1
|
Yao S, Weng D, Wang Y, Zhang Y, Huang Q, Wu K, Li H, Zhang X, Yin Y, Xu W. The preprogrammed anti-inflammatory phenotypes of CD11c high macrophages by Streptococcus pneumoniae aminopeptidase N safeguard from allergic asthma. J Transl Med 2023; 21:898. [PMID: 38082290 PMCID: PMC10712085 DOI: 10.1186/s12967-023-04768-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Early microbial exposure is associate with protective allergic asthma. We have previously demonstrated that Streptococcus pneumoniae aminopeptidase N (PepN), one of the pneumococcal components, inhibits ovalbumin (OVA) -induced airway inflammation in murine models of allergic asthma, but the underlying mechanism was incompletely determined. METHODS BALB/c mice were pretreated with the PepN protein and exposed intranasally to HDM allergen. The anti-inflammatory mechanisms were investigated using depletion and adoptive transfer experiments as well as transcriptome analysis and isolated lung CD11chigh macrophages. RESULTS We found pretreatment of mice with PepN promoted the proliferation of lung-resident F4/80+CD11chigh macrophages in situ but also mobilized bone marrow monocytes to infiltrate lung tissue that were then transformed into CD11high macrophages. PepN pre-programmed the macrophages during maturation to an anti-inflammatory phenotype by shaping the metabolic preference for oxidative phosphorylation (OXPHOS) and also inhibited the inflammatory response of macrophages by activating AMP-activated protein kinase. Furthermore, PepN treated macrophages also exhibited high-level costimulatory signaling molecules which directed the differentiation into Treg. CONCLUSION Our results demonstrated that the expansion of CD11chigh macrophages in lungs and the OXPHOS metabolic bias of macrophages are associated with reduced allergic airway inflammation after PepN exposure, which paves the way for its application in preventing allergic asthma.
Collapse
Affiliation(s)
- Shifei Yao
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
- Department of Laboratory Medicine, The First People's Hospital of Zunyi City (The Third Affiliated Hospital of Zunyi Medical University), Zunyi, 563000, China
| | - Danlin Weng
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Yan Wang
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Yanyu Zhang
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Qi Huang
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Kaifeng Wu
- Department of Laboratory Medicine, The First People's Hospital of Zunyi City (The Third Affiliated Hospital of Zunyi Medical University), Zunyi, 563000, China
| | - Honghui Li
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Xuemei Zhang
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Yibing Yin
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Wenchun Xu
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
2
|
Junqueira-Kipnis AP, de Castro Souza C, de Oliveira Carvalho AC, de Oliveira FM, Almeida VP, de Paula AR, Celes MR, Kipnis A. Protease-Based Subunit Vaccine in Mice Boosts BCG Protection against Mycobacterium tuberculosis. Vaccines (Basel) 2022; 10:vaccines10020306. [PMID: 35214766 PMCID: PMC8877678 DOI: 10.3390/vaccines10020306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 12/04/2022] Open
Abstract
The significant number of people with latent and active tuberculosis infection requires further efforts to develop new vaccines or improve the Bacillus Calmette-Guérin (BCG), which is the only approved vaccine against this disease. In this study, we developed a recombinant fusion protein (PEPf) containing high-density immunodominant epitope sequences from Rv0125, Rv2467, and Rv2672 Mycobacterium tuberculosis (Mtb) proteases that proved immunogenic and used it to develop a recombinant BCG vaccine expressing the fusion protein. After challenging using Mtb, a specific immune response was recalled, resulting in a reduced lung bacterial load with similar protective capabilities to BCG. Thus BCG PEPf failed to increase the protection conferred by BCG. The PEPf was combined with Advax4 adjuvant and tested as a subunit vaccine using a prime-boost strategy. PEPf + Advax4 significantly improved protection after Mtb challenge, with a reduction in bacterial load in the lungs. Our results confirm that Mtb proteases can be used to develop vaccines against tuberculosis and that the use of the recombinant PEPf subunit protein following a prime-boost regimen is a promising strategy to improve BCG immunity.
Collapse
|
3
|
Abstract
Bacterial proteases and peptidases are integral to cell physiology and stability, and their necessity in Streptococcus pneumoniae is no exception. Protein cleavage and processing mechanisms within the bacterial cell serve to ensure that the cell lives and functions in its commensal habitat and can respond to new environments presenting stressful conditions. For S. pneumoniae, the human nasopharynx is its natural habitat. In the context of virulence, movement of S. pneumoniae to the lungs, blood, or other sites can instigate responses by the bacteria that result in their proteases serving dual roles of self-protein processors and virulence factors of host protein targets.
