1
|
de Souza-Silva GA, Sulczewski FB, Boscardin SB. Recombinant antigen delivery to dendritic cells as a way to improve vaccine design. Exp Biol Med (Maywood) 2023; 248:1616-1623. [PMID: 37750021 PMCID: PMC10723026 DOI: 10.1177/15353702231191185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023] Open
Abstract
Dendritic cells are central to the development of immunity, as they are specialized in initiating antigen-specific immune responses. In this review, we briefly present the existing knowledge on dendritic cell biology and how their division in different dendritic cell subsets may impact the development of immune responses. In addition, we explore the use of chimeric monoclonal antibodies that bind to dendritic cell surface receptors, with an emphasis on the C-type lectin family of endocytic receptors, to deliver antigens directly to these cells. Promising preclinical studies have shown that it is possible to modulate the development of immune responses to different pathogens when monoclonal antibodies fused to pathogen-derived antigens are used to deliver the antigen to different subsets of dendritic cells. This approach can be used to improve the efficacy of vaccines against different pathogens.
Collapse
Affiliation(s)
| | - Fernando Bandeira Sulczewski
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, 05508-000, Brazil
| | - Silvia Beatriz Boscardin
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, 05508-000, Brazil
- Instituto de Investigação em Imunologia (iii), Instituto Nacional de Ciência e Tecnologia, São Paulo, 05401-350, Brazil
| |
Collapse
|
2
|
Jin Y, Fu L. Engineer a double team of short-lived and glucose-sensing bacteria for cancer eradication. Cell Rep Med 2023:101043. [PMID: 37192627 DOI: 10.1016/j.xcrm.2023.101043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 02/13/2023] [Accepted: 04/19/2023] [Indexed: 05/18/2023]
Abstract
Rationally designed and engineered bacteria represent an emerging unique approach for cancer treatment. Here, we engineer a short-lived bacterium, mp105, that is effective against diverse cancer types and safe for intravenous administration. We reveal that mp105 combats cancer by direct oncolysis, depletion of tumor-associated macrophages, and elicitation of CD4+ T cell immunity. We further engineer a glucose-sensing bacterium named m6001 that selectively colonizes solid tumors. When intratumorally injected, m6001 clears tumors more efficiently than mp105 due to its post-delivery replication in tumors and potent oncolytic capacity. Finally, we combine intravenous injection of mp105 and intratumoral injection of m6001, forming a double team against cancer. The double team enhances cancer therapy compared with single treatment for subjects carrying both intratumorally injectable and uninjectable tumors. The two anticancer bacteria and their combination are applicable to different scenarios, turning bacterial therapy for cancer into a feasible solution.
Collapse
Affiliation(s)
- Ye Jin
- New Portal Limited, 130-132 Des Voeux Road Central, Hong Kong.
| | - Li Fu
- Guangdong Province Key Laboratory of Regional Immunity and Diseases, Department of Pharmacology and International Cancer Center, Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| |
Collapse
|
3
|
Pu F, Wang R, Yang X, Hu X, Wang J, Zhang L, Zhao Y, Zhang D, Liu Z, Liu J. Nucleotide and codon usage biases involved in the evolution of African swine fever virus: A comparative genomics analysis. J Basic Microbiol 2023; 63:499-518. [PMID: 36782108 DOI: 10.1002/jobm.202200624] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/05/2023] [Accepted: 01/21/2023] [Indexed: 02/15/2023]
Abstract
Since African swine fever virus (ASFV) replication is closely related to its host's machinery, codon usage of viral genome can be subject to selection pressures. A better understanding of codon usage can give new insights into viral evolution. We implemented information entropy and revealed that the nucleotide usage pattern of ASFV is significantly associated with viral isolation factors (region and time), especially the usages of thymine and cytosine. Despite the domination of adenine and thymine in the viral genome, we found that mutation pressure alters the overall codon usage pattern of ASFV, followed by selective forces from natural selection. Moreover, the nucleotide skew index at the gene level indicates that nucleotide usages influencing synonymous codon bias of ASFV are significantly correlated with viral protein hydropathy. Finally, evolutionary plasticity is proved to contribute to the weakness in synonymous codons with A- or T-end serving as optimal codons of ASFV, suggesting that fine-tuning translation selection plays a role in synonymous codon usages of ASFV for adapting host. Taken together, ASFV is subject to evolutionary dynamics on nucleotide selections and synonymous codon usage, and our detailed analysis offers deeper insights into the genetic characteristics of this newly emerging virus around the world.
