1
|
Mula A, Yuan X, Lu J. Dendritic cells in Parkinson's disease: Regulatory role and therapeutic potential. Eur J Pharmacol 2024; 976:176690. [PMID: 38815784 DOI: 10.1016/j.ejphar.2024.176690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/02/2024] [Accepted: 05/28/2024] [Indexed: 06/01/2024]
Abstract
Parkinson's Disease (PD) is a debilitating neurodegenerative disorder characterized by the progressive loss of dopaminergic neurons and the presence of Lewy bodies. While the traditional focus has been on neuronal and glial cell dysfunction, recent research has shifted towards understanding the role of the immune system, particularly dendritic cells (DCs), in PD pathogenesis. As pivotal antigen-presenting cells, DCs are traditionally recognized for initiating and regulating immune responses. In PD, DCs contribute to disease progression through the presentation of α-synuclein to T cells, leading to an adaptive immune response against neuronal elements. This review explores the emerging role of DCs in PD, highlighting their potential involvement in antigen presentation and T cell immune response modulation. Understanding the multifaceted functions of DCs could reveal novel insights into PD pathogenesis and open new avenues for therapeutic strategies, potentially altering the course of this devastating disease.
Collapse
Affiliation(s)
- A Mula
- Department of Encephalopathy, Heilongjiang Academy of Traditional Chinese Medicine, Harbin, Heilongjiang, 150001, PR China
| | - Xingxing Yuan
- Department of Gastroenterology, Heilongjiang Academy of Traditional Chinese Medicine, Harbin, Heilongjiang, 150006, PR China; Department of First Clinical Medicine, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, 150040, PR China
| | - Jinrong Lu
- School of International Education, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, 150040, PR China.
| |
Collapse
|
2
|
Thapa R, Moglad E, Afzal M, Gupta G, Bhat AA, Almalki WH, Kazmi I, Alzarea SI, Pant K, Ali H, Paudel KR, Dureja H, Singh TG, Singh SK, Dua K. ncRNAs and their impact on dopaminergic neurons: Autophagy pathways in Parkinson's disease. Ageing Res Rev 2024; 98:102327. [PMID: 38734148 DOI: 10.1016/j.arr.2024.102327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/02/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024]
Abstract
Parkinson's Disease (PD) is a complex neurological illness that causes severe motor and non-motor symptoms due to a gradual loss of dopaminergic neurons in the substantia nigra. The aetiology of PD is influenced by a variety of genetic, environmental, and cellular variables. One important aspect of this pathophysiology is autophagy, a crucial cellular homeostasis process that breaks down and recycles cytoplasmic components. Recent advances in genomic technologies have unravelled a significant impact of ncRNAs on the regulation of autophagy pathways, thereby implicating their roles in PD onset and progression. They are members of a family of RNAs that include miRNAs, circRNA and lncRNAs that have been shown to play novel pleiotropic functions in the pathogenesis of PD by modulating the expression of genes linked to autophagic activities and dopaminergic neuron survival. This review aims to integrate the current genetic paradigms with the therapeutic prospect of autophagy-associated ncRNAs in PD. By synthesizing the findings of recent genetic studies, we underscore the importance of ncRNAs in the regulation of autophagy, how they are dysregulated in PD, and how they represent novel dimensions for therapeutic intervention. The therapeutic promise of targeting ncRNAs in PD is discussed, including the barriers that need to be overcome and future directions that must be embraced to funnel these ncRNA molecules for the treatment and management of PD.
Collapse
Affiliation(s)
- Riya Thapa
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Ehssan Moglad
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Gaurav Gupta
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates; Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India.
