addition, enhanced NADPH oxidase (Nox) activity, increased levels of superoxide anions and malondialdehyde (MDA), and weakened superoxide dismutase (SOD) activity, were all reversed by treatment with Ang-(1-7). Nox1 overexpression reversed the suppressing effects of Ang-(1-7) on paw swelling and arthritis scores in CIA rats. The Ang-(1-7)-induced improvement in spleen and thymus indexes in CIA rats was abolished by Nox1 overexpression. Nox1 overexpression reversed the inhibitory effects of Ang-(1-7) by increasing IL-1β, IL-6, TNF-α, and IFN-γ levels in the serum and hind paw of CIA rats. These results demonstrated that Nox1 increased the oxidative stress in arthritis, and Ang-(1-7) improved rheumatism in arthritis via inhibiting oxidative stress.
Collapse
Affiliation(s)
- Juan Liu
- Department of Rheumatology, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, 1 Huanghe West Road, Huai'an, 223300, China
| | - Yan Liu
- Department of Rheumatology, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, 1 Huanghe West Road, Huai'an, 223300, China
| | - Wenyou Pan
- Department of Rheumatology, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, 1 Huanghe West Road, Huai'an, 223300, China
| | - Yongsheng Li
- Department of Rheumatology, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, 1 Huanghe West Road, Huai'an, 223300, China.
| |
Collapse
|
20
|
Melo EM, Del Sarto J, Vago JP, Tavares LP, Rago F, Gonçalves APF, Machado MG, Aranda-Pardos I, Valiate BVS, Cassali GD, Pinho V, Sousa LP, A-Gonzalez N, Campagnole-Santos MJ, Bader M, Santos RAS, Machado AV, Ludwig S, Teixeira MM. Relevance of angiotensin-(1-7) and its receptor Mas in pneumonia caused by influenza virus and post-influenza pneumococcal infection. Pharmacol Res 2021; 163:105292. [PMID: 33171305 DOI: 10.1016/j.phrs.2020.105292] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/22/2020] [Accepted: 10/22/2020] [Indexed: 12/12/2022]
Abstract
Resolution failure of exacerbated inflammation triggered by Influenza A virus (IAV) prevents return of pulmonary homeostasis and survival, especially when associated with secondary pneumococcal infection. Therapeutic strategies based on pro-resolving molecules have great potential against acute inflammatory diseases. Angiotensin-(1-7) [Ang-(1-7)] is a pro-resolving mediator that acts on its Mas receptor (MasR) to promote resolution of inflammation. We investigated the effects of Ang-(1-7) and the role of MasR in the context of primary IAV infection and secondary pneumococcal infection and evaluated pulmonary inflammation, virus titers and bacteria counts, and pulmonary damage. Therapeutic treatment with Ang-(1-7) decreased neutrophil recruitment, lung injury, viral load and morbidity after a primary IAV infection. Ang-(1-7) induced apoptosis of neutrophils and efferocytosis of these cells by alveolar macrophages, but had no direct effect on IAV replication in vitro. MasR-deficient (MasR-/-) mice were highly susceptible to IAV infection, displaying uncontrolled inflammation, increased viral load and greater lethality rate, as compared to WT animals. Ang-(1-7) was not protective in MasR-/- mice. Interestingly, Ang-(1-7) given during a sublethal dose of IAV infection greatly reduced morbidity associated with a subsequent S. pneumoniae infection, as seen by decrease in the magnitude of neutrophil influx, number of bacteria in the blood leading to a lower lethality. Altogether, these results show that Ang-(1-7) is highly protective against severe primary IAV infection and protects against secondary bacterial infection of the lung. These effects are MasR-dependent. Mediators of resolution of inflammation, such as Ang-(1-7), should be considered for the treatment of pulmonary viral infections.