Collapse
Affiliation(s)
- Feiyang Pu
- Biomedical Research Center, Northwest Minzu University, Lanzhou, China.,College of Life Science and Engineering, Northwest Minzu University, Lanzhou, Gansu, China
| | - Rui Wang
- Viterbi School of Engineering, University of Southern California, Los Angeles, California, USA
| | - Xuanye Yang
- Biomedical Research Center, Northwest Minzu University, Lanzhou, China.,College of Life Science and Engineering, Northwest Minzu University, Lanzhou, Gansu, China
| | - Xinyan Hu
- Biomedical Research Center, Northwest Minzu University, Lanzhou, China.,College of Life Science and Engineering, Northwest Minzu University, Lanzhou, Gansu, China
| | - Jinqian Wang
- Biomedical Research Center, Northwest Minzu University, Lanzhou, China.,College of Life Science and Engineering, Northwest Minzu University, Lanzhou, Gansu, China
| | - Lijuan Zhang
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, Gansu, China
| | - Yongqing Zhao
- Biomedical Research Center, Northwest Minzu University, Lanzhou, China.,College of Life Science and Engineering, Northwest Minzu University, Lanzhou, Gansu, China
| | - Derong Zhang
- Biomedical Research Center, Northwest Minzu University, Lanzhou, China.,College of Life Science and Engineering, Northwest Minzu University, Lanzhou, Gansu, China
| | - Zewen Liu
- Biomedical Research Center, Northwest Minzu University, Lanzhou, China.,College of Life Science and Engineering, Northwest Minzu University, Lanzhou, Gansu, China
| | - Junlin Liu
- Biomedical Research Center, Northwest Minzu University, Lanzhou, China.,College of Life Science and Engineering, Northwest Minzu University, Lanzhou, Gansu, China
| |
Collapse
|
4
|
Particulate Cell Wall Materials of Lactobacillus acidophilus as Vaccine Adjuvant. Vet Sci 2022; 9:vetsci9120698. [PMID: 36548859 PMCID: PMC9783621 DOI: 10.3390/vetsci9120698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/08/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
We evaluated Lactobacillus acidophilus (LA) for adjuvant application in animal vaccines. LA particles (LAPs) are made by treating LA with purification processes and high-pressure homogenization (HPH). We found that LAPs treated with HPH with trehalose and emulsifiers had an average particle size of 179 nm, considerably smaller than LAPs without additives. First, we evaluated the adjuvanticity of LAPs using a murine model with ovalbumin antigens, revealing that LAPs, especially in a five-fold concentration, could induce a considerable antibody response compared with other current adjuvants. In poultry vaccination tests using inactivated Newcastle disease virus, LAPs alone could induce a similar antibody response compared to commercial water-in-oil (W/O) adjuvant ISA70, a commercial adjuvant, at weeks 4 and 6; however, they declined faster than ISA70 at weeks 8 and 10. LAPs added to conventional adjuvant materials, such as mineral oil-based O/W emulsions, showed similar adjuvanticity to ISA70. LA-H5-C, composed of carbomer, emulsifiers and trehalose showed no significant body weight change in acute toxicity compared to other adjuvants including ISA70, making formulated LAPs a potential candidate for use as a veterinary vaccine adjuvant.
Collapse
|
5
|
Sulczewski FB, Martino LA, Salles D, Yamamoto MM, Rosa DS, Boscardin SB. STAT3 signaling modulates the immune response induced after antigen targeting to conventional type 1 dendritic cells through the DEC205 receptor. Front Immunol 2022; 13:1006996. [PMID: 36330518 PMCID: PMC9624190 DOI: 10.3389/fimmu.2022.1006996] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/28/2022] [Indexed: 11/23/2022] Open
Abstract
Conventional dendritic cells (cDC) are a group of antigen-presenting cells specialized in priming T cell responses. In mice, splenic cDC are divided into conventional type 1 DC (cDC1) and conventional type 2 (cDC2). cDC1 are specialized to prime the Th1 CD4+ T cell response, while cDC2 are mainly associated with the induction of follicular helper T cell responses to support germinal center formation. However, the mechanisms that control the functions of cDC1 and cDC2 are not fully understood, especially the signaling pathways that can modulate their ability to promote different CD4+ T cell responses. Here, we targeted a model antigen for cDC1 and cDC2, through DEC205 and DCIR2 receptors, respectively, to study the role of the STAT3 signaling pathway in the ability of these cells to prime CD4+ T cells. Our results show that, in the absence of the STAT3 signaling pathway, antigen targeting to cDC2 induced similar frequencies of Tfh cells between STAT3-deficient mice compared to fully competent mice. On the other hand, Th1 and Th1-like Tfh cell responses were significantly reduced in STAT3-deficient mice after antigen targeting to cDC1 via the DEC205 receptor. In summary, our results indicate that STAT3 signaling does not control the ability of cDC2 to promote Tfh cell responses after antigen targeting via the DCIR2 receptor, but modulates the function of cDC1 to promote Th1 and Th1-like Tfh T cell responses after antigen targeting via the DEC205 receptor.