| | - Asif Ahmad Bhat
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, 72341, Sakaka, Aljouf, Saudi Arabia
| | - Kumud Pant
- Graphic Era (Deemed to be University), Clement Town, Dehradun 248002, India; Graphic Era Hill University, Clement Town, Dehradun 248002, India
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India; Department of Pharmacology, Kyrgyz State Medical College, Bishkek, Kyrgyzstan
| | - Keshav Raj Paudel
- Centre of Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW 2007, Australia
| | - Harish Dureja
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia; School of Medical and Life Sciences, Sunway University, 47500 Sunway City, Malaysia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| |
Collapse
|
3
|
Patil D, Bhatt LK. Novel Therapeutic Avenues for Hypertrophic Cardiomyopathy. Am J Cardiovasc Drugs 2023; 23:623-640. [PMID: 37670168 DOI: 10.1007/s40256-023-00609-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/14/2023] [Indexed: 09/07/2023]
Abstract
Hypertrophic cardiomyopathy (HCM) is a complicated, heterogeneous genetic condition that causes left ventricular hypertrophy, fibrosis, hypercontractility, and decreased compliance. Despite the advances made over the past 3 decades in understanding the molecular and cellular mechanisms aggravating HCM, the relationship between pathophysiological stress stimuli and distinctive myocyte growth profiles is still imprecise. Currently, mavacamten, a selective and reversible inhibitor of cardiac myosin ATPase, is the only drug approved by the US FDA for the treatment of HCM. Thus, there is an unmet need for developing novel disease-specific therapeutic approaches. This article provides an overview of emerging therapeutic targets for the treatment of HCM based on various molecular pathways and novel developments that are hopefully soon to enter the clinical study. These newly discovered targets include the dual specificity tyrosine-phosphorylation-regulated kinase 1B, the absence of the melanoma 1 inflammasome, the leucine-rich repeat kinase 2 enzyme, and the cluster of differentiation 147.
Collapse
Affiliation(s)
- Dipti Patil
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (West), Mumbai, 400056, India
| | - Lokesh Kumar Bhatt
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (West), Mumbai, 400056, India.
| |
Collapse
|
4
|
Peter I, Strober W. Immunological Features of LRRK2 Function and Its Role in the Gut-Brain Axis Governing Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2023; 13:279-296. [PMID: 37066923 DOI: 10.3233/jpd-230021] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Emerging evidence implicates intestinal involvement in the onset and/or progression on the selective degeneration of dopaminergic neurons characterizing Parkinson's disease (PD). On the one hand, there are studies supporting the Braak hypothesis that holds that pathologic α-synuclein, a hallmark of PD, is secreted by enteric nerves into intestinal tissue and finds its way to the central nervous system (CNS) via retrograde movement in the vagus nerve. On the other hand, there is data showing that cells bearing leucine-rich repeat kinase 2 (LRRK2), a signaling molecule with genetic variants associated with both PD and with inflammatory bowel disease, can be activated in intestinal tissue and contribute locally to intestinal inflammation, or peripherally to PD pathogenesis via cell trafficking to the CNS. Importantly, these gut-centered factors affecting PD development are not necessarily independent of one another: they may interact and enhance their respective pathologic functions. In this review, we discuss this possibility by analysis of studies conducted in recent years focusing on the ability of LRRK2 to shape immunologic responses and the role of α-synuclein in influencing this ability.
Collapse
Affiliation(s)
- Inga Peter
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Warren Strober
- Mucosal Immunity Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
5
|
Yan J, Zhao W, Yu W, Cheng H, Zhu B. LRRK2 correlates with macrophage infiltration in pan-cancer. Genomics 2021; 114:316-327. [PMID: 34929286 DOI: 10.1016/j.ygeno.2021.11.037] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 11/11/2021] [Accepted: 11/11/2021] [Indexed: 01/08/2023]
Abstract
Leucine-rich repeat kinase2 (LRRK2) influences the host immune responses and correlates with the pathogenesis of inflammation, cancer as well as Parkinson' Disease. Herein, we explored the oncogenic role of LRRK2 at pan-cancer level and validated the analysis by single cell RNA-sequencing and in-vitro experiments. As a result, LRRK2 significantly correlated with the survival events. Specifically, LRRK2 increased the risk of Low-Grade Glioma whereas improved the survival probability of patients with Skin Cutaneous Melanoma. Gene set enrichment analysis demonstrated the involvement of LRRK2 in the host immune responses. Within the tumor microenvironment, LRRK2 was positively associated with the recruitment of macrophages. Furthermore, scRNA-seq and co-culture experiments demonstrated that LRRK2 deficiency impaired macrophage functions, and influenced the neoplastic progression in a cancer type-specific manner. Therefore, the present study provided a therapeutic strategy for LGG based on the interference with LRRK2 expression and activity to prevent macrophage recruitment and promote tumor eradication.