Collapse
Affiliation(s)
- Eliza M Melo
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Juliana Del Sarto
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; Institute of Virology Muenster (IVM), Westfaelische Wilhelms-University Muenster, Von-Esmarch-Str. 56, D-48149 Muenster, Germany
| | - Juliana P Vago
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Luciana P Tavares
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; Pulmonary and Critical Care Medicine Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Flávia Rago
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Ana Paula F Gonçalves
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; Imunologia de Doenças Virais, Centro de Pesquisa René Rachou, Fundação Oswaldo Cruz (FIOCRUZ-Minas), Belo Horizonte, Minas Gerais, Brazil
| | - Marina G Machado
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; Centre d'Infection et d'Immunité de Lille, INSERM U1019, CNRS UMR 8204, University of Lille, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Irene Aranda-Pardos
- Institute of Immunology, Westfaelische Wilhelms-University muenster, Röntgenstraße 21, D-48149 Muenster, Germany
| | - Bruno V S Valiate
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Geovanni D Cassali
- Laboratório de Patologia Comparada, Departamento de Patologia, ICB, Universidade Federal de Minas gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Vanessa Pinho
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Lirlândia P Sousa
- Laboratório de sinalização da inflamação, Departamento de Análises Clínicase Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Noelia A-Gonzalez
- Institute of Immunology, Westfaelische Wilhelms-University muenster, Röntgenstraße 21, D-48149 Muenster, Germany
| | - Maria José Campagnole-Santos
- Instituto Nacional de Ciência e Tecnologia em Nanobiofarmacêutica, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Michael Bader
- Max-Delbrück-Center for Molecular Medicine (MDC), Berlin, Germany
| | - Robson A S Santos
- Instituto Nacional de Ciência e Tecnologia em Nanobiofarmacêutica, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Alexandre V Machado
- Imunologia de Doenças Virais, Centro de Pesquisa René Rachou, Fundação Oswaldo Cruz (FIOCRUZ-Minas), Belo Horizonte, Minas Gerais, Brazil
| | - Stephan Ludwig
- Institute of Virology Muenster (IVM), Westfaelische Wilhelms-University Muenster, Von-Esmarch-Str. 56, D-48149 Muenster, Germany
| | - Mauro M Teixeira
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
21
|
Sriram K, Insel PA. A hypothesis for pathobiology and treatment of COVID-19: The centrality of ACE1/ACE2 imbalance. Br J Pharmacol 2020; 177:4825-4844. [PMID: 32333398 PMCID: PMC7572451 DOI: 10.1111/bph.15082] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 04/17/2020] [Accepted: 04/20/2020] [Indexed: 11/29/2022] Open
Abstract
Angiotensin Converting Enzyme2 is the cell surface binding site for the coronavirus SARS-CoV-2, which causes COVID-19. We propose that an imbalance in the action of ACE1- and ACE2-derived peptides, thereby enhancing angiotensin II (Ang II) signalling is primary driver of COVID-19 pathobiology. ACE1/ACE2 imbalance occurs due to the binding of SARS-CoV-2 to ACE2, reducing ACE2-mediated conversion of Ang II to Ang peptides that counteract pathophysiological effects of ACE1-generated ANG II. This hypothesis suggests several approaches to treat COVID-19 by restoring ACE1/ACE2 balance: (a) AT receptor antagonists; (b) ACE1 inhibitors (ACEIs); (iii) agonists of receptors activated by ACE2-derived peptides (e.g. Ang (1-7), which activates MAS1); (d) recombinant human ACE2 or ACE2 peptides as decoys for the virus. Reducing ACE1/ACE2 imbalance is predicted to blunt COVID-19-associated morbidity and mortality, especially in vulnerable patients. Importantly, approved AT antagonists and ACEIs can be rapidly repurposed to test their efficacy in treating COVID-19. LINKED ARTICLES: This article is part of a themed issue on The Pharmacology of COVID-19. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.21/issuetoc.
Collapse
Affiliation(s)
- Krishna Sriram
- Department of PharmacologyUniversity of California San DiegoLa JollaCAUSA
| | - Paul A. Insel
- Department of PharmacologyUniversity of California San DiegoLa JollaCAUSA
- Department of MedicineUniversity of California San DiegoLa JollaCAUSA
| |
Collapse
|
22
|
Sriram K, Insel PA. A hypothesis for pathobiology and treatment of COVID-19: The centrality of ACE1/ACE2 imbalance. Br J Pharmacol 2020. [PMID: 32333398 DOI: 10.1111/bph.15082.10.1111/bph.15082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023] Open
Abstract
Angiotensin Converting Enzyme2 is the cell surface binding site for the coronavirus SARS-CoV-2, which causes COVID-19. We propose that an imbalance in the action of ACE1- and ACE2-derived peptides, thereby enhancing angiotensin II (Ang II) signalling is primary driver of COVID-19 pathobiology. ACE1/ACE2 imbalance occurs due to the binding of SARS-CoV-2 to ACE2, reducing ACE2-mediated conversion of Ang II to Ang peptides that counteract pathophysiological effects of ACE1-generated ANG II. This hypothesis suggests several approaches to treat COVID-19 by restoring ACE1/ACE2 balance: (a) AT receptor antagonists; (b) ACE1 inhibitors (ACEIs); (iii) agonists of receptors activated by ACE2-derived peptides (e.g. Ang (1-7), which activates MAS1); (d) recombinant human ACE2 or ACE2 peptides as decoys for the virus. Reducing ACE1/ACE2 imbalance is predicted to blunt COVID-19-associated morbidity and mortality, especially in vulnerable patients. Importantly, approved AT antagonists and ACEIs can be rapidly repurposed to test their efficacy in treating COVID-19. LINKED ARTICLES: This article is part of a themed issue on The Pharmacology of COVID-19. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.21/issuetoc.