Collapse
Affiliation(s)
| | - Larissa Alves Martino
- Departamento de Parasitologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Davi Salles
- Departamento de Parasitologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Márcio Massao Yamamoto
- Departamento de Parasitologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Daniela Santoro Rosa
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Sao Paulo, Sao Paulo, Brazil
- Instituto de Investigação em Imunologia (iii), INCT, Sao Paulo, Brazil
| | - Silvia Beatriz Boscardin
- Departamento de Parasitologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, Brazil
- Instituto de Investigação em Imunologia (iii), INCT, Sao Paulo, Brazil
- *Correspondence: Silvia Beatriz Boscardin,
| |
Collapse
|
6
|
Wang X, Sun J, Lu L, Pu FY, Zhang DR, Xie FQ. Evolutionary dynamics of codon usages for peste des petits ruminants virus. Front Vet Sci 2022; 9:968034. [PMID: 36032280 PMCID: PMC9412750 DOI: 10.3389/fvets.2022.968034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Peste des petits ruminants virus (PPRV) is an important agent of contagious, acute and febrile viral diseases in small ruminants, while its evolutionary dynamics related to codon usage are still lacking. Herein, we adopted information entropy, the relative synonymous codon usage values and similarity indexes and codon adaptation index to analyze the viral genetic features for 45 available whole genomes of PPRV. Some universal, lineage-specific, and gene-specific genetic features presented by synonymous codon usages of the six genes of PPRV that encode N, P, M, F, H and L proteins reflected evolutionary plasticity and independence. The high adaptation of PPRV to hosts at codon usages reflected high viral gene expression, but some synonymous codons that are rare in the hosts were selected in high frequencies in the viral genes. Another obvious genetic feature was that the synonymous codons containing CpG dinucleotides had weak tendencies to be selected in viral genes. The synonymous codon usage patterns of PPRV isolated during 2007–2008 and 2013–2014 in China displayed independent evolutionary pathway, although the overall codon usage patterns of these PPRV strains matched the universal codon usage patterns of lineage IV. According to the interplay between nucleotide and synonymous codon usages of the six genes of PPRV, the evolutionary dynamics including mutation pressure and natural selection determined the viral survival and fitness to its host.
Collapse
Affiliation(s)
- Xin Wang
- School of Stomatology, Lanzhou University, Lanzhou, China
| | - Jing Sun
- Geriatrics Department, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Lei Lu
- School of Stomatology, Lanzhou University, Lanzhou, China
| | - Fei-yang Pu
- Center for Biomedical Research, Northwest Minzu University, Lanzhou, China
| | - De-rong Zhang
- Center for Biomedical Research, Northwest Minzu University, Lanzhou, China
| | - Fu-qiang Xie
- Maxillofacial Surgery Department, The Second Hospital of Lanzhou University, Lanzhou, China
- *Correspondence: Fu-qiang Xie
| |
Collapse
|
7
|
Cabeza-Cabrerizo M, Cardoso A, Minutti CM, Pereira da Costa M, Reis E Sousa C. Dendritic Cells Revisited. Annu Rev Immunol 2021; 39:131-166. [PMID: 33481643 DOI: 10.1146/annurev-immunol-061020-053707] [Citation(s) in RCA: 352] [Impact Index Per Article: 117.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Dendritic cells (DCs) possess the ability to integrate information about their environment and communicate it to other leukocytes, shaping adaptive and innate immunity. Over the years, a variety of cell types have been called DCs on the basis of phenotypic and functional attributes. Here, we refocus attention on conventional DCs (cDCs), a discrete cell lineage by ontogenetic and gene expression criteria that best corresponds to the cells originally described in the 1970s. We summarize current knowledge of mouse and human cDC subsets and describe their hematopoietic development and their phenotypic and functional attributes. We hope that our effort to review the basic features of cDC biology and distinguish cDCs from related cell types brings to the fore the remarkable properties of this cell type while shedding some light on the seemingly inordinate complexity of the DC field.