Collapse
Affiliation(s)
- Mary E Marquart
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, Mississippi USA
| |
Collapse
|
4
|
Wu G, Zhang X, Chen X, Wang J, Yang J, Wang L, Sun S, Qi Y, Wang H, Yin Y, Xu W. Streptococcus pneumoniae aminopeptidase N regulates dendritic cells that attenuates type-2 airway inflammation in murine allergic asthma. Br J Pharmacol 2020; 177:5063-5077. [PMID: 32726465 DOI: 10.1111/bph.15216] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 06/27/2020] [Accepted: 07/13/2020] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND AND PURPOSE Epidemiological and experimental studies suggest that microbial exposure in early childhood is linked with reduced risk to suffer asthma. Thus microbial components with immunoregulatory capabilities might serve as a preventive strategy for allergic asthma. Recently, it was identified that Streptococcus pneumoniae aminopeptidase N (PepN) could suppress T cell effector function. We sought to investigate the effect of PepN on murine allergic asthma and elucidate the underlying mechanism. EXPERIMENTAL APPROACH The effects of intranasal administration of PepN during or before sensitization were examined in ovalbumin (OVA)-induced murine allergic asthma. The roles of CD11b+ dendritic cells in PepN treated OVA-induced allergic asthma were evaluated by flow cytometry, cytokines detection and adoptive transfer. Moreover, the numbers of lung type 2 innate lymphoid cells (ILC2s) were also detected. KEY RESULTS Administration of PepN during or before sensitization attenuated type-2 airway inflammation (eosinophilia, mucus hypersecretion, Th2 cytokines production and IgE production) in allergic asthma mice. PepN reduced lung accumulation of CD11b+ dendritic cells, which was accompanied by diminished dendritic cell-attracting chemokine CCL20 production as well as CCL17 and CCL22, which are Th2-cell chemokines predominantly produced by CD11b+ dendritic cells. Adoptive transfer of BM-derived CD11b+ dendritic cells abolished the inhibitory effect of PepN on OVA-induced type-2 airway inflammation. The numbers of lung ILC2s were decreased in asthmatic mice receiving PepN. CONCLUSION AND IMPLICATIONS PepN alleviated type-2 inflammation in OVA-induced allergic asthma mice, which was mediated by regulation of lung CD11b+ dendritic cells. Our study provides a novel strategy for the prevention of allergic asthma.
Collapse
Affiliation(s)
- Guangying Wu
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Xuemei Zhang
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Xu Chen
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Jian Wang
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Jing Yang
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Ling Wang
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Si Sun
- The First People's Hospital of Chongqing Liang Jiang New Area, Chongqing, China
| | - Yuhong Qi
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Hong Wang
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Yibing Yin
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Wenchun Xu
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| |
Collapse
|
5
|
Nandan A, Nampoothiri KM. Therapeutic and biotechnological applications of substrate specific microbial aminopeptidases. Appl Microbiol Biotechnol 2020; 104:5243-5257. [PMID: 32342144 PMCID: PMC7186005 DOI: 10.1007/s00253-020-10641-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/15/2020] [Accepted: 04/20/2020] [Indexed: 12/11/2022]
Abstract
Aminopeptidases (EC 3.4.11.) belongs to exoprotease family, which can catalyze the cleavage of peptide bond which connects the N-terminal amino acid to the penultimate residue in a protein. Aminopeptidases catalyze the process of removal of the N-terminal amino acids of target substrates by sequential cleavage of one amino acid residue at a time. Microbial aminopeptidase are of great acceptance as industrial enzymes with varying applications in food and pharma industry since these enzymes possess unique characteristics than aminopeptidases from other sources. This review describes the various applications of microbial aminopeptidases in different industrial sectors. These enzymes are widely used in food industry as a debittering agent as well as in the preparation of protein hydrolysates. In baking, brewing, and cheese making aminopeptidases are extensively used for removing the bitterness of peptides. The inhibitors of these enzymes are found great clinical applications against various diseases such as cancer, diabetes, and viral infections. Aminopeptidases are widely used for the synthesis of biopeptides and amino acids, and found to be efficient than chemical synthesis. These enzymes are capable of hydrolyzing organophosphate compounds, thus having biological as well as environmental significance.Key Points • Cleaves the amino-terminal amino acid residues from proteins and peptides. • Microbial aminopeptidase are of great acceptance as both therapeutic and industrial enzyme. • Review describes the potential applications of microbial aminopeptidases. |
Collapse
Affiliation(s)
- Arya Nandan
- Department of Zoology, Kannur University, Mananthavady Campus, Wayanad, Kerala, India
| | - Kesavan Madhavan Nampoothiri
- Microbial processing Technology Division (MPTD), CSIR, National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, Kerala, 695 019, India.