Collapse
Affiliation(s)
- Krishna Sriram
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
| | - Paul A Insel
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
23
|
Susceptibility Factors in Chronic Lung Inflammatory Responses to Engineered Nanomaterials. Int J Mol Sci 2020; 21:ijms21197310. [PMID: 33022979 PMCID: PMC7582686 DOI: 10.3390/ijms21197310] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/15/2020] [Accepted: 09/29/2020] [Indexed: 12/26/2022] Open
Abstract
Engineered nanomaterials (ENMs) are products of the emerging nanotechnology industry and many different types of ENMs have been shown to cause chronic inflammation in the lungs of rodents after inhalation exposure, suggesting a risk to human health. Due to the increasing demand and use of ENMs in a variety of products, a careful evaluation of the risks to human health is urgently needed. An assessment of the immunotoxicity of ENMs should consider susceptibility factors including sex, pre-existing diseases, deficiency of specific genes encoding proteins involved in the innate or adaptive immune response, and co-exposures to other chemicals. This review will address evidence from experimental animal models that highlights some important issues of susceptibility to chronic lung inflammation and systemic immune dysfunction after pulmonary exposure to ENMs.
Collapse
|
24
|
Sousa LP, Pinho V, Teixeira MM. Harnessing inflammation resolving-based therapeutic agents to treat pulmonary viral infections: What can the future offer to COVID-19? Br J Pharmacol 2020; 177:3898-3904. [PMID: 32557557 PMCID: PMC7323156 DOI: 10.1111/bph.15164] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 05/29/2020] [Accepted: 06/01/2020] [Indexed: 02/06/2023] Open
Abstract
Inflammation is generally accepted as a component of the host defence system and a protective response in the context of infectious diseases. However, altered inflammatory responses can contribute to disease in infected individuals. Many endogenous mediators that drive the resolution of inflammation are now known. Overall, mediators of resolution tend to decrease inflammatory responses and provide normal or greater ability of the host to deal with infection. In the lung, it seems that pro‐resolution molecules, or strategies that promote their increase, tend to suppress inflammation and lung injury and facilitate control of bacterial or viral burden. Here, we argue that the demonstrated anti‐inflammatory, pro‐resolving, anti‐thrombogenic and anti‐microbial effects of such endogenous mediators of resolution may be useful in the treatment of the late stages of the disease in patients with COVID‐19.
Collapse
Affiliation(s)
- Lirlândia P Sousa
- Laboratorio de Imunofamacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Vanessa Pinho
- Laboratorio de Imunofamacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Mauro M Teixeira
- Laboratorio de Imunofamacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
25
|
Magalhaes GS, Rodrigues-Machado MDG, Motta-Santos D, Campagnole-Santos MJ, Santos RAS. Activation of Ang-(1-7)/Mas Receptor Is a Possible Strategy to Treat Coronavirus (SARS-CoV-2) Infection. Front Physiol 2020; 11:730. [PMID: 32636762 PMCID: PMC7318839 DOI: 10.3389/fphys.2020.00730] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 06/04/2020] [Indexed: 01/07/2023] Open
Affiliation(s)
- Giselle Santos Magalhaes
- Department of Physiology and Biophysics, National Institute of Science and Technology in Nanobiopharmaceutics (INCT-Nanobiofar), Belo Horizonte, Brazil.,Medical Sciences Faculty of Minas Gerais, Post-graduate Program in Health Sciences, Belo Horizonte, Brazil
| | | | - Daisy Motta-Santos
- Department of Physiology and Biophysics, National Institute of Science and Technology in Nanobiopharmaceutics (INCT-Nanobiofar), Belo Horizonte, Brazil
| | - Maria Jose Campagnole-Santos
- Department of Physiology and Biophysics, National Institute of Science and Technology in Nanobiopharmaceutics (INCT-Nanobiofar), Belo Horizonte, Brazil
| | - Robson A Souza Santos
- Department of Physiology and Biophysics, National Institute of Science and Technology in Nanobiopharmaceutics (INCT-Nanobiofar), Belo Horizonte, Brazil
| |
Collapse
|
26
|
Magalhães GS, Gregório JF, Ramos KE, Cançado-Ribeiro ATP, Baroni IF, Barcelos LS, Pinho V, Teixeira MM, Santos RAS, Rodrigues-Machado MG, Campagnole-Santos MJ. Treatment with inhaled formulation of angiotensin-(1-7) reverses inflammation and pulmonary remodeling in a model of chronic asthma. Immunobiology 2020; 225:151957. [PMID: 32517880 DOI: 10.1016/j.imbio.2020.151957] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/17/2020] [Accepted: 05/05/2020] [Indexed: 12/12/2022]
Abstract