Collapse
Affiliation(s)
- Mar Cabeza-Cabrerizo
- Immunobiology Laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom;
| | - Ana Cardoso
- Immunobiology Laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom;
| | - Carlos M Minutti
- Immunobiology Laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom;
| | | | - Caetano Reis E Sousa
- Immunobiology Laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom;
| |
Collapse
|
8
|
STAT6 signaling pathway controls germinal center responses promoted after antigen targeting to conventional type 2 dendritic cells. CURRENT RESEARCH IN IMMUNOLOGY 2021; 2:120-131. [PMID: 35492396 PMCID: PMC9040147 DOI: 10.1016/j.crimmu.2021.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 08/05/2021] [Accepted: 08/23/2021] [Indexed: 11/22/2022] Open
Abstract
Conventional dendritic cells (cDCs) are antigen-presenting cells specialized in naïve T cell priming. Mice splenic cDCs are classified as cDC1s and cDC2s, and their main functions have been elucidated in the last decade. While cDC1s are specialized in priming type 1 helper T cells (TH1) and in cross presentation, cDC2s prime T follicular helper (TFH) cells that stimulate germinal center (GC) formation, plasma cell differentiation and antibody production. However, less is known about the molecular mechanisms used by cDCs to prime those responses. Here, using WT and STAT6-deficient mice (STAT6 KO), we targeted a model antigen to cDC1s and cDC2s via DEC205 and DCIR2 receptors, respectively, in an attempt to study whether the STAT6 signaling pathway would modulate cDCs’ ability to prime helper T cells. We show that the differentiation and maturation of cDCs, after stimulation with an adjuvant, were comparable between WT and STAT6 KO mice. Besides, our results indicate that, in STAT6 KO mice, antigen targeting to cDC2s induced reduced TFH and GC responses, but did not alter plasma cells numbers and antibody titers. Thus, we conclude that the STAT6 signaling pathway modulates the immune response after antigen targeting to cDC2s via the DCIR2 receptor: while STAT6 stimulates the development of TFH cells and GC formation, plasma cell differentiation occurs in a STAT6 independent manner. cDC2s promote TFH and support germinal center and plasma cell responses. STAT6 modulates the immune response after antigen targeting to cDC2s. STAT6 stimulates germinal center formation after antigen targeting to cDC2s. Plasma cell differentiation occurs in a STAT6-independent manner. STAT6 does not influence cDC2s ability to promote CD4+ T cell proliferation.
Collapse
|
9
|
Intradermal Delivery of Dendritic Cell-Targeting Chimeric mAbs Genetically Fused to Type 2 Dengue Virus Nonstructural Protein 1. Vaccines (Basel) 2020; 8:vaccines8040565. [PMID: 33019498 PMCID: PMC7712967 DOI: 10.3390/vaccines8040565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 11/21/2022] Open
Abstract
Targeting dendritic cells (DCs) by means of monoclonal antibodies (mAbs) capable of binding their surface receptors (DEC205 and DCIR2) has previously been shown to enhance the immunogenicity of genetically fused antigens. This approach has been repeatedly demonstrated to enhance the induced immune responses to passenger antigens and thus represents a promising therapeutic and/or prophylactic strategy against different infectious diseases. Additionally, under experimental conditions, chimeric αDEC205 or αDCIR2 mAbs are usually administered via an intraperitoneal (i.p.) route, which is not reproducible in clinical settings. In this study, we characterized the delivery of chimeric αDEC205 or αDCIR2 mAbs via an intradermal (i.d.) route, compared the elicited humoral immune responses, and evaluated the safety of this potential immunization strategy under preclinical conditions. As a model antigen, we used type 2 dengue virus (DENV2) nonstructural protein 1 (NS1). The results show that the administration of chimeric DC-targeting mAbs via the i.d. route induced humoral immune responses to the passenger antigen equivalent or superior to those elicited by i.p. immunization with no toxic effects to the animals. Collectively, these results clearly indicate that i.d. administration of DC-targeting chimeric mAbs presents promising approaches for the development of subunit vaccines, particularly against DENV and other flaviviruses.
Collapse
|
10
|
Sulczewski FB, Martino LA, Almeida BDS, Zaneti AB, Ferreira NS, Amorim KNDS, Yamamoto MM, Apostolico JDS, Rosa DS, Boscardin SB. Conventional type 1 dendritic cells induce T H 1, T H 1-like follicular helper T cells and regulatory T cells after antigen boost via DEC205 receptor. Eur J Immunol 2020; 50:1895-1911. [PMID: 32673408 DOI: 10.1002/eji.202048694] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/16/2020] [Indexed: 12/21/2022]
Abstract
Conventional dendritic cells (cDCs) are specialized in antigen presentation. In the mouse spleen, cDCs are classified in cDC1s and cDC2s, and express DEC205 and DCIR2 endocytic receptors, respectively. Monoclonal antibodies (mAbs) αDEC205 (αDEC) and αDCIR2 have been fused to different antigens to deliver them to cDC1s or cDC2s. We immunized mice with αDEC and αDCIR2 fused to an antigen using Poly(I:C) as adjuvant. The initial immune response was analyzed from days 3 to 6 after the immunization. We also studied the influence of a booster dose. Our results showed that antigen targeting to cDC1s promoted a pro-inflammatory TH 1 cell response. Antigen targeting to cDC2s induced TFH cells, GCs, and plasma cell differentiation. After boost, antigen targeting to cDC1s improved the TH 1 cell response and induced TH 1-like TFH cells that led to an increase in specific antibody titers and IgG class switch. Additionally, a population of regulatory T cells was also observed. Antigen targeting to cDC2s did not improve the specific antibody response after boost. Our results add new information on the immune response induced after the administration of a booster dose with αDEC and αDCIR2 fusion mAbs. These results may be useful for vaccine design using recombinant mAbs.