Collapse
Affiliation(s)
- Jing Yan
- Department of Physiology, Jining Medical University, Jining City, Shandong Province 272067, China.
| | - Wenhui Zhao
- Department of Basic Medicine, Jiangsu College of Nursing, China
| | - Wei Yu
- Department of Physiology, Jining Medical University, Jining City, Shandong Province 272067, China
| | - Hongju Cheng
- Department of Physiology, Jining Medical University, Jining City, Shandong Province 272067, China
| | - Baoliang Zhu
- Department of Physiology, Jining Medical University, Jining City, Shandong Province 272067, China
| |
Collapse
|
6
|
Association of LRRK2 rs11564258 single nucleotide polymorphisms with type and extent of gastrointestinal mycobiome in ulcerative colitis: a case-control study. Gut Pathog 2021; 13:56. [PMID: 34593025 PMCID: PMC8482594 DOI: 10.1186/s13099-021-00453-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/20/2021] [Indexed: 12/02/2022] Open
Abstract
Background Recently, the role of endogenous microbiota and the genotype-microbiota correlation in inflammatory bowel disease (IBD) pathogenesis have been highlighted. However, fungi, as the second most prevalent residents of the intestine, and their primary receptor, Dectin-1, are underrated. Thus, we conducted the first human study investigating the association of Leucine-rich repeat kinase 2 (LRRK2) polymorphism (rs11564258) with type and the extent of intestinal fungi in IBD patients. Material and methods A case–control study was performed on 79 ulcerative colitis (UC)-patients (case group) and 58 healthy subjects (HS group). DNA was extracted from blood samples of both groups and amplified with the primers designed for the specific locus containing the LRRK2 polymorphism (rs11564258) and then sequenced. Dectin-1 and LRRK2 mRNA expression levels were also determined. Furthermore, the type and prevalence of fecal yeast species were surveyed in case and control groups. Results A positive correlation was observed between rs11564258 polymorphism and UC susceptibility (p = 0.008 vs. HS). Patients with active UC had the highest rate of isolated fungal colonies (50.41%), followed by patients with non-active UC (24.6%) and HS (25%). These results showed a relationship between UC severity with the increased fungal load. Candida albicans had the highest prevalence in both UC (78.7%) and HS groups (55.8%). Whereas Saccharomyces cerevisiae was the second most common species detected in HS (15.23%), it was significantly reduced in the UC patient group (1.68%) (P = 0.0001). On the other hand, single nucleotide polymorphism (SNP, rs11564258) was not correlated with the increased fungal flora in the UC patients. The expression of LRRK2 and Dectin-1 mRNA detected in blood samples was notably higher in the UC patients (P < 0.01) than in the HS group, without being affected by rs11564258 polymorphism. Conclusions Here, we disclosed that LRRK2 mediates Dectin-1 signaling pathway activation and subsequent inflammation in the UC patients without being affected by the presence of SNP rs11564258. Our data showed an increased global fungal load in the UC patients along with elevated UC susceptibility in cases carrying rs11564258 polymorphism. However, more clinical investigations, particularly in larger populations with different ethnic groups, are required to support this conclusion.
Collapse
|
7
|
Cai H, Wei J, Shen H, Li J, Fan Q, Zhao Z, Deng J, Ming F, Zeng M, Ma M, Zhao P, Liang Q, Jia J, Zhang S, Zhang L. Molecular cloning, characterization and expression profiles of Annexin family (ANXA1~A6) in yellow catfish (Pelteobagrus fulvidraco) and ANX regulation by CpG ODN responding to bacterial infection. FISH & SHELLFISH IMMUNOLOGY 2020; 99:609-630. [PMID: 32088284 DOI: 10.1016/j.fsi.2020.02.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/09/2020] [Accepted: 02/16/2020] [Indexed: 06/10/2023]
Abstract
Up to now, many previous reports have emphasized that Annexins (ANX) family played an important role in immune responses. Aeromonas hydrophila (A. hydrophila), the most common zoonotic pathogenic bacteria of yellow catfish (Pelteobagrus fulvidraco), can cause serious economic loss, especially to yellow catfish with high economic value. In our previous work, we demonstrated that synthetic oligodeoxynucleotides containing CpG motifs (CpG ODN) owned powerful immunostimulatory activity. However, the relationship among Pelteobagrus fulvidraco Annexins (Pf_ANX), CpG ODN and A. hydrophila is unknown. Therefore, we cloned Pf_ANX1-6 genes and analyzed its sequences, structures, genetic evolution, post-translation modifications (PTMs), Ca2+ ion binding sites and tissue distribution to reveal the relevance. In addition, we investigated the responses of ANXA1-6 and cytokines in intestine and spleen as well as morbidity/survival rate of fish post CpG ODN immunization and/or A. hydrophila infection. The results showed that compared with challenge alone (challenge-CK) group, the CpG immunization following challenge (CpG-challenge) group displayed relatively flat IL-1β level throughout in both organs. Meanwhile, the expression of IFN-γ and morbidity/survival rate of fish in CpG-challenge group showed a great improvement compared with the challenge-CK group. Our results indicated that CpG ODN could improve morbidity/survival by up-regulating Pf_ANXA 1, 2 and 5 in the intestine and spleen to ameliorate inflammatory responses and promote anti-infective responses. Our findings offer some important insights into ANX related to the immunity of fish infection and lay a theoretical basis for the prevention and treatment of fish infections.