Asthma is characterized by inflammation, pulmonary remodeling and bronchial hyperresponsiveness. We have previously shown that treatment with angiotensin-(1-7) [Ang-(1-7)] promotes resolution of eosinophilic inflammation and prevents chronic allergic lung inflammation. Here, we evaluated the effect of treatment with the inclusion compound of Ang-(1-7) in hydroxypropyl β-cyclodextrin (HPβCD) given by inhalation on pulmonary remodeling in an ovalbumin (OVA)-induced chronic allergic lung inflammation. Mice were sensitized to ovalbumin (OVA; 4 injections over 42 days, 14 days apart) and were challenged 3 times per week, for 4 weeks (days 21-46). After the 2nd week of challenge, mice were treated with Ang-(1-7) by inhalation (4.5 μg of Ang-(1-7) included in 6.9 μg of HPβCD for 14 days, i.e. days 35-48). Mice were killed 72 h after the last challenge and blood, bronchoalveolar lavage fluid (BALF) and lungs were collected. Histology and morphometric analysis were performed in the lung. Metalloproteinase (MMP)-9 and MMP-12 expression and activity, IL-5, CCL11 in the lung and plasma IgE were measured. After 2 weeks of OVA challenge there was an increase in plasma IgE and in inflammatory cells infiltration in the lung of asthmatic mice. Treatment with inhaled administration of Ang-(1-7)/HPβCD for 14 days reduced eosinophils, IL5, CCL11 in the lung and plasma IgE. Treatment of asthmatic mice with Ang-(1-7)/HPβCD by inhalation reversed pulmonary remodeling by reducing collagen deposition and MMP-9 and MMP-12 expression and activity. These results show for the first time that treatment by inhalation with Ang-(1-7) can reverse an installed asthma, inhibiting pulmonary inflammation and remodeling.
Collapse
Affiliation(s)
- Giselle Santos Magalhães
- Department of Physiology and Biophysics, National Institute of Science and Technology in Nanobiopharmaceutics (INCT-Nanobiofar), Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil; Faculty of Medical Sciences of Minas Gerais, Post-Graduation Program in Health Sciences, Belo Horizonte, Brazil
| | - Juliana Fabiana Gregório
- Department of Physiology and Biophysics, National Institute of Science and Technology in Nanobiopharmaceutics (INCT-Nanobiofar), Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Kezia Emanoeli Ramos
- Faculty of Medical Sciences of Minas Gerais, Post-Graduation Program in Health Sciences, Belo Horizonte, Brazil
| | | | - Isis Felippe Baroni
- Department of Physiology and Biophysics, National Institute of Science and Technology in Nanobiopharmaceutics (INCT-Nanobiofar), Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Lucíola Silva Barcelos
- Department of Physiology and Biophysics, National Institute of Science and Technology in Nanobiopharmaceutics (INCT-Nanobiofar), Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Vanessa Pinho
- Department of Morphology, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Mauro Martins Teixeira
- Department of Biochemistry and Immunology, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Robson Augusto Souza Santos
- Department of Physiology and Biophysics, National Institute of Science and Technology in Nanobiopharmaceutics (INCT-Nanobiofar), Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Maria Jose Campagnole-Santos
- Department of Physiology and Biophysics, National Institute of Science and Technology in Nanobiopharmaceutics (INCT-Nanobiofar), Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
27
|
Oral formulation angiotensin-(1-7) therapy attenuates pulmonary and systemic damage in mice with emphysema induced by elastase. Immunobiology 2020; 225:151893. [DOI: 10.1016/j.imbio.2019.12.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 11/14/2019] [Accepted: 12/02/2019] [Indexed: 01/04/2023]
|
28
|
Queiroz-Junior CM, Santos ACPM, Galvão I, Souto GR, Mesquita RA, Sá MA, Ferreira AJ. The angiotensin converting enzyme 2/angiotensin-(1-7)/Mas Receptor axis as a key player in alveolar bone remodeling. Bone 2019; 128:115041. [PMID: 31442676 DOI: 10.1016/j.bone.2019.115041] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 08/15/2019] [Accepted: 08/19/2019] [Indexed: 01/01/2023]
Abstract