Collapse
Affiliation(s)
| | - Larissa Alves Martino
- Departamento de Parasitologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Bianca da Silva Almeida
- Departamento de Parasitologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Arthur Baruel Zaneti
- Departamento de Parasitologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Natália Soares Ferreira
- Departamento de Parasitologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, Brazil
| | | | - Márcio Massao Yamamoto
- Departamento de Parasitologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Juliana de Souza Apostolico
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Sao Paulo, Sao Paulo, Brazil
| | - Daniela Santoro Rosa
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Sao Paulo, Sao Paulo, Brazil.,Instituto de Investigaçao em Imunologia (iii), INCT, Sao Paulo, Brazil
| | - Silvia Beatriz Boscardin
- Departamento de Parasitologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, Brazil.,Instituto de Investigaçao em Imunologia (iii), INCT, Sao Paulo, Brazil
| |
Collapse
|
11
|
Zhao G, Chen Y, He Y, Chen F, Gong Y, Chen S, Xu Y, Su Y, Wang C, Wang J. Succinylated casein-coated peptide-mesoporous silica nanoparticles as an antibiotic against intestinal bacterial infection. Biomater Sci 2019; 7:2440-2451. [PMID: 30939184 DOI: 10.1039/c9bm00003h] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Increasing drug resistance necessitates the discovery of novel bactericides. Human defensin (HD) peptides can eliminate resistant bacteria and are promising candidates for next-generation antibiotics. T7E21R-HD5 is a potent bactericide designed by site mutations at enteric HD5. To facilitate the development of T7E21R-HD5 into an intestinal antibiotic, we employed a mesoporous silica nanoparticle (MSN) as the peptide carrier. Despite its ineffectiveness at killing bacteria, the MSN intensified the outer membrane penetration and inner membrane permeabilization abilities of T7E21R-HD5 and thus enhanced its antibacterial action against multidrug resistant (MDR) E. coli, which broadened the role of MSNs in drug delivery. For the reduction in T7E21R-HD5 losses in the stomach, we further modified MSN@T7E21R-HD5 with succinylated casein (SCN), a milk protein that can be specifically degraded by intestinal protease. SCN coating decreased T7E21R-HD5 release from the MSNs, especially in a highly acidic environment. The controlled release of MSN@T7E21R-HD5 from SCN encapsulation was confirmed in the presence of trypsin. MSN@T7E21R-HD5@SCN was nontoxic to host cells, and it was capable of inactivating MDR E. coli in vivo and alleviating intestinal inflammation by suppressing the production of inflammatory factors TNF-α, IL-1β, and MMP-9. This study provides a peptide-based nanobiotic with efficacy to combat intestinal infection, especially against drug-resistant bacteria. The biocompatible and readily prepared MSN/SCN delivery system may benefit further intestinal antibiotic design and promote the drug transformation of additional enterogenic functional molecules.
Collapse
Affiliation(s)
- Gaomei Zhao
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury of PLA, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Apostólico JDS, Lunardelli VAS, Yamamoto MM, Cunha-Neto E, Boscardin SB, Rosa DS. Poly(I:C) Potentiates T Cell Immunity to a Dendritic Cell Targeted HIV-Multiepitope Vaccine. Front Immunol 2019; 10:843. [PMID: 31105693 PMCID: PMC6492566 DOI: 10.3389/fimmu.2019.00843] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 04/01/2019] [Indexed: 02/05/2023] Open
Abstract
Cellular immune responses are implicated in resistance to HIV and have been considered for the development of an effective vaccine. Despite their safety profile, subunit vaccines need to be delivered combined with an adjuvant. In the last years, in vivo antigen targeting to dendritic cells (DCs) using chimeric monoclonal antibodies (mAb) against the DC endocytic receptor DEC205/CD205 was shown to support long-term T cell immunity. Here, we evaluated the ability of different adjuvants to modulate specific cellular immune response when eight CD4+ HIV-derived epitopes (HIVBr8) were targeted to DEC205+ DCs in vivo. Immunization with two doses of αDECHIVBr8 mAb along with poly(I:C) induced Th1 cytokine production and higher frequency of HIV-specific polyfunctional and long-lived T cells than MPL or CpG ODN-assisted immunization. Although each adjuvant elicited responses against the 8 epitopes present in the vaccine, the magnitude of the T cell response was higher in the presence of poly(I:C). Moreover, poly(I:C) up regulated the expression of costimulatory molecules in both cDC1 and cDC2 DCs subsets. In summary, the use of poly(I:C) in a vaccine formulation that targets multiple epitopes to the DEC205 receptor improved the potency and the quality of HIV-specific responses when compared to other vaccine-adjuvant formulations. This study highlights the importance of the rational selection of antigen/adjuvant combination to potentiate the desired immune responses.