Collapse
Affiliation(s)
- Haiming Cai
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Jiatian Wei
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Haokun Shen
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Jiayi Li
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Qin Fan
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Zengjue Zhao
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Jinbo Deng
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Feiping Ming
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Min Zeng
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Miaopeng Ma
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Peijing Zhao
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Qianyi Liang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Junhao Jia
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Shuxia Zhang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Linghua Zhang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong, 510642, China.
| |
Collapse
|
8
|
Ahmadi Rastegar D, Dzamko N. Leucine Rich Repeat Kinase 2 and Innate Immunity. Front Neurosci 2020; 14:193. [PMID: 32210756 PMCID: PMC7077357 DOI: 10.3389/fnins.2020.00193] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 02/24/2020] [Indexed: 12/11/2022] Open
Abstract
For more than a decade, researchers have sought to uncover the biological function of the enigmatic leucine rich repeat kinase 2 (LRRK2) enzyme, a large multi-domain protein with dual GTPase and kinase activities. Originally identified as a familial Parkinson's disease (PD) risk gene, variations in LRRK2 are also associated with risk of idiopathic PD, inflammatory bowel disease and susceptibility to bacterial infections. LRRK2 is highly expressed in peripheral immune cells and the potential of LRRK2 to regulate immune and inflammatory pathways has emerged as common link across LRRK2-implicated diseases. This review outlines the current genetic and biochemical evidence linking LRRK2 to the regulation of innate immune inflammatory pathways, including the toll-like receptor and inflammasome pathways. Evidence suggests a complex interplay between genetic risk and protective alleles acts to modulate immune outcomes in a manner dependent on the particular pathogen and cell type invaded.
Collapse
Affiliation(s)
| | - Nicolas Dzamko
- Brain and Mind Centre, Central Clinical School, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
9
|
Nataf S, Guillen M, Pays L. Common Neurodegeneration-Associated Proteins Are Physiologically Expressed by Human B Lymphocytes and Are Interconnected via the Inflammation/Autophagy-Related Proteins TRAF6 and SQSTM1. Front Immunol 2019; 10:2704. [PMID: 31824497 PMCID: PMC6886494 DOI: 10.3389/fimmu.2019.02704] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 11/04/2019] [Indexed: 12/13/2022] Open
Abstract
There is circumstantial evidence that, under neurodegenerative conditions, peptides deriving from aggregated or misfolded specific proteins elicit adaptive immune responses. On another hand, several genes involved in familial forms of neurodegenerative diseases exert key innate immune functions. However, whether or not such observations are causally linked remains unknown. To start addressing this issue, we followed a systems biology strategy based on the mining of large proteomics and immunopeptidomics databases. First, we retrieved the expression patterns of common neurodegeneration-associated proteins in two professional antigen-presenting cells, namely B lymphocytes and dendritic cells. Surprisingly, we found that under physiological conditions, numerous neurodegeneration-associated proteins are abundantly expressed by human B lymphocytes. A survey of the human proteome allowed us to map a unique protein-protein interaction network linking common neurodegeneration-associated proteins and their first shell interactors in human B lymphocytes. Interestingly, network connectivity analysis identified two major hubs that both relate with inflammation and autophagy, namely TRAF6 (TNF Receptor Associated Factor 6) and SQSTM1 (Sequestosome-1). Moreover, the mapped network in B lymphocytes comprised two additional hub proteins involved in both inflammation and autoimmunity: HSPA8 (Heat Shock Protein Family A Member 8 also known as HSC70) and HSP90AA1 (Heat Shock Protein 90 Alpha Family Class A Member 1). Based on these results, we then explored the Immune Epitope Database "IEDB-AR" and actually found that a large share of neurodegeneration-associated proteins were previously reported to provide endogenous MHC class II-binding peptides in human B lymphocytes. Of note, peptides deriving from amyloid beta A4 protein, sequestosome-1 or profilin-1 were reported to bind multiple allele-specific MHC class II molecules. In contrast, peptides deriving from microtubule-associated protein tau, presenilin 2 and serine/threonine-protein kinase TBK1 were exclusively reported to bind MHC molecules encoded by the HLA-DRB1 1501 allele, a recently-identified susceptibility gene for late onset Alzheimer's disease. Finally, we observed that the whole list of proteins reported to provide endogenous MHC class II-binding peptides in human B lymphocytes is specifically enriched in neurodegeneration-associated proteins. Overall, our work indicates that immunization against neurodegeneration-associated proteins might be a physiological process which is shaped, at least in part, by B lymphocytes.