The renin-angiotensin system (RAS), aside its classical hormonal properties, has been implicated in the pathogenesis of inflammatory disorders. The angiotensin converting enzyme 2/angiotensin-(1-7)/Mas Receptor (ACE2/Ang-(1-7)/MasR) axis owns anti-inflammatory properties and was recently associated with bone remodeling in osteoporosis. Thus, the aim of this study was to characterize the presence and effects of the ACE2/Ang-(1-7)/MasR axis in osteoblasts and osteoclasts in vitro and in vivo. ACE2 and MasR were detected by qPCR and western blotting in primary osteoblast and osteoclast cell cultures. Cells were incubated with different concentrations of Ang-(1-7), diminazene aceturate (DIZE - an ACE2 activator), A-779 (MasR antagonist) and/or LPS in order to evaluate osteoblast alkaline phosphatase and mineralized matrix, osteoclast differentiation and cytokine expression, and mRNA levels of osteoblasts and osteoclasts markers. An experimental model of alveolar bone resorption triggered by dysbiosis in rats was used to evaluate bone remodeling in vivo. Rats were treated with Ang-(1-7), DIZE and/or A-779 and periodontal samples were collected for immunohistochemistry, morphometric analysis, osteoblast and osteoclast count and cytokine evaluation. Human gingival samples from healthy and periodontitis patients were also evaluated for detection of ACE2 and MasR expression. Osteoblasts and osteoclasts expressed ACE2 and MasR in vitro and in vivo. LPS stimulation or alveolar bone loss induction reduced ACE2 expression. Treatment of bone cells with Ang-(1-7) or DIZE stimulated osteoblast ALP, matrix synthesis, upregulated osterix, osteocalcin and collagen type 1 transcription, reduced IL-6 expression, and decreased osteoclast differentiation, RANK and IL-1β mRNA transcripts, and IL-6 and IL-1β levels, in a MasR-dependent manner. In vivo, Ang-(1-7) and DIZE decreased alveolar bone loss through improvement of osteoblast/osteoclast ratio. A-779 reversed such phenotype. ACE2/Ang-(1-7)/MasR axis activation reduced IL-6 expression, but not IL-1β. ACE2 and MasR were also detected in human gingival samples, with higher expression in the healthy than in the inflamed tissues. These findings show that the ACE2/Ang-(1-7)/MasR is an active player in alveolar bone remodeling.
Collapse
Affiliation(s)
- Celso Martins Queiroz-Junior
- Translational Biology Lab, Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Brazil.
| | - Anna Clara Paiva Menezes Santos
- Translational Biology Lab, Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Brazil
| | - Izabela Galvão
- Immunopharmacology, Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Brazil
| | - Giovanna Ribeiro Souto
- Department of Dentistry, Pontifical Chatholic University of Minas Gerais, Brazil; Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais, Brazil
| | - Ricardo Alves Mesquita
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais, Brazil
| | - Marcos Augusto Sá
- Translational Biology Lab, Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Brazil
| | - Anderson José Ferreira
- Translational Biology Lab, Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Brazil.
| |
Collapse
|
29
|
Gómez-Mendoza DP, Marques FD, Melo-Braga MN, Sprenger RR, Sinisterra RD, Kjeldsen F, Santos RA, Verano-Braga T. Angiotensin-(1-7) oral treatment after experimental myocardial infarction leads to downregulation of CXCR4. J Proteomics 2019; 208:103486. [DOI: 10.1016/j.jprot.2019.103486] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/05/2019] [Accepted: 08/10/2019] [Indexed: 11/27/2022]
|
30
|
Galvão I, Athayde RM, Perez DA, Reis AC, Rezende L, de Oliveira VLS, Rezende BM, Gonçalves WA, Sousa LP, Teixeira MM, Pinho V. ROCK Inhibition Drives Resolution of Acute Inflammation by Enhancing Neutrophil Apoptosis. Cells 2019; 8:E964. [PMID: 31450835 PMCID: PMC6769994 DOI: 10.3390/cells8090964] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/19/2019] [Accepted: 08/22/2019] [Indexed: 02/07/2023] Open
Abstract
Uncontrolled inflammation leads to tissue damage and it is central for the development of chronic inflammatory diseases and autoimmunity. An acute inflammatory response is finely regulated by the action of anti-inflammatory and pro-resolutive mediators, culminating in the resolution of inflammation and restoration of homeostasis. There are few studies investigating intracellular signaling pathways associated with the resolution of inflammation. Here, we investigate the role of Rho-associated kinase (ROCK), a serine/threonine kinase, in a model of self-resolving neutrophilic inflammatory. We show that ROCK activity, evaluated by P-MYPT-1 kinetics, was higher during the peak of lipopolysaccharide-induced neutrophil influx in the pleural cavity of mice. ROCK inhibition by treatment with Y-27632 decreased the accumulation of neutrophils in the pleural cavity and was associated with an increase in apoptotic events and efferocytosis, as evaluated by an in vivo assay. In a model of gout, treatment with Y-27632 reduced neutrophil accumulation, IL-1β levels and hypernociception in the joint. These were associated with reduced MYPT and IκBα phosphorylation levels and increased apoptosis. Finally, inhibition of ROCK activity also induced apoptosis in human neutrophils and destabilized cytoskeleton, extending the observed effects to human cells. Taken together, these data show that inhibition of the ROCK pathway might represent a potential therapeutic target for neutrophilic inflammatory diseases.