Collapse
Affiliation(s)
- Juliana de Souza Apostólico
- Laboratory of Experimental Vaccines, Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, São Paulo, Brazil.,Institute for Investigation in Immunology (iii)-INCT, São Paulo, Brazil
| | - Victória Alves Santos Lunardelli
- Laboratory of Experimental Vaccines, Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, São Paulo, Brazil.,Institute for Investigation in Immunology (iii)-INCT, São Paulo, Brazil
| | - Marcio Massao Yamamoto
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Edecio Cunha-Neto
- Institute for Investigation in Immunology (iii)-INCT, São Paulo, Brazil.,Laboratory of Clinical Immunology and Allergy (LIM60), School of Medicine-University of São Paulo, São Paulo, Brazil
| | - Silvia Beatriz Boscardin
- Institute for Investigation in Immunology (iii)-INCT, São Paulo, Brazil.,Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Daniela Santoro Rosa
- Laboratory of Experimental Vaccines, Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, São Paulo, Brazil.,Institute for Investigation in Immunology (iii)-INCT, São Paulo, Brazil
| |
Collapse
|
13
|
Zaneti AB, Yamamoto MM, Sulczewski FB, Almeida BDS, Souza HFS, Ferreira NS, Maeda DLNF, Sales NS, Rosa DS, Ferreira LCDS, Boscardin SB. Dendritic Cell Targeting Using a DNA Vaccine Induces Specific Antibodies and CD4 + T Cells to the Dengue Virus Envelope Protein Domain III. Front Immunol 2019; 10:59. [PMID: 30761131 PMCID: PMC6362411 DOI: 10.3389/fimmu.2019.00059] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 01/10/2019] [Indexed: 01/18/2023] Open
Abstract
Dengue fever has become a global threat, causing millions of infections every year. An effective vaccine against all four serotypes of dengue virus (DENV) has not been developed yet. Among the different vaccination strategies available today, DNA vaccines are safe and practical, but currently induce relatively weak immune responses in humans. In order to improve immunogenicity, antigens may be targeted to dendritic cells (DCs), the main antigen presenting cells and orchestrators of the adaptive immune response, inducing T and B cell activation. It was previously shown that a DNA vaccine encoding a fusion protein comprised of an antigen and a single-chain Fv antibody (scFv) specific for the DC endocytic receptor DEC205 induced strong immune responses to the targeted antigen. In this work, we evaluate this strategy to improve the immunogenicity of dengue virus (DENV) proteins. Plasmids encoding the scFv αDEC205, or an isotype control (scFv ISO), fused to the DENV2 envelope protein domain III (EDIII) were generated, and EDIII specific immune responses were evaluated in immunized mice. BALB/c mice were intramuscularly (i.m.) immunized three times with plasmid DNAs encoding either scDEC-EDIII or scISO-EDIII followed by electroporation. Analyses of the antibody responses indicated that EDIII fusion with scFv targeting the DEC205 receptor significantly enhanced serum anti-EDIII IgG titers that inhibited DENV2 infection. Similarly, mice immunized with the scDEC-EDIII plasmid developed a robust CD4+ T cell response to the targeted antigen, allowing the identification of two linear epitopes recognized by the BALB/c haplotype. Taken together, these results indicate that targeting DENV2 EDIII protein to DCs using a DNA vaccine encoding the scFv αDEC205 improves both antibody and CD4+ T cell responses. This strategy opens perspectives for the use of DNA vaccines that encode antigens targeted to DCs as a strategy to increase immunogenicity.