| |
Collapse
|
6
|
Wang L, Zhang X, Wu G, Qi Y, Zhang J, Yang J, Wang H, Xu W. Streptococcus pneumoniae aminopeptidase N contributes to bacterial virulence and elicits a strong innate immune response through MAPK and PI3K/AKT signaling. J Microbiol 2020; 58:330-339. [PMID: 32103444 DOI: 10.1007/s12275-020-9538-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/26/2019] [Accepted: 01/20/2020] [Indexed: 10/25/2022]
Abstract
Streptococcus pneumoniae is a Gram-positive pathogen with high morbidity and mortality globally but some of its pathogenesis remains unknown. Previous research has provided evidence that aminopeptidase N (PepN) is most likely a virulence factor of S. pneumoniae. However, its role in S. pneumoniae virulence and its interaction with the host remains to be confirmed. We generated a pepN gene deficient mutant strain and found that its virulence for mice was significantly attenuated as were in vitro adhesion and invasion of host cells. The PepN protein could induce a strong innate immune response in vivo and in vitro and induced secretion of IL-6 and TNF-α by primary peritoneal macrophages via the rapid phosphorylation of MAPK and PI3K/AKT signaling pathways and this was confirmed using specific pathway inhibitors. In conclusion, PepN is a novel virulence factor that is essential for the virulence of S. pneumoniae and induces host innate immunity via MAPK and PI3K/AKT signaling.
Collapse
Affiliation(s)
- Ling Wang
- Key Laboratory of Clinical Laboratory Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, P. R. China
| | - Xuemei Zhang
- Key Laboratory of Clinical Laboratory Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, P. R. China
| | - Guangying Wu
- Key Laboratory of Clinical Laboratory Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, P. R. China
| | - Yuhong Qi
- Key Laboratory of Clinical Laboratory Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, P. R. China
| | - Jinghui Zhang
- Key Laboratory of Clinical Laboratory Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, P. R. China
| | - Jing Yang
- Key Laboratory of Clinical Laboratory Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, P. R. China
| | - Hong Wang
- Key Laboratory of Clinical Laboratory Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, P. R. China
| | - Wenchun Xu
- Key Laboratory of Clinical Laboratory Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, P. R. China.
| |
Collapse
|
7
|
PepN is a non-essential, cell wall-localized protein that contributes to neutrophil elastase-mediated killing of Streptococcus pneumoniae. PLoS One 2019; 14:e0211632. [PMID: 30707714 PMCID: PMC6358159 DOI: 10.1371/journal.pone.0211632] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 01/17/2019] [Indexed: 12/23/2022] Open
Abstract
Streptococcus pneumoniae (Spn) is an asymptomatic colonizer of the human nasopharynx but can also cause disease in the inner ear, meninges, lung and blood. Although various mechanisms contribute to the effective clearance of Spn, opsonophagocytosis by neutrophils is perhaps most critical. Upon phagocytosis, Spn is exposed to various degradative molecules, including a family of neutrophil serine proteases (NSPs) that are stored within intracellular granules. Despite the critical importance of NSPs in killing Spn, the bacterial proteins that are degraded by NSPs leading to Spn death are still unknown. In this report, we identify a 90kDa protein in a purified cell wall (CW) preparation, aminopeptidase N (PepN) that is degraded by the NSP neutrophil elastase (NE). Since PepN lacked a canonical signal sequence or LPxTG motif, we created a mutant expressing a FLAG tagged version of the protein and confirmed its localization to the CW compartment. We determined that not only is PepN a CW-localized protein, but also is a substrate of NE in the context of intact Spn cells. Furthermore, in comparison to wild-type TIGR4 Spn, a mutant strain lacking PepN demonstrated a significant hyper-resistance phenotype in vitro in the presence of purified NE as well as in opsonophagocytic assays with purified human neutrophils ex vivo. Taken together, this is the first study to demonstrate that PepN is a CW-localized protein and a substrate of NE that contributes to the effective killing of Spn by NSPs and human neutrophils.
Collapse
|