Collapse
Affiliation(s)
- Izabela Galvão
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Rayssa M Athayde
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Denise A Perez
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Alesandra C Reis
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Luisa Rezende
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Vivian Louise S de Oliveira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Barbara M Rezende
- Departamento de Enfermagem Básica, Escola de Enfermagem, Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, Brazil
| | - William A Gonçalves
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Lirlândia P Sousa
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia; Universidade Federal de Minas Gerais, Belo Horizonte 312701-901, Brazil
| | - Mauro M Teixeira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Vanessa Pinho
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil.
| |
Collapse
|
31
|
Rago F, Melo EM, Kraemer L, Galvão I, Cassali GD, Santos RAS, Russo RC, Teixeira MM. Effect of preventive or therapeutic treatment with angiotensin 1–7 in a model of bleomycin‐induced lung fibrosis in mice. J Leukoc Biol 2019; 106:677-686. [DOI: 10.1002/jlb.ma1218-490rr] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 06/19/2019] [Accepted: 06/19/2019] [Indexed: 12/11/2022] Open
Affiliation(s)
- Flávia Rago
- Laboratório de ImunofarmacologiaDepartamento de Bioquímica e ImunologiaUniversidade Federal de Minas Gerais Belo Horizonte Brazil
| | - Eliza Mathias Melo
- Laboratório de ImunofarmacologiaDepartamento de Bioquímica e ImunologiaUniversidade Federal de Minas Gerais Belo Horizonte Brazil
| | - Lucas Kraemer
- Laboratorio de Imunologia e Mecânica PulmonarDepartamento de Fisiologia e BiofísicaUniversidade Federal de Minas Gerais Belo Horizonte Brazil
| | - Izabela Galvão
- Laboratório de ImunofarmacologiaDepartamento de Bioquímica e ImunologiaUniversidade Federal de Minas Gerais Belo Horizonte Brazil
| | - Geovanni D. Cassali
- Departamento de Patologia GeralUniversidade Federal de Minas Gerais Belo Horizonte Brazil
| | - Robson A. S. Santos
- Departamento de Fisiologia e BiofísicaUniversidade Federal de Minas Gerais Belo Horizonte Brazil
| | - Remo C. Russo
- Laboratorio de Imunologia e Mecânica PulmonarDepartamento de Fisiologia e BiofísicaUniversidade Federal de Minas Gerais Belo Horizonte Brazil
| | - Mauro Martins Teixeira
- Laboratório de ImunofarmacologiaDepartamento de Bioquímica e ImunologiaUniversidade Federal de Minas Gerais Belo Horizonte Brazil
- Centro de Desenvolvimento de FármacosInstituto de Ciências BiológicasUniversidade Federal de Minas Gerais Belo Horizonte Brazil
| |
Collapse
|
32
|
Valiate BVS, Alvarez RU, Karra L, Queiroz‐Júnior CM, Amaral FA, Levi‐Schaffer F, Teixeira MM. The immunoreceptor CD300a controls the intensity of inflammation and dysfunction in a model of Ag‐induced arthritis in mice. J Leukoc Biol 2019; 106:957-966. [DOI: 10.1002/jlb.3a1018-389r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 03/21/2019] [Accepted: 05/10/2019] [Indexed: 12/12/2022] Open
Affiliation(s)
- Bruno V. S. Valiate
- Departamento de Bioquímica e ImunologiaInstituto de Ciências Biológicas, Universidade Federal de Minas Gerais Belo Horizonte Brazil
| | - Rodrigo U. Alvarez
- Departamento de Bioquímica e ImunologiaInstituto de Ciências Biológicas, Universidade Federal de Minas Gerais Belo Horizonte Brazil
| | - Laila Karra
- Pharmacology and Experimental Therapeutics UnitInstitute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem Jerusalem Israel
| | | | - Flavio A. Amaral
- Departamento de Bioquímica e ImunologiaInstituto de Ciências Biológicas, Universidade Federal de Minas Gerais Belo Horizonte Brazil
| | - Francesca Levi‐Schaffer
- Pharmacology and Experimental Therapeutics UnitInstitute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem Jerusalem Israel
| | - Mauro M. Teixeira
- Departamento de Bioquímica e ImunologiaInstituto de Ciências Biológicas, Universidade Federal de Minas Gerais Belo Horizonte Brazil
| |
Collapse
|
33
|
Mowry FE, Biancardi VC. Neuroinflammation in hypertension: the renin-angiotensin system versus pro-resolution pathways. Pharmacol Res 2019; 144:279-291. [PMID: 31039397 DOI: 10.1016/j.phrs.2019.04.029] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/22/2019] [Accepted: 04/23/2019] [Indexed: 12/31/2022]
Abstract