Collapse
Affiliation(s)
- Arthur Baruel Zaneti
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Marcio Massao Yamamoto
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Bianca da Silva Almeida
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Higo Fernando Santos Souza
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Natália Soares Ferreira
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Natiely Silva Sales
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Daniela Santoro Rosa
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo (UNIFESP/EPM), São Paulo, Brazil.,Institute for Investigation in Immunology (iii)-INCTiii, São Paulo, Brazil
| | | | - Silvia Beatriz Boscardin
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,Institute for Investigation in Immunology (iii)-INCTiii, São Paulo, Brazil
| |
Collapse
|
14
|
Flores-Langarica A, Cook C, Müller Luda K, Persson EK, Marshall JL, Beristain-Covarrubias N, Yam-Puc JC, Dahlgren M, Persson JJ, Uematsu S, Akira S, Henderson IR, Lindbom BJ, Agace W, Cunningham AF. Intestinal CD103 +CD11b + cDC2 Conventional Dendritic Cells Are Required for Primary CD4 + T and B Cell Responses to Soluble Flagellin. Front Immunol 2018; 9:2409. [PMID: 30386346 PMCID: PMC6199373 DOI: 10.3389/fimmu.2018.02409] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 09/28/2018] [Indexed: 12/20/2022] Open
Abstract
Systemic immunization with soluble flagellin (sFliC) from Salmonella Typhimurium induces mucosal responses, offering potential as an adjuvant platform for vaccines. Moreover, this engagement of mucosal immunity is necessary for optimal systemic immunity, demonstrating an interaction between these two semi-autonomous immune systems. Although TLR5 and CD103+CD11b+ cDC2 contribute to this process, the relationship between these is unclear in the early activation of CD4+ T cells and the development of antigen-specific B cell responses. In this work, we use TLR5-deficient mice and CD11c-cre.Irf4 fl/fl mice (which have reduced numbers of cDC2, particularly intestinal CD103+CD11b+ cDCs), to address these points by studying the responses concurrently in the spleen and the mesenteric lymph nodes (MLN). We show that CD103+CD11b+ cDC2 respond rapidly and accumulate in the MLN after immunization with sFliC in a TLR5-dependent manner. Furthermore, we identify that whilst CD103+CD11b+ cDC2 are essential for the induction of primary T and B cell responses in the mucosa, they do not play such a central role for the induction of these responses in the spleen. Additionally, we show the involvement of CD103+CD11b+ cDC2 in the induction of Th2-associated responses. CD11c-cre.Irf4 fl/fl mice showed a reduced primary FliC-specific Th2-associated IgG1 responses, but enhanced Th1-associated IgG2c responses. These data expand our current understanding of the mucosal immune responses promoted by sFliC and highlights the potential of this adjuvant for vaccine usage by taking advantage of the functionality of mucosal CD103+CD11b+ cDC2.
Collapse
Affiliation(s)
- Adriana Flores-Langarica
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Charlotte Cook
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Katarzyna Müller Luda
- Immunology Section, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Emma K Persson
- VIB-Ugent Center for Inflammation Research, Ghent, Belgium
| | - Jennifer L Marshall
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Nonantzin Beristain-Covarrubias
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Juan Carlos Yam-Puc
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Madelene Dahlgren
- Immunology Section, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Jenny J Persson
- Immunology Section, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Satoshi Uematsu
- International Research and Development Centre for Mucosal Vaccine, Institute for Medical Science, The University of Tokyo, Tokyo, Japan.,Department of Immunology and Genomics, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Shizuo Akira
- World Premier International Immunology Frontier Research Centre, Osaka University, Suita, Japan
| | - Ian R Henderson
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Bengt Johansson Lindbom
- Immunology Section, Department of Experimental Medical Science, Lund University, Lund, Sweden.,Section of Biology and Chemistry, Department for Micro- and Nanotechnology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - William Agace
- Immunology Section, Department of Experimental Medical Science, Lund University, Lund, Sweden.,Section of Biology and Chemistry, Department for Micro- and Nanotechnology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Adam F Cunningham
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
15
|
Antonio-Herrera L, Badillo-Godinez O, Medina-Contreras O, Tepale-Segura A, García-Lozano A, Gutierrez-Xicotencatl L, Soldevila G, Esquivel-Guadarrama FR, Idoyaga J, Bonifaz LC. The Nontoxic Cholera B Subunit Is a Potent Adjuvant for Intradermal DC-Targeted Vaccination. Front Immunol 2018; 9:2212. [PMID: 30319653 PMCID: PMC6171476 DOI: 10.3389/fimmu.2018.02212] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 09/06/2018] [Indexed: 12/14/2022] Open
Abstract
CD4+ T cells are major players in the immune response against several diseases; including AIDS, leishmaniasis, tuberculosis, influenza and cancer. Their activation has been successfully achieved by administering antigen coupled with antibodies, against DC-specific receptors in combination with adjuvants. Unfortunately, most of the adjuvants used so far in experimental models are unsuitable for human use. Therefore, human DC-targeted vaccination awaits the description of potent, yet nontoxic adjuvants. The nontoxic cholera B subunit (CTB) can be safely used in humans and it has the potential to activate CD4+ T cell responses. However, it remains unclear whether CTB can promote DC activation and can act as an adjuvant for DC-targeted antigens. Here, we evaluated the CTB's capacity to activate DCs and CD4+ T cell responses, and to generate long-lasting protective immunity. Intradermal (i.d.) administration of CTB promoted late and prolonged activation and accumulation of skin and lymphoid-resident DCs. When CTB was co-administered with anti-DEC205-OVA, it promoted CD4+ T cell expansion, differentiation, and infiltration to peripheral nonlymphoid tissues, i.e., the skin, lungs and intestine. Indeed, CTB promoted a polyfunctional CD4+ T cell response, including the priming of Th1 and Th17 cells, as well as resident memory T (RM) cell differentiation in peripheral nonlymphoid tissues. It is worth noting that CTB together with a DC-targeted antigen promoted local and systemic protection against experimental melanoma and murine rotavirus. We conclude that CTB administered i.d. can be used as an adjuvant to DC-targeted antigens for the induction of broad CD4+ T cell responses as well as for promoting long-lasting protective immunity.