Collapse
Affiliation(s)
- Serge Nataf
- CarMeN Laboratory, INSERM U1060, INRA U1397, INSA de Lyon, Lyon-Sud Faculty of Medicine, University of Lyon, Pierre-Bénite, France
- Faculté de Médecine Lyon-Est, University of Lyon 1, Lyon, France
- Banque de Tissus et de Cellules des Hospices Civils de Lyon, Hôpital Edouard Herriot, Lyon, France
| | - Marine Guillen
- Faculté de Médecine Lyon-Est, University of Lyon 1, Lyon, France
| | - Laurent Pays
- CarMeN Laboratory, INSERM U1060, INRA U1397, INSA de Lyon, Lyon-Sud Faculty of Medicine, University of Lyon, Pierre-Bénite, France
- Faculté de Médecine Lyon-Est, University of Lyon 1, Lyon, France
- Banque de Tissus et de Cellules des Hospices Civils de Lyon, Hôpital Edouard Herriot, Lyon, France
| |
Collapse
|
10
|
Wong AYW, Fric J, Zelante T. Learning to control tissue damage while fighting Aspergillus. Med Mycol 2019; 57:S189-S195. [PMID: 30816972 DOI: 10.1093/mmy/myy053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 07/02/2018] [Indexed: 12/13/2022] Open
Abstract
Aspergillus moulds are increasingly being recognised as significant human pathogens that can cause life-threatening infections in the context of host immune dysregulation, particularly in the lung. It is now clear that there is a close relationship between infection susceptibility and the fine regulation of pulmonary immunity and inflammation. While the contribution of IL-17/Th17 responses to both physiological and pathological lung inflammation is now well established, the cellular interactions, soluble factors, and signalling pathways that determine Th17 cell responses to fungal infection remain unclear. Here, we identify potential key mediators of fungus-DC-T cell interactions in the respiratory tract, with a focus on the DC-derived cytokines thought to exert a major influence on generation of pathological Th17 cells. We review recent data indicating a crucial role for Aspergillus-induced autophagy in lung DCs on subsequent T-cell polarization and modulation of 'stemness', which appears critical for avoiding pathological lung inflammation and promoting disease resolution.
Collapse
Affiliation(s)
- Alicia Yoke Wei Wong
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Jan Fric
- Center for Translational Medicine, International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
| | - Teresa Zelante
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| |
Collapse
|
11
|
The role of LRRK2 in cell signalling. Biochem Soc Trans 2018; 47:197-207. [PMID: 30578345 DOI: 10.1042/bst20180464] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/13/2018] [Accepted: 11/19/2018] [Indexed: 12/14/2022]
Abstract
Parkinson's disease (PD) is a common late-onset neurodegenerative disorder known primarily for its motor features. Mutations and risk variants in LRRK2 cause familial and idiopathic forms of PD. Mutations segregating with disease are found in the LRRK2 GTPase and kinase domains, affecting catalytic activity and protein-protein interactions. This likely results in an overall gain of LRRK2 cell signalling function contributing to PD pathogenesis. This concept supports the development of LRRK2 kinase inhibitors as disease-modifying treatments, at least for a subset of patients. However, the function of LRRK2 as a cell signalling protein with two catalytic and several protein-protein interaction domains is highly complex. For example, LRRK2 plays important roles in several inflammatory diseases, raising the possibility that it may mediate immune responses in PD. Consistently, LRRK2-mediated cell signalling was not only shown to be important for neuronal function, including neuronal development and homeostasis, but also for peripheral and central immune responses. The catalytic activity of LRRK2 is regulated by autophosphorylation, protein monomer/dimer cycling, and upstream kinases and GTPases, affecting its subcellular localisation and downstream signalling. Part of LRRK2-mediated signalling is likely facilitated by Rab protein phosphorylation, affecting primarily membrane trafficking, including vesicle release at the trans-Golgi network. However, LRRK2 also displays intrinsic GTPase activity and functions as a signalling scaffold. As an example, LRRK2 was suggested to be part of the NRON complex and β-catenin destruction complex, inhibiting NFAT and canonical Wnt signalling, respectively. In summary, continuous research into LRRK2 signalling function contributes to novel diagnostic and therapeutic concepts in PD.
Collapse
|