Overstimulation of the pro-inflammatory pathways within brain areas responsible for sympathetic outflow is well evidenced as a primary contributing factor to the establishment and maintenance of neurogenic hypertension. However, the precise mechanisms and stimuli responsible for promoting a pro-inflammatory state are not fully elucidated. Recent work has unveiled novel compounds derived from omega-3 polyunsaturated fatty acids (ω-3 PUFAs), termed specialized pro-resolving mediators (SPMs), which actively regulate the resolution of inflammation. Failure or dysregulation of the resolution process has been linked to a variety of chronic inflammatory and neurodegenerative diseases. Given the pathologic role of neuroinflammation in the hypertensive state, SPMs and their associated pathways may provide a link between hypertension and the long-standing association of dietary ω-3 PUFAs with cardioprotection. Herein, we review recent progress in understanding the RAS-driven pathophysiology of neurogenic hypertension, particularly in regards to the chronic low-grade neuroinflammatory response. In addition, we examine the potential for an impaired resolution of inflammation process in the context of hypertension.
Collapse
Affiliation(s)
- Francesca Elisabeth Mowry
- Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, Alabama, USA
| | - Vinicia Campana Biancardi
- Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, Alabama, USA; Center for Neurosciences Research Initiative, Auburn University, Alabama, USA.
| |
Collapse
|
34
|
Sugimoto MA, Vago JP, Perretti M, Teixeira MM. Mediators of the Resolution of the Inflammatory Response. Trends Immunol 2019; 40:212-227. [DOI: 10.1016/j.it.2019.01.007] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/13/2019] [Accepted: 01/14/2019] [Indexed: 02/06/2023]
|
35
|
de Carvalho Santuchi M, Dutra MF, Vago JP, Lima KM, Galvão I, de Souza-Neto FP, Morais e Silva M, Oliveira AC, de Oliveira FCB, Gonçalves R, Teixeira MM, Sousa LP, dos Santos RAS, da Silva RF. Angiotensin-(1-7) and Alamandine Promote Anti-inflammatory Response in Macrophages In Vitro and In Vivo. Mediators Inflamm 2019; 2019:2401081. [PMID: 30918468 PMCID: PMC6409041 DOI: 10.1155/2019/2401081] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/12/2018] [Accepted: 12/10/2018] [Indexed: 02/06/2023] Open
Abstract
The renin-angiotensin system (RAS) peptides play an important role in inflammation. Resolution of inflammation contributes to restore tissue homeostasis, and it is characterized by neutrophil apoptosis and their subsequent removal by macrophages, which are remarkable plastic cells involved in the pathophysiology of diverse inflammatory diseases. However, the effects of RAS peptides on different macrophage phenotypes are still emerging. Here, we evaluated the effects of angiotensin-(1-7) (Ang-(1-7)) and the most novel RAS peptide, alamandine, on resting (M0), proinflammatory M(LPS+IFN-γ), and anti-inflammatory M(IL-4) macrophage phenotypes in vitro, as well as on specific immune cell populations and macrophage subsets into the pleural cavity of LPS-induced pleurisy in mice. Our results showed that Ang-(1-7) and alamandine, through Mas and MrgD receptors, respectively, do not affect M0 macrophages but reduce the proinflammatory TNF-α, CCL2, and IL-1β transcript expression levels in LPS+IFN-γ-stimulated macrophages. Therapeutic administration of these peptides in LPS-induced inflammation in mice decreased the number of neutrophils and M1 (F4/80lowGr1+CD11bmed) macrophage frequency without affecting the other investigated macrophage subsets. Our data suggested that both Ang-(1-7) and alamandine, through their respective receptors Mas and MrgD, promote an anti-inflammatory reprogramming of M(LPS+IFN-γ)/M1 macrophages under inflammatory circumstances and potentiate the reprogramming induced by IL-4. In conclusion, our work sheds light on the emerging proresolving properties of Ang-(1-7) and alamandine, opening new avenues for the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Melissa de Carvalho Santuchi
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Miriane Fernandes Dutra
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Juliana Priscila Vago
- Department of Clinical and Toxicological Analyses, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Kátia Maciel Lima
- Department of Clinical and Toxicological Analyses, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Izabela Galvão
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Fernando Pedro de Souza-Neto
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Mario Morais e Silva
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Aline Cristina Oliveira
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Ricardo Gonçalves
- Department of Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Mauro Martins Teixeira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Lirlândia Pires Sousa