Collapse
Affiliation(s)
- Laura Antonio-Herrera
- Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Unidad de Investigación Médica en Inmunoquímica, Mexico City, Mexico.,Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Oscar Badillo-Godinez
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, SS, Cuernavaca, Mexico
| | - Oscar Medina-Contreras
- Immunology and Proteomics Laboratory, Mexico Children's Hospital "Federico Gómez", Mexico City, Mexico
| | - Araceli Tepale-Segura
- Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Unidad de Investigación Médica en Inmunoquímica, Mexico City, Mexico
| | - Alberto García-Lozano
- Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Unidad de Investigación Médica en Inmunoquímica, Mexico City, Mexico
| | | | - Gloria Soldevila
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | - Juliana Idoyaga
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, United States
| | - Laura C Bonifaz
- Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Unidad de Investigación Médica en Inmunoquímica, Mexico City, Mexico
| |
Collapse
|
16
|
Gornati L, Zanoni I, Granucci F. Dendritic Cells in the Cross Hair for the Generation of Tailored Vaccines. Front Immunol 2018; 9:1484. [PMID: 29997628 PMCID: PMC6030256 DOI: 10.3389/fimmu.2018.01484] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 06/14/2018] [Indexed: 12/14/2022] Open
Abstract
Vaccines represent the discovery of utmost importance for global health, due to both prophylactic action to prevent infections and therapeutic intervention in neoplastic diseases. Despite this, current vaccination strategies need to be refined to successfully generate robust protective antigen-specific memory immune responses. To address this issue, one possibility is to exploit the high efficiency of dendritic cells (DCs) as antigen-presenting cells for T cell priming. DCs functional plasticity allows shaping the outcome of immune responses to achieve the required type of immunity. Therefore, the choice of adjuvants to guide and sustain DCs maturation, the design of multifaceted vehicles, and the choice of surface molecules to specifically target DCs represent the key issues currently explored in both preclinical and clinical settings. Here, we review advances in DCs-based vaccination approaches, which exploit direct in vivo DCs targeting and activation options. We also discuss the recent findings for efficient antitumor DCs-based vaccinations and combination strategies to reduce the immune tolerance promoted by the tumor microenvironment.
Collapse
Affiliation(s)
- Laura Gornati
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Ivan Zanoni
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy.,Division of Gastroenterology, Harvard Medical School, Boston Children's Hospital, Boston, MA, United States
| | - Francesca Granucci
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
17
|
Lakhrif Z, Moreau A, Hérault B, Di-Tommaso A, Juste M, Moiré N, Dimier-Poisson I, Mévélec MN, Aubrey N. Targeted Delivery of Toxoplasma gondii Antigens to Dendritic Cells Promote Immunogenicity and Protective Efficiency against Toxoplasmosis. Front Immunol 2018. [PMID: 29515595 PMCID: PMC5826183 DOI: 10.3389/fimmu.2018.00317] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Toxoplasmosis is a major public health problem and the development of a human vaccine is of high priority. Efficient vaccination against Toxoplasma gondii requires both a mucosal and systemic Th1 immune response. Moreover, dendritic cells play a critical role in orchestrating the innate immune functions and driving specific adaptive immunity to T. gondii. In this study, we explore an original vaccination strategy that combines administration via mucosal and systemic routes of fusion proteins able to target the major T. gondii surface antigen SAG1 to DCs using an antibody fragment single-chain fragment variable (scFv) directed against DEC205 endocytic receptor. Our results show that SAG1 targeting to DCs by scFv via intranasal and subcutaneous administration improved protection against chronic T. gondii infection. A marked reduction in brain parasite burden is observed when compared with the intranasal or the subcutaneous route alone. DC targeting improved both local and systemic humoral and cellular immune responses and potentiated more specifically the Th1 response profile by more efficient production of IFN-γ, interleukin-2, IgG2a, and nasal IgA. This study provides evidence of the potential of DC targeting for the development of new vaccines against a range of Apicomplexa parasites.
Collapse
|