- Department of Clinical and Toxicological Analyses, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Robson Augusto Souza dos Santos
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Rafaela Fernandes da Silva
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
36
|
Matrine reduces cigarette smoke-induced airway neutrophilic inflammation by enhancing neutrophil apoptosis. Clin Sci (Lond) 2019; 133:551-564. [PMID: 30733313 DOI: 10.1042/cs20180912] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 02/04/2019] [Accepted: 02/07/2019] [Indexed: 02/06/2023]
Abstract
Chronic Obstructive Pulmonary Disease (COPD) is a major incurable global health burden and will become the third largest cause of death in the world by 2030. It is well established that an exaggerated inflammatory and oxidative stress response to cigarette smoke (CS) leads to, emphysema, small airway fibrosis, mucus hypersecretion, and progressive airflow limitation. Current treatments have limited efficacy in inhibiting chronic inflammation and consequently do not reverse the pathology that initiates and drives the long-term progression of disease. In particular, there are no effective therapeutics that target neutrophilic inflammation in COPD, which is known to cause tissue damage by degranulation of a suite of proteolytic enzymes including neutrophil elastase (NE). Matrine, an alkaloid compound extracted from Sophora flavescens Ait, has well known anti-inflammatory activity. Therefore, the aim of the present study was to investigate whether matrine could inhibit CS-induced lung inflammation in mice. Matrine significantly reduced CS-induced bronchoalveolar lavage fluid (BALF) neutrophilia and NE activity in mice. The reduction in BALF neutrophils in CS-exposed mice by matrine was not due to reductions in pro-neutrophil cytokines/chemokines, but rather matrine's ability to cause apoptosis of neutrophils, which we demonstrated ex vivo Thus, our data suggest that matrine has anti-inflammatory actions that could be of therapeutic potential in treating CS-induced lung inflammation observed in COPD.
Collapse
|
37
|
Galvão I, Queiroz-Junior CM, de Oliveira VLS, Pinho V, Hirsch E, Teixeira MM. The Inhibition of Phosphoinositide-3 Kinases Induce Resolution of Inflammation in a Gout Model. Front Pharmacol 2019; 9:1505. [PMID: 30666201 PMCID: PMC6330337 DOI: 10.3389/fphar.2018.01505] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 12/10/2018] [Indexed: 01/11/2023] Open
Abstract
Phosphoinositide-3 kinases (PI3Ks) are central signaling enzymes that are involved in many aspects of immune cell function. PI3Kγ and PI3Kδ are the major isoforms expressed in leukocytes. The role of PI3K isoforms in the resolution of inflammation is still poorly understood. Here, we investigated the contribution of PI3Kγ and PI3Kδ to the resolution of inflammation in a model of gout in mice. Methods and Results: Experiments were performed in wild-type male C57/Bl6 mice. Selective inhibitors of PI3K-γ (AS605240) or PI3Kδ (GSK045) were injected in the joint 12 h after injection of MSU crystals, hence at the peak of inflammation. Inhibition of either PI3K isoform decreased number of neutrophils that migrated in response to the injection of MSU crystals. This was associated with reduction of myeloperoxidase activity and IL-1β levels in periarticular tissues and reduction of histological score. Joint dysfunction, as seen by reduced mechanical hypernociception, was improved by treatment with either inhibitor. The decrease in neutrophil numbers was associated with enhanced apoptosis and efferocytosis of these cells. There was shortening of resolution intervals, suggesting inhibition of either isoform induced the resolution of neutrophilic inflammation. Blockade of PI3Kγ or PI3Kδ reduced Nuclear Factor kappa B (NF-κB) activation. A pan-PI3K inhibitor (CL27c) reduced inflammation induced by MSU crystals by a magnitude that was similar to that attained by the PI3Kγ or PI3Kδ selective inhibitors alone. Conclusion: Taken together, these results suggest that neutrophils can use PI3Kγ or PI3Kδ to remain in the cavity and blockade of either isoenzyme is sufficient to induce their apoptosis and resolve inflammation in a murine model of gout.
Collapse
Affiliation(s)
- Izabela Galvão
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Celso Martins Queiroz-Junior
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Vivian Louise Soares de Oliveira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Vanessa Pinho
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Emilio Hirsch
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Mauro Martins Teixeira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|